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Meta-analysis of skewed data: Combining results reported on
log-transformed or raw scales
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SUMMARY

When literature-based meta-analyses involve outcomes with skewed distributions, the best available data
can sometimes be a mixture of results presented on the raw scale and results presented on the logarithmic
scale. We review and develop methods for transforming between these results for two-group studies, such
as clinical trials and prospective or cross-sectional epidemiological studies. These allow meta-analyses
to be conducted using all studies and on a common scale. The methods can also be used to produce a
meta-analysis of ratios of geometric means when skewed data are reported on the raw scale for every
study. We compare three methods, two of which have alternative standard error formulae, in an application
and in a series of simulation studies. We conclude that an approach based on a log-normal assumption
for the raw data is reasonably robust to different true distributions; and we provide new standard error
approximations for this method. An assumption can be made that the standard deviations in the two
groups are equal. This increases precision of the estimates, but if incorrect can lead to very misleading
results. Copyright q 2008 John Wiley & Sons, Ltd.
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INTRODUCTION

Meta-analyses of clinical trials, epidemiological studies and other types of study may involve
continuous outcome data. Continuous data can be skewed, typical examples being concentra-
tions (e.g. of plasma triglycerides), other ratio or reciprocal measures (e.g. percentage reduction),
measures related to resource use (e.g. recovery time) or assessment scales when there is a large
proportion of ‘normal’ participants with scores towards one extreme of the scale (e.g. measures
of cognition in population-based studies). Standard inferences on the means of skewed data are
valid for large sample sizes due to the central limit theorem, which determines that the mean of
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the outcome measurements is approximately normally distributed with standard deviation given
by the standard error (obtained by dividing the standard deviation by the square-root of the sample
size). Since standard meta-analytic methods assume normality in the distribution of the means, but
not the raw data [1], they are valid when sample sizes within individual studies are sufficient to
enable the central limit theorem to hold approximately.

Focussing on the raw outcome measurements is problematic when the sample size is small,
as the standard deviation and mean are affected by extreme values in one direction. It may also
lead to loss of efficiency regardless of the sample size. This is well recognized by authors of
primary research studies. A common approach to dealing with skewed outcome data is to take a
logarithmic transformation of each observation and to conduct the analysis using log-transformed
values. This yields, for example, a mean of the log-concentration levels together with a standard
deviation of the log-concentration levels, leading directly to a confidence interval for the mean
log-concentration level. The mean of the logs can be readily transformed to a geometric mean along
with a confidence interval. A logarithmic transformation can offer further advantages, including a
focus of the analysis on clinically more appropriate measures of effect [2].

A practical complication in meta-analyses based on summary data is that some studies may
present means and standard deviations on the log scale (or geometric means on the raw scale),
while other studies present means and standard deviations on the raw scale. It can be difficult to
determine exactly which data have been presented. It may, for example, be unclear whether a mean
is an arithmetic mean or a geometric mean. Furthermore, some papers may present inappropriate
results, such as the exponential of the standard deviation of log-transformed values. Even when
the results have been correctly interpreted; however, there remains the problem of combining
results on different scales. Here, we present straightforward and approximate transformations that
enable meta-analyses on either the raw or the log-transformed scale, irrespective of how results are
presented. We do assume; however, that the nature of all results extracted from papers is known,
and we focus on making inferences concerning the comparison of two groups.

SOME TYPES OF PRESENTATION OF CONTINUOUS OUTCOME DATA

Consider first a single group; say an intervention or a control group from a clinical trial, or a
specific exposure group in an observational epidemiological study. Let n be the sample size in
this single group. Let x̄ and sx represent the arithmetic mean and standard deviation of raw (not
log-transformed) measurements. Lower and upper limits of a 95 per cent confidence interval for
the mean, x̄ , are obtained as

x̄l = x̄− t× sx√
n

to x̄u = x̄+ t× sx√
n

where t is the 97.5 percentage point of the t-distribution with (n−1) degrees of freedom.
Let z̄ and sz represent the arithmetic mean and standard deviation of log-transformed measure-

ments. Lower and upper limits of a 95 per cent confidence interval for z̄ are obtained as

z̄l = z̄− t× sz√
n

to z̄u = z̄+ t× sz√
n
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The geometric mean may be obtained as g=exp(z̄). A 95 per cent confidence interval for the
geometric mean is given by

gl =exp

(
z̄− t× sz√

n

)
to gu =exp

(
z̄+ t× sz√

n

)

Data available to a meta-analyst might be in one of the following formats, although the list is not
exhaustive:

(1) Mean and standard deviation of raw measurements (x̄ and sx ).
(2) Mean and standard error for raw measurements (x̄ and sx/

√
n).

(3) Mean and confidence interval for raw measurements (x̄ , x̄l and x̄u).
(4) Mean and standard deviation of log-transformed measurements (z̄ and sz).
(5) Mean and standard error for log-transformed measurements (z̄ and sz/

√
n).

(6) Mean and confidence interval for log-transformed measurements (z̄, z̄l and z̄u).
(7) Geometric mean and confidence interval (g, gl and gu).
(8) Geometric mean and incorrect standard deviation (g and exp(sz)).

The formulae above can be used to convert any of (1)–(8) to either
(i) the mean (x̄) and standard deviation (sx ) for raw measurements

or
(ii) the mean (z̄) and standard deviation (sz) for log-transformed measurements.
This should be undertaken before applying the transformation methods below.

METHODS FOR TRANSFORMING SUMMARY DATA

For variable X with a log-normal distribution, such that

Z = ln(X)∼N(�,�2z )

it is a standard result that the mean and variance of X are given by

E[X ]=exp

(
�+ �2z

2

)

and

var(X)=(exp(�2z )−1)exp(2�+�2z )

We consider three methods for transforming between log-transformed and raw scales, that is, for
estimating the mean and variance of X from the sample mean and variance of Z , or vice versa.
The first two methods exploit the result above. In Method 1, we transform the mean and standard
deviation within each group, and then make the comparison across groups. The standard deviations
are thus allowed to differ in the two groups. Method 2 follows the same approach as Method 1,
but assumes a common standard deviation underlying both groups. This assumption of common
standard deviation could be made on either the raw or the log-transformed scale; we choose the
latter as a generally more plausible assumption. Method 3 targets the difference between the groups
rather than the group means separately. It does not assume a log-normal distribution for the raw
data, and is applicable to other transformations as well as the log transformation.
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We also derive expressions for the standard errors of the estimators. One possibility for Methods 1
and 2 is to apply standard methods to the converted means and standard deviations for the two
groups to obtain a difference in means and its standard error: we call this the ‘ad hoc’ approach.
However, estimators based on the mean and standard deviation on the log scale are more efficient
(have smaller standard errors); hence, the resulting standard errors are too small for conversions
from raw to logarithm and too large for conversions from logarithm to raw. We therefore derive
alternative standard errors from asymptotic Taylor series approximations. All the estimators below
are ‘plug-in’ estimators derived by replacing the population parameters with their estimates; they
are therefore likely to be unbiased in large samples but biased in small samples. Further work
would be required to remove the small-sample bias.

Method 1 (separate standard deviations)

An approximate transformation from Z to X is obtained by substituting estimates for the unknown
quantities in the standard result above. Solving the formulae for � and �2z yield the expressions
for the opposite conversions. This moment-based approach has been described previously by
Whitehead et al. [3]. For this method and Method 2, we denote the two exposure (or treatment)
groups as i=1 and i=2.

From raw to logarithm: To convert x̄i and sx,i to an approximate mean and standard deviation
on the log-transformed scale, take

z̄′i = ln(x̄i )− 1

2
ln

(
s2x,i
x̄2i

+1

)
(i=1,2)

(where the single dash on z̄′i denotes transformation using Method 1), and

s′
z,i =

√√√√ln

(
s2x,i
x̄2i

+1

)
(i=1,2)

The required difference in means on the log scale from Method 1 is given by

d ′
z = z̄′2− z̄′1

The standard error is given by

SE(d ′
z)=

√
var(z̄′2)+var(z̄′1)

The ‘ad hoc’ estimator of var(z̄′i ) uses the t-test formula:

varA(z̄′i )=
s′2
z,i

ni

However, this wrongly assumes that z̄′i has been computed as an arithmetic mean. The alternative
standard error is given by the Taylor series approximation

varB(z̄′i )=var(x̄i )

(
�z̄′i
�x̄i

)2

+2cov(x̄i ,s
2
x,i )

�z̄′i
�x̄i

�z̄′i
�s2x,i

+var(s2x,i )

(
�z̄′i
�s2x,i

)2
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where

�z̄′i
�x̄i

= 1

x̄i
+ s2x,i

x̄i (s2x,i + x̄2i )

�z̄′i
�s2x,i

= − 1

2(s2x,i + x̄2i )

var(x̄i ) = s2x,i
ni

var(s2x,i ) = 1

ni
e4z̄

′
i (e8s

′2
z,i −4e5s

′2
z,i −e4s

′2
z,i +8e3s

′2
z,i −4e2s

′2
z,i )

cov(x̄i ,s
2
x,i ) = 1

ni
e3z̄

′
i (e9s

′2
z,i/2−3e5s

′2
z,i/2+2e3s

′2
z,i/2)

The last two expressions were obtained by approximating s2x,i=(1/(n−1))
∑n

j=1(xi j−x̄i j )2 by (1/n)∑n
j=1(xi j −E[xi j ])2, whose asymptotic accuracy was confirmed by simulation. Then we computed

var

{
1

n

n∑
j=1

(xi j −E[xi j ])2
}

=1

n
var{(xi j−E[xi j ])2}=1

n
E[(Xi−E[Xi ])4]− 1

n
E[(Xi−E[Xi ])2]2

by expanding and using E[Xn]=E[enZ ]=en�+n2�2/2. A similar argument applies for the
covariance.

From logarithm to raw: To convert z̄i and sz,i to an approximate mean and standard deviation
on the raw scale, take

x̄ ′
i =exp

(
z̄i +

s2z,i
2

)
(i=1,2)

and

s′
x,i =

√
(exp(s2z,i )−1)exp(2z̄i +s2z,i ) (i=1,2)

The required difference in means is now

d ′
x = x̄ ′

2− x̄ ′
1

with standard error

SE(d ′
x )=

√
var(x̄ ′

2)+var(x̄ ′
1)

The ‘ad hoc’ standard error is estimated using

varA(x̄ ′
i )=

s′2
x,i

ni
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and the alternative standard error by the Taylor series approximation

varB(x̄ ′
i )=

1

ni
exp(2z̄i +s2z,i )s

2
z,i (1+s2z,i/2) (i=1,2)

It can be seen that varB(x̄ ′
i )<varA(x̄ ′

i ), and so the alternative standard error is smaller than the
‘ad hoc’ one.

Method 2 (common standard deviation)

Method 2 is similar to Method 1, but assumes a pooled standard deviation on the log-transformed
scale.

From raw to logarithm: To convert x̄i and si to an approximate mean and standard deviation on
the logarithmic scale, we first transform the standard deviations and then pool them.

s′′
z,i =

√√√√ln

(
s2x,i
x̄2i

+1

)
(i=1,2)

s′′
z,pooled =

√
(n1−1)s′′2

z,1+(n2−1)s′′2
z,2

n1+n2−2

z̄′′i = ln(x̄i )− 1
2 s

′′2
z,pooled (i=1,2)

(where the double dash denotes transformation using Method 2). The required difference in means
on the logarithmic scale is given by

d ′′
z = z̄′′2− z̄′′1 = ln(x̄2)− ln(x̄1)

The ‘ad hoc’, t-test-type, standard error is given by

SEA(d ′′
z )=s′′

z,pooled

√(
1

n1
+ 1

n2

)

and the standard error, based on Taylor approximation, is given by

SEB(d ′′
z )=

√
{exp(s′′2

z,pooled)−1}
(

1

n1
+ 1

n2

)
>SEA(d ′′

z )

From logarithm to raw: To convert z̄i and sz,i to an approximate mean and standard deviation
on the raw scale, we first pool the standard deviations.

sz,pooled =
√

(n1−1)s2z,1+(n2−1)s2z,2
n1+n2−2

x̄ ′′
i = exp

(
z̄i +

s2z,pooled
2

)
(i=1,2)

s′′
x,i =

√
(exp(s2z,pooled)−1)exp(2z̄i +s2z,pooled) (i=1,2)
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The required difference in means, an ‘ad hoc’ standard error and a standard error by Taylor series
approximation are given respectively by

d ′′
x = x̄ ′′

2 − x̄ ′′
1 =(exp(z̄2)−exp(z̄1))exp(s

2
z,pooled/2)

SEA(d ′′
x ) =

√
s′′2
x,2

n2
+ s′′2

x,1

n1

and

SEB(d ′′
x )=

√√√√exp(s2z,pooled)s
2
z,pooled

(
exp(2z̄1)

n1
+ exp(2z̄2)

n2
+ s2z,pooled(exp(z̄2)−exp(z̄1))2

2(n1+n2)

)

Method 3

Our third method follows from the following general result and applies directly to the difference
between groups rather than the two group means separately. Let A=g(B) be the transformation of
interest. Then, for example, g(B)= ln(B) or g(B)=exp(B) for the current application. Suppose
the data have been analysed under a linear model for B:

Bk =�+�Tk+�k

where Tk represents covariates for individual k. For the simple comparison of two groups, Tk
represents only group allocation, and � is the difference in means. Now let �B be the overall mean,
across values of T . Then a first-order Taylor series expansion about �B gives

E[Ak |Tk =T ]=E[g(Bk)|Tk =T ]≈constant+g′(�B)�T

The difference between the means of the two groups can then be estimated, by subtraction, as
g′(�̂B)�̂. The standard error is obtained similarly as g′(�̂B)SE(�̂). This first-order approximation
neglects terms involving �2 and beyond, and neglects the term involving the variance of B. The
former should be acceptable for small effect size �, and the latter if the variance does not depend
on T , i.e. if the spread of the distribution is similar across groups. The derivatives g′(�̂B) turn out
to be the overall geometric mean when transforming from logarithm to raw, and the reciprocal of
the overall arithmetic (raw) mean when transforming from raw to logarithm.

From raw to logarithm: To convert a difference in means on the raw scale to an approximate
difference on the logarithmic scale, take x̄ to be the overall arithmetic mean across groups on the
raw scale, and use

d ′′′
z = dx

x̄

SE(d ′′′
z ) = SE(dx )

x̄

where dx and SE(dx ) are the difference in means and its standard error from raw means.
From logarithm to raw: To convert a difference in means on the logarithmic scale to an approx-

imate difference on the raw scale, take x̄geom to be the geometric mean of the geometric means

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:6072–6092
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across groups (equivalent to the exponential of the arithmetic mean of the means of log-transformed
values), and use

d ′′′
x = dz× x̄geom

SE(d ′′′
x ) = SE(dz)× x̄geom

where dz and SE(dz) are the difference in means and its standard error from log-transformed
values.

APPLICATION: D9N POLYMORPHISM IN THE LIPOPROTEIN LIPASE GENE AND
TRIGLYCERIDE LEVELS

Sagoo et al. conducted a systematic review of association between polymorphisms in the lipoprotein
lipase (LPL) gene and coronary heart disease, and also studied plasma levels of cholesterol and
triglycerides [4]. We address one particular meta-analysis of 14 studies of the association between
triglyceride level and being a carrier or non-carrier of the D9N polymorphism in the LPL gene.
Triglyceride levels are typically skewed, and are sometimes presented on the log scale. Through
a combination of data extraction from the published reports and correspondence with the original
investigators, the review authors obtained means and standard deviations on both logarithmic and
raw scales for five studies, on the logarithmic scale only for one study and on the raw scale only
for eight studies (Table I). Results for individual studies and meta-analyses are provided in Table II
and Figures 1 and 2, for available (‘true’) data and for transformations using our various methods.

Available data on the raw scale allowed meta-analysis of 13 of the studies. We also undertook
meta-analyses of all 14 studies, making transformations from the logarithmic to the raw scale

Table I. Data available for D9N polymorphism in the lipoprotein lipase gene and triglyceride levels.

Carriers Non-carriers

Raw Log Raw Log

n Mean SD Mean SD n Mean SD Mean SD

Boer 2003b 34 — — 0.31 0.58 1002 — — 0.33 0.53
Copenhagen 241 2.10 1.46 1.05 0.37 8429 1.85 1.54 0.98 0.34
CDRFMP 14 2.05 1.21 — — 364 1.57 1.11 — —
EARS I & II 71 1.12 0.34 — — 1608 0.99 0.80 — —
ECTIM 22 1.82 1.46 — — 784 1.84 1.47 — —
Ehrenborg 1997 15 1.01 0.36 — — 77 0.99 0.53 — —
Ferencak 2003 5 2.04 0.92 — — 195 1.81 0.84 — —
FOS 58 1.61 0.72 — — 2200 1.38 1.16 — —
Glisic 2003b 4 2.42 1.53 0.74 0.60 129 1.64 0.94 0.37 0.49
Reykjavik 10 1.64 1.64 0.20 0.74 274 1.04 0.49 −0.05 0.42
Rios 2003 10 1.60 0.70 0.39 0.41 187 1.75 0.92 0.43 0.50
Schulte 1996 17 1.96 0.82 — — 644 1.56 0.82 — —
Talmud 1998 12 1.35 0.52 — — 96 1.27 0.52 — —
Yang 2004 235 2.39 1.46 0.74 0.50 1275 2.34 1.26 0.73 0.49
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6082 J. P. T. HIGGINS, I. R. WHITE AND J. ANZURES-CABRERA

Figure 1. Epidemiological studies of D9N polymorphism in the lipoprotein lipase gene and
triglyceride levels: meta-analyses on the raw triglyceride scale, using various conversions from
the logarithmic to the raw scale. Where conversions are made, methods are ordered as follows:
Method 1 (separate variances, t-test SE); Method 1 (separate variances, Taylor SE); Method 2

(equal variances, t-test SE); Method 2 (equal variances, Taylor SE); Method 3.

wherever this was possible. For five studies, the ‘true’ results can be compared directly with trans-
formations from logarithmic data, and the results are similar in all cases (Figure 1). Furthermore,
there are no substantial differences across the different transformation methods (Table II, Figure 1).
It is possible for the effect direction to change on transforming between metrics when assuming
separate standard deviations. For example, the Boer 2003b transformed to the raw scale using
Method 1 (Table II, first row), produces a point estimate that indicates a higher mean (by 0.009) in
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Figure 2. Epidemiological studies of D9N polymorphism in the lipoprotein lipase gene and
triglyceride levels: meta-analyses on the log triglyceride scale using various conversions from
the raw to the logarithmic scale. Where conversions are made, methods are ordered as follows:
Method 1 (separate variances, t-test SE); Method 1 (separate variances, Taylor SE); Method 2

(equal variances, t-test SE); Method 2 (equal variances, Taylor SE); Method 3.
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the carriers than in the non-carriers, compared with a lowermean (by 0.022) of logs in the observed
data. This is because of the larger standard deviation of carriers than non-carriers on the log scale.
However, the change in the point estimate is trivial in the context of its confidence interval.

Available data on the log scale allowed meta-analysis of six of the studies. We also undertook
meta-analyses of all 14 studies, making transformations from the raw to the logarithmic scale
wherever this was possible. Again, for five studies, the ‘true’ and transformed results can be
compared directly (Figure 2). One notable discrepancy is in the Copenhagen study, in which the
‘true’ mean difference is smaller than the values estimated by our transformations, and has a
somewhat smaller standard error. The bias in the transformations may be because the standard
deviations of raw triglyceride levels are relatively large compared with their means, combined
with sample size imbalance (see also later simulation results, Table V), or because the data depart
more substantially from a log-normal distribution in this study. Point estimates for Method 3 agree
well with those for Method 2. In three studies (EARS, FOS and Reykjavik), the assumption of a
common standard deviation has a more noticeable effect on the point estimate, so that Method 1
differs from Methods 2 and 3. The studies are also responsible for introducing heterogeneity into
the meta-analyses and increasing the summary effect estimate for Method 1. These three studies
have substantially different observed standard deviations between carriers and non-carriers (see
also later simulation results, Table VI).

SIMULATION STUDY

We undertook a simulation study to compare the methods. Continuous outcome data were simulated
for a single, two-group study, according to various distributions, and subjected to the three trans-
formation methods, both converting the raw simulated data to the logarithmic scale and converting
the logs of the simulated data to the raw scale. Since we knew the means and standard deviations
on both scales (either theoretically or empirically), we could compare the estimated differences
in means (and their standard errors) with those that would have been obtained had the data been
analysed on the desired scale.

Our initial set of simulations used log-normally distributed data with equal standard deviations
across groups (on the log scale), thus the distributional assumptions underlying all methods hold
exactly, and only the asymptotic approximations would affect results. Each group had a sample
size of 100. We then evaluated, with further simulations, (i) small sample sizes (10 rather than
100); (ii) imbalance in sample sizes across the two groups; (iii) different standard deviations in
the two groups; (iv) a different skewed distribution (gamma distribution); and (v) lack of serious
skew (normal distribution, with negative values rejected). The gamma and normal distributions
were chosen to have (before rejection of samples) identical means and standard deviations on the
raw scale to the initial log-normally distributed data. Full details of the data generation and the
parameter values are provided in Table III. Illustrations of all distributions simulated are included
in Figure 3.

For each scenario and parameter set (each row in Table III), we undertook 10 000 simulations.
Each simulation produced three estimates (d ′

z , d
′′
z and d ′′′

z ) with five standard errors (SEA(d ′
z),

SEB(d ′
z), SEA(d ′′

z ), SEB(d ′′
z ) and SE(d ′′′

z )) for transformations from the raw to the log scale, and
the corresponding numbers for transformations from the log to the raw scale. We summarized
them using measures of bias, precision and coverage as follows, where d represents one of the
three estimates.
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Figure 3. Probability densities of all distributions used in the simulation study. Solid lines
represent group 1 and dotted lines group 2.

Bias: Bias was defined as mean estimated difference in means (d) minus true difference in
means. For log-normal simulations and gamma simulations (raw scale only), the true values were
known theoretically. For the others, the true mean differences were estimated empirically across
simulations. We present mean bias for log-normal simulations and median bias for gamma and
normal simulations due to some extreme and influential values.

Precision: We present mean values of estimated standard errors across simulations, separately
for the Taylor series method, SEA (d), and the t-test (‘ad hoc’) method, SEB (d). We also present
empirical standard errors of the estimated mean differences. For the log-normal simulations,
these are calculated as empirical standard deviations over all 10 000 simulations. For the gamma
and normal simulations, we present the difference between the 69th and 31st percentiles as an
approximately equivalent measure (for a normal distribution, this difference equals the standard
deviation).

Coverage: Coverage was defined as the percentage of simulations in which a 95 per cent confi-
dence interval, obtained as d±1.96×SE(d), included the true difference in means (theoretically
or empirically obtained).
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Monte Carlo errors for each reported value were calculated, as SD(d)/
√
10000 for mean bias, as

SD(SE(d))/
√
10000 for estimated standard errors, as

√
P(1−P)/10000 for estimated coverage

P , and from confidence intervals for medians.

Results of simulation study

Results for some of the simulations are provided in Tables IV–VI.

Distributional assumptions met (log-normal distribution) : Table IV. For log-normally distributed
data with equal standard deviations (on the log scale) and equal sample size, all methods work
well when the standard deviation is small (Table IV, Sets 2 and 4). With a large standard deviation;
however, three potential problems are apparent (Table IV, Sets 1 and 3). First, there is bias
towards the null in Method 3 for the transformation from the log to the raw scale when the means
are not equal. This is because of the omitted third and higher-order terms in the Taylor series.
Indeed, we can show that for small difference between the groups and equal standard deviations,
Method 3 estimates a fraction e−�2z/2 of the true difference. Second, standard errors using the
Taylor approximation are inflated when transforming from the raw to the log scale for Method 1.
We believe this is because the asymptotic formula requires very large samples to be valid in this
case, perhaps because of the large exponential terms. Third, t-test-based standard errors are too
low for raw to log, and too high for log to raw, with corresponding under- or over-coverage.
The conversion is in reality less efficient in the former direction and more efficient in the latter
direction than is reflected in these ‘naı̈ve’ standard errors. Empirical standard errors for large
standard deviations are larger for Method 1 than for Method 2 converting from log to raw (Table IV,
Sets 1 and 3) since in Method 1 the two standard deviations (which are not pooled) are subject to
greater variability than the pooled standard deviation in Method 2; empirical standard errors are
much smaller for Method 3 from log to raw due to the bias towards the null.

Small sample sizes: Results not shown; and imbalanced sample sizes: Table V. Findings were very
similar for small sample sizes. The only identifiable sample-size-related problem is an increase in
the standard errors for the Taylor approximation method from raw to log, resulting in lower coverage
compared with the larger sample size (although in fact producing coverage around 95 per cent for
Method 1). When sample sizes are unbalanced, there is bias for large standard deviations in all
methods for both transformations (Table V, Sets 9 and 11). This is likely due to a small-sample
bias that cancels out across groups when the sample sizes are equal. Coverage for Methods 3,
which is adequate when sample sizes are the same, is reduced for unbalanced sample sizes when
transforming from raw to log with large standard deviations.

Different standard deviations: Table VI. Bias in Methods 2 and 3 (which assume a common
standard deviation on the log scale) can be considerable (Table VI, Sets 13 and 15) when the
standard deviations are genuinely different. Coverage drops to as low as 1 per cent in one scenario.
Method 1 has broadly similar properties to the case of equal standard deviations, although there
is a small bias in the point estimate.

Alternative skew (gamma distribution); and no skew (normal distribution): results not shown. The
transformation from raw to log scales is associated with very little bias. Taylor approximation
standard errors are again high for Method 1 when the standard deviation is large. T -test-based
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standard errors are again low for this transformation for both Methods 1 and 2. The transforma-
tion from log to raw produces some large biases in all Methods. T -test standard errors for this
transformation are over-estimated considerably.

Transformations of normally distributed data to the logarithmic scale have good properties in
the scenarios simulated. The opposite transformation produced some bias for all three Methods
for one scenario with non-zero effect and large standard deviations.

DISCUSSION

In meta-analysis, it is desirable to combine effects measured on a common scale from as many
studies as possible. One obstacle to achieving this is when results are reported on a log-transformed
scale for some studies, but on the raw scale for other studies. We have presented several methods
for transforming data from two-group studies presented on a logarithmic scale to a raw scale
and from a raw scale to a logarithmic scale, thus enabling meta-analyses of all studies to be
conducted on one or other scale. The methods also allow a meta-analysis to be undertaken on a
log-transformed scale even if all studies report data on the raw scale. This enables estimation of
a meta-analytic ratio of geometric means. Such a metric may provide a natural ‘standardization’
across studies, hence reducing heterogeneity, and provides an alternative to the ratio of arithmetic
means that is sometimes used [5].

Our first method (Method 1) assumes log-normal distributions with different standard deviations,
Method 2 assumes log-normal distributions with a common standard deviation (on the log scale),
while Method 3 assumes no particular distribution, but requires similar distributional shapes in the
two groups and small effect sizes. On application of the methods to an example, in which most
data were reported on the raw scale, we observed some differences between the three methods.
Some studies gave substantially different results for Method 1 because of a difference in standard
deviations across groups; other studies gave different results for Method 3 because its associated
standard errors can be different. In one study, all transformations produced a biased result.

We evaluated the properties of the three methods in a simulation study. This did not reveal a
uniformly preferable method. All methods were reasonably robust to data having distributions other
than the log-normal. The most serious threat to validity from among the scenarios we simulated
was when the standard deviations differed between the groups. Method 1 offers clear advantages in
this situation. When standard deviations are large compared with means, biased estimates (in either
direction) can be obtained and there is a variation in the precision with which the three methods
estimate differences in means: Method 3 produces the most precise estimates when transforming
from the log to the raw scale; methods are similar when transforming from the raw to the log
scale. We derived a Taylor approximation to the standard error and compared it with a t-test-based
approach. The Taylor approximation can overestimate standard errors (particularly for raw to log
transformations with large standard deviations), but otherwise seems to perform well. The more
naı̈ve t-test-based approach is less good as it treats transformed means and standard deviations as
if they were simple arithmetic means. However, it can be implemented more readily in commonly
used meta-analysis software such as RevMan [6], metan [7] (for Stata) and Comprehensive Meta-
analysis [8]. Its performance is probably adequate for most meta-analytic purposes.

One possible extension to our proposed methods would be to replace our estimators, which are
maximum likelihood and therefore may have small-sample bias, with bias-corrected estimators
[9]. However, no closed-form standard error is available to our knowledge.
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In conclusion, we recommend the use of Method 1 whenever standard deviations are likely
to be different in the two groups, with Taylor approximation standard errors for the log to raw
transformation. For transformations from raw to log scales, the Taylor approximation standard
errors can be large, resulting in down-weighting of these studies in a meta-analysis. When stan-
dard deviations are similar, greater precision can be obtained using Method 2, especially when
transforming to the raw scale. Method 3 offers a general framework that can be used for different
data transformations.

Since the methods allow meta-analyses to be conducted on either the raw or the log-transformed
scale, decisions on which scale to use will be required. Several considerations may guide the choice
of scale, including (i) fidelity to the data available, by using the scale most frequently reported;
(ii) best meeting meta-analytic assumptions, by using the scale believed to have less skew; (iii)
minimizing consistency (heterogeneity) of results; (iv) applying the results to another problem (for
example, if the results are to feed into a further analysis that requires data on a specific scale). The
simulation study did not indicate consistently better properties of one direction of transformation
over the other.
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