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Abstract
Amphiphilic polymer nanoparticles loaded with silver cations or/and N-heterocyclic carbene–silver
complexes were assessed as antimicrobial agents against Gram-negative pathogens Escherichia
coli and Pseudomonas aeruginosa.

Silver has long been prized as an antimicrobial; ancient Egyptians used silver in food storage.
In the present day, silver compounds are widely used as antimicrobial agents, especially in the
treatment of wounds and burns.1,2 Silver cation (Ag+) is highly toxic, or described as
“oligodynamic,” against a broad spectrum of microorganisms, probably because of its
inhibition of certain oxidative enzymes, protein denaturation, or interference with DNA
replication.3 Unlike traditional antibiotics, Ag+ is of low toxicity to human tissues and has
elicited only rare instances of bacterial silver resistance.4–6 A variety of silver-based
antimicrobials, therefore, has been synthesized and evaluated. Fox introduced silver
sulfadiazine (SSD) in the 1960s;7 SSD remains routinely used as a topical treatment of burns.
Although it has been recognized as an antimicrobial since at least the 1800s, Moyer
repopularized AgNO3 for treatment of burns, which prompted development of SSD.2
Unfortunately, AgNO3 is not practical in vivo, because Ag+ complexes with salts and other
biological agents in the bloodstream.7 Over the past decade, an array of silver N-heterocyclic
carbene (NHC) complexes, which exhibit improved stability to light and aqueous solution,
have been synthesized and investigated by Youngs and Cannon as potential antimicrobial
agents and have shown very promising results with both in vitro and in vivo studies in a variety
of bacteria including BSL3 organisms.8–11 Small molecule antibiotics also have a major
problem, however, that of rapid clearance from the human body and, in the case of silver,
reaction with sulfur-containing proteins and chloride in the bloodstream.12 Therefore, there

†Electronic supplementary information (ESI) available: Complete methods, particle characterization data, and a table of MIC values for
tested bacterial strains. See DOI: 10.1039/b916559b
Correspondence to: David A. Hunstad; Carolyn L. Cannon; Wiley J. Youngs; Karen L. Wooley.

NIH Public Access
Author Manuscript
Chem Commun (Camb). Author manuscript; available in PMC 2011 January 1.

Published in final edited form as:
Chem Commun (Camb). 2010 January 7; 46(1): 121–123. doi:10.1039/b916559b.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



remains a need for packaging and protection for therapeutic delivery of Ag+ or silver–carbene
complexes (SCCs).

Silver-containing (mostly silver(0) nanoparticles) polymers,13 hyperbranched polymers,14 and
dendrimers15 have been investigated for improved solubility and processability to form
antimicrobial surfaces for biomaterial-related infections. Youngs and Cannon et al. had
previously loaded SCCs into L-tyrosine polyphosphate nanoparticles and demonstrated potent
antimicrobial efficacy in in vitro and in vivo studies against Pseudomonas aeruginosa.16 In
this study, we developed shell crosslinked knedel-like (SCK) nanoparticles17–20 as an
antimicrobial device, designed to encapsulate and protect Ag+, SCCs, or the two agents
coincidentally, and evaluate the relative efficacy of each system. The SCKs were constructed
by the supramolecular assembly of amphiphilic block copolymers, poly(acrylic acid)-b-
polystyrene (PAA-b-PS), into micelles, followed by covalent crosslinking throughout the shell
layer to afford discrete nanostructures having a hydrophobic core domain and a hydrophilic
shell region. Four procedures were then followed for loading of the SCKs with silver: (1)
Ag+ was incorporated from AgNO3 into the hydrophilic PAA shell region (AgNO3–SCK); (2)
1-hexyl-3-methyl-4,5-dichloro-imidazole-2-ylidene silver(I) acetate (SCC10, which
undergoes decomposition in the presence of saline solution to release active Ag+)21 was loaded
into the hydrophobic PS core domain and/or the core–shell interface (SCC10–SCK);22,23 (3)
and (4) both methods were applied in opposite order of addition (AgNO3–SCC10–SCK or
SCC10–AgNO3–SCK) (Fig. 1). In all cases, free silver was eliminated using a centrifugal filter
device (100 kDa MWCO), and the filtrates were examined by UV-visible spectroscopy to
confirm removal of free silver. The resulting silver-bearing nanoparticles were characterized
and their antimicrobial activities against common Gram-negative pathogenic bacteria were
evaluated in vitro.

The silver-loading capacities of the nanoparticles were measured by inductively coupled
plasma-mass spectrometry (ICP-MS) using Tl as an internal standard (see ESI†). The amount
of Ag loaded increased with increasing feed amounts. AgNO3–SCK reached a [Ag] loading
capacity of ca. 370 μg mL−1 at the highest AgNO3 feed of 200 mol% with respect to the
combined total theoretical moles of acrylic acid and amide residues in the SCK shell, whereas
SCC10–SCK had a capacity of ca. 75 μg mL−1 at 200 wt% feed of SCC10 with respect to the
polymer weight of the SCK solution. The efficiencies for loading, measured as the percentage
of silver loaded into the SCKs vs. the amount of silver in the feed, were constant across the
feed ratios, and were consistently higher for the AgNO3 loading method. Sequential silver
loading by both methods (performed in either order) did not improve silver capacity over
Ag+-loading only, reaching a total [Ag] of ca. 220 μg mL−1 at 150% feed. Higher feeds of
silver caused precipitation. The silver-bearing nanoparticles were examined by transmission
electron microscopy (TEM), and were observed to be uniform nanostructures of sizes that
agreed with the non-Ag-loaded SCKs (Fig. 2). Some elemental silver nanoparticles were
observed in the AgNO3–SCK sample (see ESI†), which might be due to the reduction of
Ag+ to Ag(0) in the amine-containing polymer matrix.9,15,24

Release of silver from the SCK nanoparticles was assessed by monitoring the decrease over
time of the concentration of silver in dialysis cassettes, performed at 37 °C in 5 mM PBS at
pH 7.4 and analyzed by ICP-MS (Fig. 3). Each loading protocol gave ca. 50% release of silver
within ca. 1 day and ca. 80% release within 2 days, obtaining a plateau with full silver release
by ca. 4 days, a time period that would provide a desired depot effect for therapeutic delivery.
Moreover, the stability of these Ag–SCK complexes over many hours in PBS is a distinct
advantage, relative to simple silver salt solutions, for future in vivo studies.
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The antimicrobial activities of the silver-loaded nano-constructs against common Gram-
negative pathogenic bacteria were measured. We first tested the antimicrobial activity of
SCC10 (in aqueous solution with 1% dimethyl sulfoxide) by determining the minimal
inhibitory concentration (MIC) in Mueller–Hinton (MH) broth against urinary isolates of
Escherichia coli and respiratory isolates of P. aeruginosa from patients with cystic fibrosis.
These MICs were physiologically relevant, ranging from 1 to 6 μg mL−1 (see ESI†). As positive
and negative controls, the MICs of SCC10 against E. coli strain J53 with and without the silver
resistance plasmid pMG1015,6 were tested. The MIC of SCC10 was 1 μg mL−1 for J53 but >
10 μg mL−1 for J53/pMG101, demonstrating that the antimicrobial activity of SCC10 is
conferred by the silver moiety.

Next, we tested the activity of our silver-bearing SCK constructs against representative strains
of E. coli (strain UTI89; MIC [SCC10] = 2 μg mL−1) and P. aeruginosa (strain PAM57-15;
MIC [SCC10]=1 μg mL−1). Defined suspensions of these strains in MH broth were treated in
96-well plates with the silver-bearing SCKs, equalized for [Ag] by the ICP-MS data. Bacterial
growth was measured by optical density (650 nm) in a microplate spectrophotometer 6 h after
treatment. SCKs without loaded silver had no antimicrobial activity (data not shown).
Independent of the silver-loading method, decrements in growth of E. coli UTI89 were
observed at [Ag] of 1 μg mL−1, and growth was completely inhibited at [Ag] of 2 μg mL−1

(Fig. 4a). For P. aeruginosa PAM57-15, decrements in growth were observed at [Ag] of 2–4
μg mL−1 and growth was completely inhibited at [Ag] of 8 μg mL−1 (Fig. 4b). Activity of the
silver-bearing SCKs was generally inferior to that of naked AgNO3 by ≤1 two-fold dilution in
inhibition of bacterial growth, suggesting that the SCKs provide availability of silver for
antimicrobial action.

These silver-loaded SCK nanoparticle delivery systems exhibited antimicrobial activities,
which were nearly comparable to AgNO3. There appeared to be no advantage to the use of the
silver–carbene compounds vs. loading with silver cations directly. The sustained release over
a period of hours suggests that these nanoparticle delivery systems may be beneficial in the
treatment of microbial infections in vivo. Packaging in the nanoparticle framework is expected
to provide for in vivo stability. Furthermore, they can be functionalized, which may permit
control over biodistribution,25 tissue-selective targeting26 and in vivo clearance.27,28 We are
currently investigating their potential in the treatment of pulmonary and urinary tract infections.
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Fig. 1.
Schematic representations of (a) SCC10 (yellow ball) incorporated into the core and Ag+ (blue
ball) from AgNO3 chelated into the shell of an SCK prepared from PAA130-b-PS40; and (b)
AgNO3–SCK, SCC10–SCK, and AgNO3–SCC10–SCK or SCC10–AgNO3–SCK. Note: the
placements of the silver species within the SCK framework are hypothetical locations, which
have not been confirmed experimentally.
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Fig. 2.
TEM images of SCKs and silver-loaded SCKs, each with negative staining by 1%
phosphotungstic acid, (a) SCK, (b) AgNO3–SCK, (c) SCC10–SCK, (d) AgNO3–SCC10–SCK,
and (e) SCC10–AgNO3–SCK. The scales are consistent.
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Fig. 3.
Release profiles of silver from silver-bearing nanoparticles at 37 °C in 5 mM PBS at pH 7.4
(duplicate).
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Fig. 4.
Inhibition of growth of E. coli strain UTI89 (a) and P. aeruginosa strain PAM57-15 (b) by
silver-bearing nanoparticles and naked AgNO3. Relative optical density (650 nm) after 6 h is
shown for each construct at the indicated silver concentrations.
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