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ABSTRACT

In Qb RNA, sequestering the coat gene ribosome
binding site in a putatively strong hairpin stem
structure eliminated synthesis of coat protein and
activated protein synthesis from the much weaker
maturation gene initiation site, located 1300 nucleo-
tides upstream. As the stability of a hairpin stem
comprising the coat gene Shine–Dalgarno site was
incrementally increased, there was a corresponding
increase in translation of maturation protein. The
effect of the downstream coat gene ribosome
binding sequence on maturation gene expression
appeared to have occurred only in cis and did not
require an AUG start codon or initiation of coat
protein synthesis. In all cases, no structural re-
organization was predicted to occur within Qb
RNA. Our results suggest that protein synthesis
from a relatively weak translational initiation site is
greatly influenced by the presence or absence of a
stronger ribosome binding site located elsewhere
on the same RNA molecule. The data are consistent
with a mechanism in which multiple ribosome
binding sites compete in cis for translational initi-
ations as a means of regulating protein synthesis
on a polycistronic messenger RNA.

INTRODUCTION

Initiation of protein synthesis in prokaryotes has been
extensively studied (1). Translation begins with the
association between a 30S ribosomal subunit and the
messenger RNA. In most cases, this interaction is
dependent upon the hybridization between specific
sequences in the 16S ribosomal RNA and the

complementary Shine–Dalgarno region located upstream
of the initiator codon on the RNA message (2). The initial
interaction forms a reversible binary complex that can
either dissociate into mRNA and 30S ribosome, or
proceed into a nearly irreversible ternary complex that
can initiate protein synthesis (3,4).
During the initiation phase of translation, several events

occur that significantly contribute to the regulation of
protein synthesis. For example, initiation factors drive
the specificity of initiation, determine what kind of initi-
ation codon is selected, and help to stabilize
ribosome:RNA interactions (1). The extent of complemen-
tarity between the Shine–Dalgarno sequence of a cistron
and the complementary region on the 16S ribosomal RNA
has great impact on the efficiency of ribosome binding (5).
Translation of a prokaryotic gene is sometimes dependent
upon either the activity of a trans-acting protein factor, or
the presence of trans-acting or antisense RNA that can
bind the messenger RNA and inhibit translational initi-
ation of another gene (6–9). On many polycistronic
mRNAs, translation of one gene is dependent upon the
coupled translation of an upstream gene sequence
(1,10,11). The presence of secondary RNA structure at
the initiation region of a gene can severely impede 30S
ribosome association with the RNA (12,13). In the
absence of coupled upstream translation, stable base
pairing in a hairpin structure can often occlude
ribosome binding.
Previously, we demonstrated a cis-acting mechanism in

which one relatively strong translational initiation site on
a polycistronic mRNA could modulate protein synthesis
from a second gene present on the same molecule (8). In
Qb RNA, the presence of the translational initiation
region for the coat gene inhibited translation of the mat-
uration cistron, located nearly 1300-nt upstream. In
contrast, when the coat initiation region was deleted, or
masked by the presence of a trans-acting Qb replicase
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protein, maturation protein was synthesized in significant
quantities.
The effect of the coat gene initiation region on matur-

ation gene expression was observed only in cis, but not
when the two genes were on different mRNA molecules.
It was further shown that the same coat gene initiation site
also affected expression of the downstream replicase
cistron in the absence of coupled coat gene translation.
In all cases, there were no predicted alterations in the
putative secondary structure of the Qb RNA molecule.
The results were consistent with a mechanism in which
two ribosome binding sites present on the same RNA
molecule could compete for translational initiations.
In this article, we demonstrate that if the Qb coat gene

initiation site is sequestered in hairpin structures of
increasing stabilities, there is a concomitant increase in
the levels of maturation protein synthesized from Qb
RNA transcripts. These data further support our previ-
ously proposed mechanism in which two ribosome
binding sites on Qb RNA compete in cis for translational
initiations, and further imply that the extent of such com-
petition is determined by the relative ribosome binding
affinities between the two sites. Such a mechanism
would necessarily have profound effects upon protein syn-
thesis from polycistronic mRNAs.

MATERIALS AND METHODS

Bacterial strains

Escherichia coli MC1061 (14) was used for growth and
maintenance of plasmids. Escherichia coli BL21(DE3)
(15) carry the bacteriophage T7 RNA polymerase gene
under the control of the E. coli lac operator. These cells
were first transformed with the plasmid placIq (below),
which overproduces lac repressor protein, then used for
transformation and expression of inducible plasmid-
generated proteins.

Materials

Restriction endonucleases, oligonucleotide linkers, T4
DNA polymerase and T4 DNA ligase were purchased
from New England Biolabs, Inc., Beverly, MA, USA.
Isopropyl b-D-thiogalacto-pyranoside (IPTG) was
purchased from Sigma Chemical Co., St Louis, MO,
USA. Oligonucleotide primers were obtained from Gene
Link, Inc., Thornwood, NY, USA.

General procedures

The methods employed for plasmid constructions have
been described (14). Plasmid DNAs were prepared using
the Qiagen plasmid isolation kit; RNA was isolated using
the Qiagen RNeasy kit; transcribed Qb RNAs were sub-
jected to the reverse transcriptase polymerase chain
reaction using the Qiagen OneStep RT–PCR kit (Qiagen
Inc., Chatsworth, CA, USA). The orientation and nucleo-
tide sequence that resulted from plasmid constructions
were confirmed by restriction enzyme and/or DNA
sequence analysis. Transformed bacterial cultures were
selected by growth in N-broth (16) supplemented with

50 mg/ml of the appropriate antibiotic. Procedures for
electrotransformation have been described (17).

Plasmid constructions

The plasmid pBHQb525, used as a mutagenesis target
plasmid, was constructed by replacing a unique
SalI/EcoRV fragment (nucleotides 5030–1471 of pBH95)
with a 3.7 kb Qb cDNA fragment (nucleotides 525–4227)
obtained from the plasmid pQbm101 (18) following diges-
tion with restriction endonucleases XhoI and HpaI.

To construct the plasmid placIq, a 2689 bp SphI/XmnI
endonuclease restriction fragment containing the E. coli
lac Iq gene was excised from the plasmid pET11c (New
England Biolabs, Inc.). This DNA fragment was ligated
into a 3 kDa SphI/FspI fragment from the plasmid
pRep101 (19), replacing the Qb replicase gene segment.

The plasmid pT7Qb500 comprises the following se-
quences: nucleotides 1–4217 are the entire Qb positive
strand cDNA sequence; nucleotides 4218–4328 comprise
a 100-bp poly-AT sequence followed by a PstI oligo-
nucleotide linker; nucleotides 4329–4736 are a 408-bp
PstI/PvuII fragment obtained from the plasmid pDL44
(20), containing a bacteriophage T7 transcription termin-
ation sequence; nucleotides 4737–7753 are the comple-
ment of a 3017-bp NheI/SspI fragment from pBR322
containing the amp gene and a modified ColE1 origin
of DNA replication (19), but not including the ROP
region (nucleotides 1283–2064 of pBR322); nucleotides
7754–8030 are a 277 bp NheI/PpuMI fragment from
pT7MDV (21) containing the bacteriophage T7 RNA
polymerase promoter directed into the first G residue of
Qb (+) cDNA. Plasmids that were used to generate variant
Qb RNA transcripts are derivatives of pT7Qb500 that
contain sequence variations indicated in Table 1.

The p2xQb(+) plasmid system was previously described
(8,22). This plasmid contains two copies of the Qb cDNA
genome, each with its own upstream T7 promoter/lac
operator and downstream 5S T1T2 processing region.
Having two genomes transcribed from the same plasmid
ensures that both putative RNA genomes are synthesized
in equal quantities within the host (18). For these experi-
ments, each cDNA genome in the p2xQb(+) plasmid was
modified by site-directed mutagenesis to contain either an
inactive Qb coat gene Shine–Dalgarno site or an active
Shine–Dalgarno site that is similar to the wild-type site.
Upon induction with IPTG, this plasmid generates two
intact Qb RNA genomes simultaneously, each encoding
a different set of mutations to distinguish the encoded
proteins. To select against intra-plasmid recombination,
the two cDNA genomes are separated by a chlorampheni-
col resistance gene on one side and an ampicillin resistance
gene on the other.

The plasmid pT7QbMat(+) is a variation of
pT7Qb(+)500 with nucleotides 1406–4217 of the Qb
cDNA sequence deleted (23,24).

Site-directed mutagenesis

Mutations were incorporated into the Qb cDNA sequence
as described (25), using the target plasmid pBH95 (gift of
Dr W.T. McAllister, University of Medicine and Dentistry
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of New Jersey). The target mutagenic primer was used to
create point mutations in the cDNA sequence and was
designed in such a way that it would anneal to the same
strand as the selection primer. 25 pmol of the selection
primer (25) and 25 pmol of the target primer were mixed
with 200 ng of the template DNA and 2 ml of One-
Phor-All buffer [100mM Tris–acetate (pH7.5), 500mM
potassium acetate (pH7.5) and 100mM Magnesium
acetate] in a 20 ml reaction volume. The reaction mixture
was incubated at 100�C for 5min, chilled immediately on
ice for another 5min, followed by a 30min incubation at
room temperature. To the reaction mixture, 7 ml of nucleo-
tide mix (2.86mM dATP, 2.86mM dCTP, 2.86mM
dGTP, 2.86mM dTTP, 4.34mM rATP,
1.43�One-Phor-All buffer) and 3 mL of enzyme mix
[FPLC pure T4 DNA polymerase (0.83–1.67 ku/ml],
FPLC pure T4 DNA ligase (0.83–1.17 ku/ml) and T4
gene 32 protein (0.2–0.28mg/ml) in aqueous buffer]
were added. This mixture was incubated at 37�C for 1 h.
The reaction was terminated by heating at 85�C for
15min. The tubes were briefly chilled on ice.
Electrophoresis was carried out using 2 ml of the reaction
mixture and 40 ml of electrocompetent E. coli NMH22-
mutS cells. The electrotransformants were selected on
ampicillin (100mg/ml) and kanamycin (100 mg/ml) plates.

Protein analysis

Escherichia coli BL21(DE3)/lacIq cells were
electrotransformed, and grown in culture (16,17).
Procedures for IPTG induction of protein synthesis,
14C-labeling of protein products, polyacrylamide gel elec-
trophoresis (PAGE) and phosphorimage analysis have
been described (8,26).

RESULTS

Generating Qb RNA transcripts

Qb RNA transcripts studied in these experiments were
generated from three different plasmid sets. The first set
comprises variations of the Qb coliphage producing

plasmid pT7Qb(+)500 (Figure 1). This plasmid encodes
the Qb plus strand cDNA sequence under the control of
a bacteriophage T7 promoter. Upon induction of
Escherichia coli BL21(DE3) transformants with IPTG,
stable full-length RNA transcripts are generated that
contain the entire 4217 nucleotide Qb plus strand
sequence, followed by 100 adenosine residues and 30 nu-
cleotides from a bacteriophage T7 transcription termin-
ator (20). The p2xQb(+) plasmid system (below),
containing two copies of the Qb cDNA genome, has pre-
viously been described (8,22). In the presence of IPTG,
p2xQb(+) simultaneously generates equal quantities of
two Qb RNA transcripts, each comprising a different set
of marker mutations to distinguish both the cDNA
genomes and their encoded proteins. Finally,
pT7Qb(+)Mat (below) is a modified version of
pT7Qb(+)500 from which Qb nucleotides 1406 through
4217 had been deleted. Transcription from this plasmid
generates intact maturation gene mRNA and coat gene
initiation sequences. For each of these plasmid sets, all
Qb cDNA genomes harbor a combination of specific mu-
tations that result in a maturation protein defective for
lysis function, and a replicase protein defective for both
replication function and for the ability to serve as a trans-
acting repressor of coat protein synthesis. In addition, all
Qb cDNA genomes contain either the wild-type or a
mutated variation of the Qb coat gene translational initi-
ation region. Table 1 summarizes the specific Qb cDNA
mutations utilized in these experiments.

Sequestering the Qb coat Shine–Dalgarno site activates
the maturation gene

The initiation region of the Qb coat gene contains a
powerful ribosome binding site. Unlike the remainder of
the Qb RNA genome, the sequence in the vicinity of the
coat Shine–Dalgarno region is poorly structured, allowing
unlimited access to ribosomes (12,27,28). Following syn-
thesis of RNA transcripts that carry a wild-type coat gene
sequence, large quantities of coat protein are generated,
whereas no other phage proteins can be detected (8).
Previously, we have shown that if the coat gene initiation

Table 1. Qb genome mutations

Mutation Description Phenotype

UAA1204 out-of-frame stop at Qb1204 41.9 kDa defective maturation protein (mat41.9)
UAA1245 out-of-frame stop at Qb1245 43.9 kDa defective maturation protein (mat43.9)
D1178/1365 deletion of Qb nt 1178–1365 41.9 kDa defective maturation protein, no coat SD
UAA1395 stop codon at Qb1395 terminates 41.9 kDa D1178/1365 mutant
UAG3397 stop codon at Qb3397 38.4 kDa inactive replicase protein
heSD �10.3 kcal/mol coat SD hairpin inactive coat SD
heSD2a �8.4 kcal/mol coat SD hairpin inactive coat SD; no coat AUG
leSD �2.7 kcal/mol coat SD hairpin active coat SD; no coat AUG
ctSD[-3.9] �3.9 kcal/mol coat SD hairpin intermediate coat SD; no coat AUG
ctSD[-4.9] �4.9 kcal/mol coat SD hairpin intermediate coat SD; no coat AUG
ctSD[-5.4] �5.4 kcal/mol coat SD hairpin intermediate coat SD; no coat AUG
ctSD[-6.5] �6.5 kcal/mol coat SD hairpin intermediate coat SD; no coat AUG
ctSD[-7.2] �7.2 kcal/mol coat SD hairpin inactive coat SD; no coat AUG
ctSD[-8.4]a �8.4 kcal/mol coat SD hairpin inactive coat SD; no coat AUG
ctSD[-10.1] �10.1 kcal/mol coat SD hairpin inactive coat SD; no coat AUG

actSD[-8.4] contains the same nucleotide mutations as heSD2.
SD, Shine–Dalgarno; �, deletion.

Nucleic Acids Research, 2010, Vol. 38, No. 20 7201



region is deleted from the genome, or if Qb replicase
protein is provided in trans to repress coat gene transla-
tion, significant levels of maturation protein are
synthesized (8). We now demonstrate that if the coat
Shine–Dalgarno region alone is sequestered within a rela-
tively strong hairpin structure on intact Qb RNA, synthe-
sis of detectable coat protein is abolished, while significant
amounts of maturation protein are generated. To deter-
mine the putative secondary structure surrounding the Qb
coat Shine–Dalgarno site, we utilized the RNA folding
program MFOLD, version 3.0 (29). Mutations were

then site-directed into the Qb cDNA sequence of
pT7Qb(+)500 that were predicted to alter the secondary
structure at the coat Shine–Dalgarno region, but not
anywhere else in the genome.

Figure 2 illustrates the coat protein initiation regions for
several variant QbRNA transcripts, their predicted local
secondary structures, and proteins generated in vivo upon
IPTG induction. Transcript T-500 contains the weakly
structured wild-type coat initiation sequence, wtSD,
which has a predicted negative free energy (�G0) of
�3.2 kcal/mol (29). This RNA generates only coat
protein and serves as a negative control for maturation
gene expression. Transcript T-501 is a deletion mutant
that lacks Qb nucleotides 1178 through 1365, comprising
all coat gene initiation sequences. This transcript generates
substantial amounts of 41.9 kDa maturation protein,
mat42, but no coat protein (8), and serves as a positive
control for maturation gene expression.

Transcript T-502 differs from T-500 by only two point
mutations in the coat gene initiation region. These muta-
tions are predicted to create the hairpin stem structure
heSD, which encompasses the entire coat gene Shine–
Dalgarno sequence. The predicted �G0 of this hairpin
stem is �10.3 kcal/mol, 7.1 kcal/mol stronger than that
of the wtSD sequence (29). It has been estimated that
for a hairpin structure that harbors a ribosome binding
site, a change in �G0 of �1.5 kcal/mol at 37�C corres-
ponds to a tenfold reduction in the rate of translational
initiations from that site (12). Using this calculation, the
heSD structure in T-502 would be expected to reduce
translational initiations of the coat gene by a factor of
10(7.1/1.5), nearly 50 000 times. Although this reduction
reflects an immeasurable difference, we know that
pT7Qb(+)502 never yields any detectable coat protein.
Note that the stable heSD duplex is the only structural
alteration predicted for the T-502 transcript. The remain-
der of the Qb RNA molecule is predicted to retain its
native conformation (29).

Transcripts T-500, T-501 and T-502 were synthesized
from their respective pT7Qb(+)500 plasmids upon IPTG
induction of transformed E. coli. Figure 2b shows Qb
protein products generated from these variant RNAs.
Transcript T-500, carrying the wtSD coat initiation
region, generated only coat protein (lane 1), whereas
T-501, with no Qb coat gene initiation site, yielded both
a 41.9 kDa maturation protein and a 38.4 kDa truncated
replicase protein (lane 2). As expected, transcript T-502,
carrying the coat gene initiation site in the strong heSD
hairpin stem structure, produced no detectable coat
protein (lane 3). Instead, maturation and replicase
proteins were synthesized at levels comparable to that
from the control transcript T-501. Presumably, because
the strong Qb coat gene initiation site was occluded by
stable base-pair associations in the heSD hairpin, its avail-
ability for 30S ribosome binding was eliminated such that
no coat protein could be produced (30,31). The corres-
ponding activation of the maturation cistron is consistent
with our previous observations in which maturation gene
translation was activated in response to coat gene repres-
sion by Qb replicase that was supplied in trans (8). The
data collectively support the possibility of a mechanism

Figure 1. (a) The pT7 plasmid system. In the plasmid pT7Qb(+)500,
a bacteriophage T7 promoter (dark arrow) is directed into 50 Qb(+)
cDNA. Induction of E. coli BL21(DE3) host cells with IPTG results
in RNA transcripts containing the entire 4217 nt Qb(+) strand
sequence, and a polyadenosine sequence (A100) 30 to the last Qb nu-
cleotide. Transcripts terminate within a 30 bacteriophage T7 5S T1T2
terminator region. The map of Qb RNA shows the nucleotide positions
of the translational initiation sites for the maturation (mat), coat/
readthrough (coat/rt) and replicase (rep) cistrons. (b) Agarose gel
analysis showing total RNA isolated from host cells in which
pT7Qb(+)500 plasmid derivatives were used to generate variant Qb
RNA transcripts: lane 1, uninduced; lane 2, T-502 RNA; lane 3,
T-504 RNA; lane 4, T-503 RNA; and lane 5, T-500 RNA. For each,
the Qb RNA product represented 25–30% of the total RNA isolated
relative to 16S and 23S RNAs. In each case, Qb RNA transcripts were
isolated and confirmed by RT–PCR.
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by which blocking ribosome binding at the coat gene
Shine–Dalgarno sequence would enable local ribosomes
to recognize and initiate translation at the much weaker
upstream maturation gene start site late in phage infection
when maturation protein is needed to lyse the host.

An AUG initiator codon is not required for
long-range inhibition

For the strong Qb Shine–Dalgarno site to inhibit transla-
tion from the weaker maturation gene start site, neither an
AUG initiator codon nor coat protein synthesis are
required. For these experiments, we utilized RNA tran-
scripts T-503 and T-504 (Figure 2a) in which the AUG
initiator codons for the respective coat genes had been
altered. In T-503, the coat Shine–Dalgarno sequence is
located within the poorly structured leSD region, similar
to that of the wild-type sequence (29). Such a weakly
structured Shine–Dalgarno site would be expected to
access E. coli 30S ribosomes easily. Alternatively, the
coat Shine–Dalgarno region in T-504 was sequestered
within a putatively strong hairpin structure, heSD2, with
a predicted �G0 of �8.4 kcal/mol. Note that although the
stabilities of their respective coat hairpin stems are ex-
tremely different, T-503 and T-504 differ from one
another by only one nucleotide. Neither RNA transcript
contains an AUG initiator codon for the coat gene, and so
it is possible that only binary complexes will form between
the initiation region and 30S ribosomes (32). However,
T-503 also contains an out-of-frame AUA codon at the
�1 position, and AUA has been shown to serve as a func-
tional start codon for the coat proteins of related phages
(33,34).
Figure 2b shows the proteins generated from trans-

formed host cells following induction with IPTG.
Transcript T-503, containing the weakly structured
leSD coat Shine–Dalgarno sequence, resulted in no mat-
uration protein even though no coat protein was
made (lane 4). Alternatively, transcript T-504, contain-
ing the strongly duplexed heSD2 coat gene initiation
region, resulted in significant synthesis of maturation
protein as well as replicase protein (lane 5). These results
are consistent with the idea that when the Qb coat gene
initiation site is exposed in a poorly structured conform-
ation, putative binary complex association between the
coat gene Shine–Dalgarno sequence and a 30S ribosome
might be sufficient to prevent expression from the
upstream maturation gene as well as from the downstream
replicase gene.

Strength of the coat Shine–Dalgarno site directly affects
maturation gene expression

To test the effect of the coat gene initiation site solely on
maturation gene translation, we constructed truncated

Figure 2. (a) Mutations in the Qb coat Shine–Dalgarno region.
Nucleotides 1322–1346 are shown for variant Qb RNA transcripts
T-500, T-502, T-503 and T-504, and depict Qb coat Shine–Dalgarno
regions wtSD, heSD, leSD and heSD2, respectively. In transcript T-501,
nucleotides 1178–1365, comprising the entire Qb coat gene Shine–
Dalgarno region, have been deleted from the Qb genome. Predicted
negative free energy (�G0) values are shown. Boxed nucleotides, coat
gene Shine–Dalgarno region and location of the wild-type initiator
codon; lower case italicized nucleotides, base substitutions; arrow, nu-
cleotide insertion; +, maturation protein generated; �, no maturation
protein generated; mat, maturation gene; rep, replicase gene; ct/rt, coat/
readthrough gene. (b) PAGE analysis of proteins generated following

growth of transformed E. coli BL21(DE3) in the presence (lanes 1–5) or
absence (lanes 7–11) of IPTG and visualized by Coomassie blue
staining. Lanes 1 and 7, T-500; lanes 2 and 8, T-501; lanes 3 and 9,
T-502; lanes 4 and 10, T-503; lanes 5 and 11, T-504; lane 6, marker.
Positions of Qb maturation (mat), coat (ct) and replicase proteins are
indicated.
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RNA genomes that contained only the maturation cistron
and the downstream coat Shine–Dalgarno region, but no
replicase cistron. Progressively strengthening the hairpin
stem structure surrounding the Qb coat gene ribosome
binding site resulted in a concomitant increase in synthesis
of maturation protein from the upstream cistron. We used
site-directed mutagenesis to create hairpin stems of
varying strengths in the region of the Qb coat gene
Shine–Dalgarno site. Figure 3 shows the encoded T-ctSD
series of RNA transcripts with their putative secondary
structures. The predicted negative free energy (�G0) for
each of the mutated hairpin sequences varied from
�10.1 kcal/mol, the most stable structure, to �3.9 kcal/
mol, the least stable (29). Note that for each variant tran-
script, no alternative structures were predicted to form at
any other location within the RNA.
Each mutant coat gene Shine-Dalgarno sequence was

incorporated into a modified version of the
pT7Qb(+)500 plasmid, pT7Qb(+)Mat, from which Qb nu-
cleotides 1406 through 4220 had been deleted (Figure 3b).
Expression from this plasmid generates truncated Qb
mRNA transcripts that contain the entire maturation
gene as well as the coat gene initiation sequences (24).
Upon IPTG induction of cells transformed with the
T-ctSD variants, maturation protein was synthesized at
varying levels (Figure 3c). For each transformant, we
utilized phosphorimage analysis to quantitate the ratio
of maturation protein synthesized relative to total
cellular protein. The relative amount of maturation
protein synthesized from variant T-ctSD[-10.1] (lane 1)
was the same as what we can obtain from the heSD
control transcript T-502 (above) and was therefore
normalized to 100% of the maximum that could be
made within our system. For each of the other variant
transcripts, T-ctSD[-8.4], T-ctSD[-7.2], T-ctSD[-6.5],
T-ctSD[-5.4], T-ctSD[-4.9], and T-ctSD[-3.9] (lanes
2–7, respectively), we determined the amount of matur-
ation protein synthesized as a percentage relative to that
synthesized from variant T-ctSD[-10.1]. Figure 3d shows
the results of our analysis. As the putative stability of the
Qb coat Shine–Dalgarno hairpin was increased, the
amount of maturation protein synthesized progressively
increased from <50% for transcript T-ctSD[-3.9] to
100% for transcripts T-ctSD[-7.2], T-ctSD[-8.4] and
T-ctSD[-10.1]. Clearly, there is a correlation between
the single-strandedness of the Qb coat gene initiation
region and expression of the distal upstream maturation
gene. Apparently, once the coat gene Shine–Dalgarno is
occluded in a duplexed hairpin of about �7 kcal/mol, the
inhibitory effect of this site is abolished. Consequently, at
this point, the maturation gene appears to be maximally
activated. These data provide additional evidence that the
coat gene Shine–Dalgarno region is able to modulate mat-
uration gene translation via competition for translational
initiations.
Note that the increase in maturation protein produc-

tion that we observed here was not proportional to the
decrease in coat protein initiations. We would not expect
the activation of the maturation gene to quantitatively
equal the inactivation of the coat gene. There was,
however, a parallel trend between the increase in stability

of the hairpin structure at the coat gene Shine–Dalgarno
site and the increase in maturation protein to a maximum
that could be reached. We propose that the suppression of
the Qb coat gene initiation site is necessary to allow syn-
thesis of only enough maturation protein necessary to lyse
the host late in phage infection.

A strong site inhibits a weak site in cis

Previously, we have shown that a deletion of the coat gene
initiation site from Qb RNA activates translation from the
upstream maturation gene when present on the same
RNA genome, but has no effect on maturation protein
synthesis from a second genome (8). The following experi-
ment shows that when the coat gene initiation site is
present but sequestered in a strong hairpin stem structure,
the same result is observed. That is, in QbRNA, occlusion
of the coat gene initiation site within a strong hairpin stem
structure will enable expression of an upstream matur-
ation gene in cis, but has no effect in trans on maturation
gene translation from a second QbRNA genome present
in the same cell.

For these experiments, we utilized the p2xQb(+)
two-genome plasmid system (Figure 4a). This plasmid
contains two cDNA copies of Qb RNA as direct
repeats, each with its own upstream T7 promoter/lac
operator and downstream 5S T1T2 processing region
(8,22). Having both genomes present on the same
plasmid enables both encoded Qb RNA genomes to be
transcribed in equal amounts within the host (18). To dis-
tinguish the encoded maturation proteins, each cDNA
genome contained one of two frame-shift mutations in
the maturation gene cDNA sequence (Figure 4b): either
a UAA1204 mutation, which results in a truncated
41.9 kDa maturation protein mat41.9, or a UAG1245

mutation, which results in a truncated 43.9 kDa matur-
ation protein, mat43.9 (Table 1). Both variant maturation
proteins are defective for lysis function. Each cDNA
genome also contained a UAG3397 mutation (Table 1),
which results in a truncated replicase protein, defective
for replicase function and incapable of repressing the
coat gene initiation site (8). Finally, each cDNA genome
harbored either the heSD2 coat gene mutation from tran-
script T-504, or the leSD coat gene mutation from tran-
script T-503, neither of which contains the coat gene AUG
initiator codon, thereby eliminating the possibility for coat
protein synthesis (Figure 2).

To test the cis and trans effects of the Qb coat gene
Shine-Dalgarno site on maturation gene synthesis, differ-
ent p2xQb(+) plasmid sets were constructed, each contain-
ing a different set of mutations. In two different control
plasmids, p2xQb(+)[504/504]a and p2xQb(+)[504/504]b,
both genome I and genome II encoded theT-504 transcript,
which contains the heSD2mutation that putatively seques-
ters the coat gene Shine–Dalgarno site in a stable hairpin
stem (Figure 4b). As demonstrated above, transcript T-504
was unable to generate Qb coat protein, but yielded large
amounts of maturation protein when generated from the
single genome pT7Qb(+)500 plasmid (Figure 4c, lanes 1
and 2; Figure 2b). In the first two-genome control
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plasmid, p2xQb(+)[504/504]a, genome I encoded mat43.9,
and genome II encoded mat41.9. In the second control
plasmid, p2xQb(+)[504/504]b, the maturation gene muta-
tions were reversed: genome I encodedmat41.9, and genome

II encodedmat43.9. Following induction with IPTG, each of
these control plasmids yielded comparable amounts
of both mat43.9 and mat41.9 proteins (Figure 4c, lanes 5
and 6).

(a)

(b) (c) (d)

Figure 3. (a) Putative secondary structures of the variant Qb coat gene Shine–Dalgarno regions. Numbers in brackets indicate the predicted negative
free energy (�G0) values. Wild-type nucleotides that were replaced are shown to the side; lower case italicized nucleotides, base substitutions; dark
arrow, nucleotide insertion; boxed nucleotides, coat gene Shine–Dalgarno region and location of the wild-type coat gene initiator codon; *, nucleo-
tide deletion; +, maturation protein generated; �, no maturation protein generated. (b) circular map of the plasmid pT7QbMat. This plasmid
contains the entire Qb maturation gene (A2) and coat Shine–Dalgarno sequence under the control of the T7 promoter (pT7). Transcripts terminate
within a 30 bacteriophage T7 5S T1T2 terminator region. Apr, ampicillin gene; ori, origin of replication. (c) PAGE analysis showing 14C-labeled
proteins synthesized following growth of transformed E. coli BL21(DE3) in the presence of IPTG: lane 1, T-ctSD[-10.1]; lane 2, T-ctSD[-8.4]; lane 3,
T-ctSD[-7.2]; lane 4, T-ctSD[-6.5]; lane 5, T-ctSD[-5.4], lane 6, T-ctSD[-4.9]; lane 7, T-ctSD[-3.9]. Lanes 8 and 9 are proteins from uninduced
cells transformed with the parent plasmid pT7QbMat. (Note that the ctSD[-8.4] mutation in transcript T-ctSD[-8.4] is the same as the heSD2
mutation.) (d) The ratio of maturation protein synthesized relative to total protein expressed for each of the above Qb coat gene Shine–Dalgarno
mutants. Values were determined from phosphorimage analysis of 14C-labeled proteins generated after 30min of induction with IPTG. For each, the
percent of maturation protein synthesized was determined relative to the maximum amount (100%) that was synthesized from the T-502/heSD2
transcript (Figure 2).
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The experimental two-genome plasmid was designed to
test the effect of the Qb coat gene Shine–Dalgarno site on
maturation protein synthesis in trans. In the plasmid
p2xQb(+)[504/503], only genome I contained the heSD2
coat gene hairpin stem mutation, and encoded the
mat43.9 maturation gene. Genome II, however, encoded
the T-503 transcript carrying the leSD mutation, and
harbored the mat41.9 gene. As demonstrated earlier, the
leSD mutation has relatively weak secondary structure
at the coat gene initiation site and completely inhibits
translation from the upstream maturation gene when
generated from the single genome plasmid pT7Qb(+)503
(Figure 4c, lane 3; Figure 2b). Following IPTG induction
of p2xQb(+)[504/503], only mat43.9 was synthesized from
genome I, but no detectable mat41.9 protein was
synthesized from genome II (Figure 4b, lane 7). These
results demonstrate that when the strong coat gene
Shine–Dalgarno site is occluded within a strong hairpin
stem structure, protein synthesis at the upstream matur-
ation gene is activated in cis, but there is no detectable in
trans effect on maturation protein synthesis from a second
Qb RNA genome present in the same cell. Seemingly, the
presence alone of a second ribosome binding site on the
same RNA molecule has a significant effect on the synthe-
sis of Qb maturation protein. These results are consistent
with our previous data in which we demonstrated that
activation of the Qb maturation cistron is cis to the
RNA genome on which the coat gene initiation site had
been deleted, and that the presence of coat protein on a
second genome had no effect on the maturation cistron
in trans (8).

Note that when maturation proteins are generated from
two-genome plasmids, they appear to be present in
reduced amounts relative to the level of maturation
protein expressed from either of the single genome
plasmids (lanes 1 and 2). We have observed this before
with the two-genome plasmid system (8,18). A possible
explanation is that transcription by T7RNA polymerase
is limited, resulting in reduced amounts of RNA generated

Figure 4. Cis and trans effects of the Qb coat initiation site on Qb
maturation protein synthesis. (a) The two message plasmid p2xQb(+)
contains two cDNA copies of the entire Qb(+) genome, each with its
own T7 promoter/lac operator element (block arrow) and bacterio-
phage T7 5ST1T2 terminator region. Upon transcription with T7
RNA polymerase, two full-length Qb RNA genomes (I and II) are
generated in equivalent amounts. To select against intra-plasmid

recombination, the two Qb genomes are separated by a chlorampheni-
col resistance gene on one side and an ampicillin resistance gene on the
other. (b) The map of the Qb RNA genome shows the positions of
various mutations incorporated into the cDNA of genomes I and II.
Each Qb genome contains either a UAA1204 mutation, which yields a
41.9 kDa maturation protein mat41.9, or a UAG1245 mutation, which
yields a 43.9 kDa maturation protein, mat43.9. Each genome also
contains UAG3397 mutation, which results in a truncated replicase
protein that cannot repress the coat gene, and thus cannot activate
the maturation gene (Table 1). Both the heSD2 and the leSD coat
gene mutations eliminate the coat gene initiation codon, replacing it
with a UAG termination codon. In control p2xQb(+) plasmids, both
genome I and genome II harbor the heSD2 coat gene mutation. In the
experimental p2xQb(+) plasmid, only genome I encodes the heSD2
mutation, while genome II encodes the leSD coat gene mutation.
(c) PAGE analysis of proteins generated following growth of trans-
formed E. coli BL21(DE3) in the presence of IPTG and visualized by
Coomassie blue staining. Lane 1, pT7Qb(+)504 (heSD2) encoding
mat43.9; lane 2, pT7Qb(+)504 encoding mat41.9; lane 3, pT7Qb(+)503
(leSD2) encoding mat41.9; lane 4, marker; lane 5, p2xQb(+)[504/
504]a, encoding mat43.9 on genome I and mat41.9 on genome II; lane
6, p2xQb(+)[504/504]b, encoding mat41.9 on genome I and mat43.9 on
genome II; lane 7, p2xQb(+)504/503, encoding mat43.9 on genome I and
mat41.9 on genome II.
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from each Qb genome. Alternatively, the larger size of the
two-genome plasmid might yield a lower copy number
than that of the single genome plasmids. Although mat-
uration proteins are generated in reduced quantities, the
simultaneous transcription from the same plasmid consist-
ently yields two RNA genomes in equal proportions (18).

DISCUSSION

Our results demonstrate that when the Qb coat gene
Shine–Dalgarno sequence was occluded by stable hairpin
stem structure, translational initiation from the upstream
maturation cistron was activated in cis. The secondary
structure at the coat gene Shine–Dalgarno site had no
effect on the translation of a maturation gene present on
a different RNA molecule. There was a direct correlation
between the stability of a hairpin stem structure that se-
questered the coat gene initiation site and the degree of
maturation gene activation. Furthermore, the inhibitory
effect of the coat gene initiation site on maturation gene
synthesis did not require either an AUG initiator codon or
initiation of coat protein synthesis.

The data are in agreement with previous observations
(8). During infection, the Qb maturation gene is generally
kept silent by extensive long-range secondary structure
(27,28). In fact, the thermodynamic stability of the entire
50 domain of Qb RNA is such that there are essentially no
viable alternative competing structures predicted (27). The
single-strandedness of the coat gene initiation region
renders it an extremely strong ribosome binding site
relative to the much weaker maturation gene initiation
site (12,13,27,28). However, despite the long-range struc-
tural interaction in the 50 domain, when Qb replicase binds
the coat gene initiation site in trans to repress coat protein
synthesis, the maturation gene becomes activated (8).
Because maturation protein mediates host cell lysis (35),
this mechanism is likely an efficient means of generating
increased amounts of maturation protein when it is
required late in infection.

In our experiments, when the coat gene Shine–Dalgarno
site was sequestered in a stable hairpin structure to repress
coat protein synthesis, both the replicase and maturation
genes were activated. Presumably under these conditions,
ribosomes were physically inhibited from binding to the
coat gene Shine–Dalgarno site. Previously, we proposed a
mechanism in which multiple translational initiation sites
that have different ribosome binding strengths will
compete for association with a single ribosome in cis at
any moment in time (8). It is likely that, in the current
experiments using the maturation gene plasmids, the pro-
gressive decrease in the single-strandedness at the coat
gene initiation site caused a corresponding alteration in
the relative ribosome binding affinities between the coat
and maturation gene sites. Consequently, the probability
that a ribosome would bind the less accessible upstream
maturation gene site was increased. We propose the pos-
sibility that the Qb coat and maturation gene ribosome
binding sites compete in cis for ribosome binding as a
means of regulating differential protein synthesis.

Intramolecular competition for ribosome binding could
be a general mechanism which would allow a very weak
ribosome binding site on any polycistronic RNA to
become activated whenever a stronger site within the
same molecule is rendered incapable of accessing ribo-
somes. Indeed, we have demonstrated that the Qb replic-
ase gene is activated when the coat gene initiation site is
either blocked or eliminated (8), indicating that replicase
expression does not need to be coupled to coat gene ex-
pression as previously thought (8,10,18,22). We have
further noticed that if we eliminate the coat gene
ribosome binding sequence from Qb cDNA and incorpor-
ate a strong heterologous ribosome binding site from the
bacteriophage T7 gene10 (36,37) 2.3-kb downstream of the
maturation gene initiation site, maturation protein can be
synthesized from the encoded Qb RNA transcripts (un-
published results). Based on our observations, we
suggest that there might not be anything inherent in the
Qb phage RNA coat gene initiation region that specifically
leads to translational repression of the maturation gene.
Instead, translational inhibition of one cistron by the
presence of a strong distal ribosome binding site is likely
a general mechanism that might apply to any prokaryotic
polycistronic messenger RNA.
It should be mentioned that wild-type Qb bacteriophage

RNA has three ribosome binding sites. Whereas the coat
gene Shine–Dalgarno site has the strongest affinity for
ribosomes, the maturation gene site has the weakest.
Consider that during active Qb phage infection, coat
protein needs to be made early and in large quantities.
At first, translation through the coat gene region opens
the replicase gene initiation site and allows translation of
the replicase protein (10,11,18). Later in infection, excess
replicase protein binds and represses translation of the
coat cistron, and excess coat protein binds and represses
translation of the replicase cistron (38). Elimination of
both coat and replicase Shine–Dalgarno sites leaves only
the maturation gene inititation site for ribosomes to
access.
Such a mechanism in which a ribosome will bind at one

particular translational initiation site and not another on
the same mRNA would necessarily rely on a number of
factors. These include the fixed distance between two
ribosome binding sites on the same molecule, the
dynamic equilibrium association of a 30S ribosome at a
Shine–Dalgarno site, and the differential binding affinities
of competing Shine–Dalgarno sites for a 30S ribosome.
We will consider each of these factors below.

Fixed distance between two ribosome binding sites

Because the distance between two ribosome binding sites
on the same RNA is a constant, these sites can be con-
sidered to be at high concentration relative to one another,
and independent of the cellular message RNA concentra-
tion. However, when two sites lie on separate molecules,
their concentration is a function of the cellular mRNA
concentration. Consequently, the relative concentration
of any two ribosome binding sites with respect to a
single ribosome is dependent upon whether or not the
two sites are present on the same molecule. Consider a
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volume of a cell in which free mRNAs are equally
distributed, and mRNA concentration is a function of
the number of RNA molecules present. Under these con-
ditions, unbound ribosomes would be distributed propor-
tionally among free mRNAs. If each RNA molecule
contained only one Shine–Dalgarno sequence, and these
had equal ribosome binding affinities, then ribosome as-
sociation and translation would be proportional to the
concentration of messenger RNAs.
Alternatively, when two different Shine–Dalgarno sites

are present in cis on the same polycistronic message, the
situation is very different. The concentration of the intra-
molecular sites relative to one another is now independent
of cell volume. Instead, it is a constant that is determined
by a fixed distance between the two sites. This distance
would be determined both by the number of nucleotides
between the two sites, and by RNA structure that can
bring the two sites into closer proximity. Hence, the con-
centration of two ribosome binding sites relative to one
another can be extremely high compared with that of
available ribosomes. As such, the local concentration of
unbound 30S ribosomes would always be limiting with
respect to these two sites, regardless of the ribosome or
mRNA concentration in the cell. The immediate reaction
then becomes that of two ribosome binding sites
‘competing’ for association with only one ribosome.
Note that this competition model considers available ribo-
somes only, and not those already involved in translation-
al elongation throughout the cell.

Dynamic equilibrium of a 30S ribosome complex

It is generally accepted that because ribosomes in a cell are
usually present in excess of message RNA molecules, all
accessible ribosome binding sites can be saturated.
However, binary complex association is a dynamic revers-
ible equilibrium process (31), and so the 30S ribosome is
never permanently bound at any one Shine–Dalgarno site.
Following the association at a Shine–Dalgarno locus, the
30S ribosomal subunit will proceed in one of two ways:
either it will translocate to the initiator codon and undergo
protein synthesis, thereby eliminating itself from the pool
of unbound ribosomes; or it will dissociate from the RNA.
As such, Shine–Dalgarno sites would never be completely
saturated at any given moment, but would be continually
accessible for 30S ribosome binding.

Differential affinities of ribosome binding sites

Several factors contribute to the ribosome binding affinity
of a Shine–Dalgarno region. Among these are: the degree
of complementarity between a Shine–Dalgarno region and
16S ribosomal RNA (2,39); the secondary structure that
comprises the Shine–Dalgarno region (30,31); the presence
of either a nearby ribosomal protein S1 binding site or an
enhancer site on the mRNA (40–42); the presence of
putative standby sites for 30S ribosomes close to a
Shine–Dalgarno sequence (13); and the putative inter-
action of a trans-acting protein or RNA that can bind a
message RNA to block ribosome access (8,38). Hence,
when two Shine–Dalgarno sites are present on the same
polycistronic message, the probability that a single

ribosome will associate with one or the other site is
determined by their relative affinities for a 30S
ribosome. The greater the difference in binding affinities,
the more dramatic would be the competition between the
two sites.

General implications of intramolecular competition
between two ribosome sites

Our findings suggest that all polycistronic translational
systems might be affected to some degree by competition
in cis between multiple ribosome entry sites. Since compe-
tition within a single RNA molecule is putatively inde-
pendent of both mRNA and ribosome concentration, all
mRNAs carry the potential for this type of translational
regulation. The more extreme the differences are in
ribosome binding affinities among multiple sites on an
RNA message, the more profound would be the regula-
tory effect. Competition in cis would not only affect the
translational balance between multiple cistrons within a
polycistronic mRNA, but also the possibility exists that
pseudo-ribosome entry sites affect the efficiency of trans-
lational initiations at one or more genes on any given mes-
senger RNA. Although association between a 30S
ribosome and a messenger RNA depends upon a
number of factors (see above), the 30S:mRNA association
does not require an AUG initiator codon. As such, a
translational initiation site might be rendered inactive
simply because it is inhibited by a second, more competi-
tive pseudo-ribosome binding site present within the same
RNA molecule. Indeed, even ribosome binding sites that
appear to be silent due to long-range secondary inter-
actions are capable of accessing ribosomes in the
absence of stronger competing sites. For example, the
Qb maturation gene was once believed to be completely
inactive because of long-range secondary structure, but
appears to be expressed to a maximum in the absence of
the stronger downstream coat gene initiation site (8). We
have previously proposed the possibility that for a large
folded RNA domain, the kinetics of folding and re-folding
can be very slow, thus allowing occasional exposure of a
translational initiation site (8,22).

The effect of a putative competing ribosome entry site
on distal gene translation might be modulated by several
factors, such as: coupled translation with a second gene;
interaction with either a trans-acting protein factor, or
with antisense RNA (9); processing of an RNA into two
or more separate mRNA molecules; or the formation of
alternate RNA conformations. Consequently, the
proposed mechanism of competition in cis would enable
a single polycistronic mRNA to exist as one of two or
more different functional messenger RNAs, each capable
of translating a different proportion of the same encoded
proteins. Such a process would provide a sophisticated
means of translational auto-regulation not necessarily
confined to the RNA coliphages. Since RNA phage
genomes are highly adapted to utilizing the host transla-
tional apparatus, it is possible that other bacterial messen-
ger RNA systems usefully employ a similar regulatory
mechanism. It has been shown that prokaryotic
polycistronic mRNAs can generate different proteins in
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quantities that vary over three orders of magnitude
(3,43,44). Consequently, it is crucial to understand how
alternative regulatory mechanisms govern the differential
synthesis of multiple protein products from these RNA
messages.

Many intriguing systems exist in which potential
ribosome entry site competition might influence prokary-
otic translation in cis. For example, there are intragenic
ribosome entry sites that have been shown to affect gene
expression (45,46). Mechanisms also exist that are respon-
sible for masking independent initiation of translation
(47–49). Translational competition has been shown to
occur between one or more cistrons that are fused to a
reporter gene within an RNA message (50). Translation of
some cellular genes might be selectively enhanced by trans-
acting repressor proteins, e.g. the T4 RegA repressor (51).
In the E. coli rpmI-rplT operon encoding ribosomal
proteins L35 and L20, a kinetic model is suggested in
which the L20 repressor protein competes with 30S ribo-
somes for binding at the operator region to regulate trans-
lation (52). In addition, studies in eukaryotic systems
suggest that translational regulation of human fibroblast
growth factor might be affected by competition between a
cap-dependent translational mechanism and an internal
ribosome entry site-dependent mechanism (53,54).

In conclusion, we suggest that the following points
should be considered with respect to translational
control mechanisms: (i) all ribosome entry sites on a
single messenger RNA can compete in cis for a single
30S ribosome; (ii) these ribosome entry sites are never
saturated with ribosomes at any instant in time; (iii) com-
petition in cis can occur when the cellular messenger RNA
concentration is extremely low relative to the local con-
centration of two ribosome binding sites on the same mes-
senger RNA; and (iv) reference genes that are inserted into
a messenger RNA molecule might significantly influence
translational initiations that occur at a distal experimental
gene. Each of these points should be carefully considered
when conducting experiments with cis-acting reporter
genes and truncated message RNA molecules. It might
be necessary to carry out such studies using intact
mRNA molecules in the presence of any trans-acting
RNA binding proteins, or antisense RNA transcripts
that could influence gene expression.
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