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The conjugate addition of enolate or enol nucleophiles to activated double bonds (the Michael
reaction) is an efficient method for the synthesis of 1,5-dicarbonyl compounds.[1] The potential
for the direct formation of a new carbon–carbon bond with control of up to three new
stereogenic centers has driven continued and significant development of this reaction. Two
central strategies are the use of metalloenolates and the addition of latent nucleophiles such as
enol silanes in combination with a Lewis acid.[2] Studies by the research groups of Yamaguchi,
[3] MacMillan,[4] Jørgensen,[5] and List[6] have demonstrated that secondary amines catalyze
Michael reactions by the generation of activated unsaturated electrophiles through iminium
ions. The corresponding strategy to the iminium approach is the catalytic generation of an
enolate or enol nucleophile.[7,8] Herein we report that N-heterocyclic carbenes (NHCs) are
highly selective catalysts for the intramolecular Michael reaction of substrates 1 to afford
dicarbonyl compounds 2 after the addition of an exogenous nucleophile [Eq. (1)].

(1)

The Michael reaction traditionally relies on the stoichiometric generation of an enolate or enol.
In our recent studies that involved NHCs and carbonyl compounds,[9] the opportunity to
catalyze the formation of enol intermediates became apparent.[10] We anticipated that
intramolecular Michael reactions catalyzed by NHCs could be achieved by using a conjugate
acceptor with the general structure of 1. The proposed pathway for this process involves the
addition of the NHC to an α,β-unsaturated aldehyde to afford the extended diene intermediate
I (Scheme 1).[11] The key enol nucleophile is revealed by β-protonation of I followed by a
Michael addition to generate the enol III. An intramolecular acylation event releases the NHC
catalyst to afford the bicyclic acylated enol IV that readily opens to give products such as 2 on
exposure to mild nucleophiles.[12]
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The search for optimal conditions for this process started with the parent enal 1a, imidazolium
salt A, and typical reaction conditions for NHC catalysis (Table 1, entry 1, Mes = 2,4,6-
trimethylphenyl). Unfortunately, only a small amount of the desired product 3 was observed.
When the base was changed from DBU to iPr2EtN, we were pleased to observe an increased
yield of 3 with greater than 20:1 selectivity favoring the cis diastereomer (entry 3).[13] The
use of the achiral triazolium salt B in toluene with THF as a cosolvent to induce homogeneity
of the reaction provided good yields (entry 4). Solvents that are not Lewis basic, such as toluene
or CH2Cl2, were crucial to promote the β-protonation process with all the azolium precatalysts.
This protonation step in turn generates the desired enol which participates in the reaction. When
the concentration of 1a in the reaction was decreased, the intramolecular manifold was favored
with a resulting increase in yield (entry 9).

Importantly, NHCs derived from the triazolium salts C and D were found to be the most
efficient catalysts and provided a platform to control the stereochemical outcome for this
process. Accordingly, the use of the phenylalanine-derived salt C afforded good yields of 3
with 93% ee (entries 5–7). When the structure of the catalyst was tuned to that from the salt
D, which was derived from amino indanol and was first disclosed by Bode and co-workers,
[14] we observed excellent levels of enantioselectivity with catalyst loadings of 10 mol% (99%
ee, entry 11). It is important to note that the inclusion of N-mesityl substitution on the azolium
salts was required for any reasonable conversion into the desired product.

Once the triazolium salt D had been identified as the most selective precatalyst, we surveyed
potential substrates for this intramolecular process (Table 2). The use of methanol to quench
the reaction avoids the propensity for several of the bicyclic products to undergo hydrolysis
when purified on silica gel. The optimized reaction conditions allowed both electron-
withdrawing and -donating groups on the enone (entries 1–3), and additionally, electron-
withdrawing and -donating substituents could be placed on the aromatic tether (entries 6 and
7). This intramolecular reaction was not restricted to the use of aromatic substituents. The
α,β-unsaturated methyl ketone 1d provided a moderate yield of the cyclopentane product with
excellent enantioselectivity (entry 4). The bisaldehyde 1e underwent an interesting
desymmetrization reaction in which one aldehyde became the nucleophile when exposed to an
NHC while the other unsaturated moiety became the conjugate acceptor (entry 5). The
cyclization of the aliphatic substrate 13 (entry 8) proceeded in good yield after ten hours with
a catalyst loading of 20 mol%. When the tether length was increased to access six-membered
rings, cyclohexene products were afforded but with reduced enantioselectivity and yield (62%
ee, 52%; entry 9).[15] Interestingly, product 16 did not open after the addition of methanol
unlike the cyclopentane compound.

The efficient formation of methyl esters by the simple addition of methanol to the reaction in
Table 2 indicated that bicyclic intermediates such as 3 are good acylating agents. Accordingly,
substituted cyclopentyl amides, such as primary amide 17 and secondary amide 18, could be
accessed in good yield directly by the addition of the corresponding primary and secondary
amines to the reaction mixture after the starting material 1a had been consumed (Scheme 2).

In summary, a highly diastereo- and enantioselective intramolecular Michael reaction
catalyzed by N-heterocyclic carbenes has been developed. The addition of the carbene catalyst
to an α,β-unsaturated aldehyde, followed by subsequent β-protonation generated a reactive
enol intermediate that underwent addition to a pendant conjugate acceptor. Aryl and alkyl
substituents are suitable for the reaction, and high enantioselectivity is achieved when chiral
enantiopure triazolium salts are used. The turnover of the catalyst is facilitated by the generation
of a cyclic O-acylated enol which is intercepted by alcohols and amines to provide different
esters and amides. Further studies to generate nucleophiles by using N-heterocyclic carbenes
are ongoing and will be reported in due course.
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Experimental Section
The azolium salt D (4.2 mg, 0.01 mmol) and the corresponding enal (0.1 mmol) were added
to a flame-dried round-bottom flask (10 mL) containing a magnetic stirring bar. The flask was
sealed with a rubber septum and placed under a positive pressure of N2. The heterogeneous
mixture was then diluted with CH2Cl2 (2 mL, 0.05 M). Once the material had dissolved,
diisopropylethylamine (2 µL, 0.01 mmol) was added through a syringe. The reaction mixture
was stirred at 23 °C under N2 until the enal had been completely consumed (as observed by
TLC). Methanol (5 mL) was then added and the reaction mixture stirred at 23°C under N2 for
5 h. The reaction mixture was partially concentrated under reduced pressure and the remaining
residue was purified by chromatography (silica gel, 5% EtOAc/Hexanes) to afford the pure
methyl ester. Analytical data for 4: IR (film): ν̃ = 3024, 2947, 1730, 1685, 1442, 1365
cm−1; 1H NMR (500 MHz, CDCl3): δ= 7.95 (d, J = 7.3 Hz, 2H), 7.57 (t, J = 7.3 Hz, 1H), 7.46
(t, J = 7.6 Hz, 2H), 7.27 (d, J = 6.4 Hz, 1H), 7.19 (m, 3H), 4.28 (q, J = 7.3 Hz, 1H), 3.59 (m,
4H), 3.42 (m, 2H), 3.15 ppm (m, 2H); 13C NMR (125 MHz, CDCl3): δ =198.72, 174.72, 144.87,
137.26, 133.32, 128.84, 128.26, 127.53, 127.08, 124.81, 124.35, 51.90, 47.69, 42.75, 40.81,
34.73 ppm; LRMS (ES): calcd for C18H16O3 [M]+, 294.32; found [M+H]+, 295.5; [α]D = −16.6
(CH2Cl2, c = 1.0, 99.5:0.5 er). The enantiomeric ratio was determined by HPLC (Chiralcel
AD-H, 15% 2-propanol/hexanes, 1 mL min−1, tr1 = 8.84, tr2 = 13.88).
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Scheme 1.
Proposed catalytic pathway.
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Scheme 2.
Amide formation from the acylated enol products.
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Table 1

Optimization of the Michael reaction.

Entry Catalyst Conditions[a] Yield[b] ee [%][c]

1 A DBU, THF 6 –

2 A KN(SiMe3)2, THF[d] 11 –

3 A iPr2EtN, THF, 45°C 50 –

4 B iPr2EtN, toluene/THF[e] 61 –

5 C iPr2EtN, toluene/THF[e,f] 61 93

6 C Et3N (0.1 M), toluene/THF[e] 62 93

7 C iPr2EtN (0.1 M), CH2Cl2, −20°C 49 93

8 D iPr2EtN (0.1 M), toluene/THF[e] 53 99

9 D iPr2EtN (0.05 M), toluene/THF[e] 66 99

10 D iPr2EtN (0.05 M), CH2Cl2 68 99

11 D[g] iPr2EtN (0.05 M), CH2Cl2 68 99

[a]
Base (20 mol %), 1a (0.2 M) at 23°C unless otherwise noted. DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

[b]
Yield of isolated product.

[c]
Determined by HPLC (Chiracel AD-H). Absolute and relative configuration of 3 assigned by X-ray crystallography.[16] See the Supporting

Information for details.

[d]
Carbene generated prior to addition of substrate.

[e]
10:1 toluene/THF.

[f]
Base (1.2 equiv).

[g]
D (10 mol %).
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Table 2

Substrate Scope.

Entry Substrate Product Yield [%][a] ee [%][b]

1 1a R = Ph 4 69 99

2 1b R = 4-BrC6H4 5 62 99

3 1c R = 4- = MeC6H4 6 80 99

4 7 59 99

5 8 68 99

6 10 68 99

7 12 73 99

8[c] 66 99
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Entry Substrate Product Yield [%][a] ee [%][b]

9[d] 52 62

[a]
Yield of isolated product after purification.

[b]
Determined by HPLC on Chiracel AD-H or OD-H columns.

[c]
D (20 mol %) with the enantioselectivity determined by GC (BetaDex column).

[d]
D (20 mol %).
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