
Plasma Indicator Dispersion in Arteries of the Human Leg

James B. Bassingthwaighte, M.D., Ph.D.
From the Section of Physiology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota.

Abstract
Indicator-dilution curves were recorded from the femoral and dorsalis pedis arteries of five normal
men after injections of indocyanine green into the superior vena cava or thoracic aorta. By considering
the femoral curves as inputs to a mathematically linear system and the dorsalis pedis curves as outputs,
transfer functions (the distribution of transit times) for the arterial segment between these sites were
obtained in terms of a four-parameter model, the lagged normal density curve, over a sixfold range
of flow rates. The parameters of the spread (dispersion) of 57 transfer functions were proportional
to the mean transit time. The mean difference between transit time and appearance time was 0.30 t̄;
the square root of the variances was 0.18 t̄. These linear relationships suggest that flow rate has no
significant influence on dispersion and that, since no transition from laminar to turbulent flow was
apparent, arterial flow characteristics were not significantly changed over a wide range of flow rates.
The secondary implication is that the rate of spatial longitudinal spreading of indicator with distance
traveled is primarily a function of the geometry of the arterial system, not of the rate of flow, and,
therefore, that the spatial distribution at any instant is a function of this rate and of the distance
traveled through the system.
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Recorded concentration-time curves show the effects of dispersion of indicator at the injection
site and in the sampling system. The latter effect can be lessened by the use of sampling systems
of high dynamic response, but the former effect is unavoidable. However, circulatory transport
through a given segment of the circulation can be characterized experimentally. After injection
of indicator at a point upstream from the segment, simultaneous indicator concentration-time
curves may be recorded, with identical sampling-recording systems, from the entrance and
from the exit of the segment. From these curves, the transfer function of the segment (the
frequency distribution of transit times through it) can be estimated.

In this study, the transfer functions were defined in terms of a model—the lagged normal
density curve.1 The flow of blood through the leg was increased by the infusion, at varied
constant rates, of adenosine triphosphate in order to assess the influence of flow rate on these
transfer functions.
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Methods and Computations
Five normal men were studied while they were awake in the supine position. The details of
catheter sizes and locations, the methods of sampling, the calibration of the densitometers, and
the recording and preliminary reduction of data have been described.1 A transfer function for
the arterial segment lying between the femoral artery and the dorsalis pedis artery was obtained
by considering the concentration-time curve recorded at the femoral artery as the input to a
linear system and that recorded at the dorsalis pedis artery as the output.

MATHEMATICAL APPROACH TO THE USE OF THE CONVOLUTION INTEGRAL
The approach used in this study is essentially that of Stephenson:2 the arterial system is
considered subject to the types of analysis applicable to linear filters with lumped
characteristics. It is assumed that the transfer function has its domain along only the time axis.
This implies the secondary assumptions that each sampling site acts as a point and that the
concentration at that point represents the amount of indicator per volume of fluid passing that
point (that is, the concentration is volume-averaged)3, 4 or is the mean flow concentration.5
The transfer function of a linear system is a unique expression, h(t), describing the gain and
distortion of any signal passing through the system. h(t) is the response of the network to a unit
impulse as input. Given h(t) and any input, f(t), the output or system response, g(t), has a unique
description:

(1)

or

(1a)

in which λ is a dummy variable of integration and * is an abbreviation for the convolution.
Equation 1 is the convolution integral, limited to systems which do not respond unless there
is an input and in which f(t) = 0 for t ≤ 0. The present experimental situation is represented in
figure 1. Points 1, 2, and 3 represent the injection site and the sampling sites in the femoral
artery and dorsalis pedis artery, respectively. Points 4 and 5 represent the densitometers whose
outputs are the recorded concentration-time curves, Ci (t) and Co(t), respectively. L1; the
vascular system between the injection site and the femoral sampling site, has a transfer function,
h1(t), which is the response to a unit impulse, δ(t). Similarly, L2, the arterial segment between
the two sampling sites, has a unit impulse response, h2(t). It is the purpose of these experiments
to determine h2(t) under various circumstances. This cannot be done directly because a unit
impulse cannot be introduced into the femoral artery (point 2) nor can the concentration, g(t),
at the dorsalis pedis artery (point 3) be obtained directly. The form of the injection cannot be
characterized with current methods; therefore, the input function, e(t), is unknown and the
impulse response, h1(t), of system L1 cannot be determined. f(t) and g(t) cannot be recorded
directly but are distorted by the sampling systems, LS1 and LS2.

The recorded curves are the arterial curves distorted by the sampling systems:

(2)

and
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(3)

in which S1(t) and S2(t) are the sampling-system responses to a unit impulse. In these
experiments the sampling systems have been designed to have nearly identical responses to a
step change of dye concentration at the input1 and, therefore, their time-domain transfer
functions, S1(t) and S2(t), are very nearly identical:

(4)

This simplifies the analysis considerably because then Co(t) = g(t) * S(t). Substituting for g
(t) by using equation la,

(5)

and then from equation 2,

(6)

or more properly:

(7)

In the experimental situation the injection of indicator at time zero resulted in the concentrations
C1 and Co, and therefore the lower limit of integration may be changed to ignore the zero
concentrations preceding the injection:

(8)

The experimental determination of h2(t), hence-forth called simply h2(t), depends on the
veracity of equation 8, which depends on S1(t) and S2(t) being equal and on the assumption
of mathematical linearity. A consistent difference between S1(t) and S2(t) will result in a
systematic error in the transfer function, but it was thought that the 0.25-second difference in
the mean transit times of S1(t) and S2(t) present in this study was sufficiently small relative to
an average mean transit time of 9 seconds for the transfer functions of these experiments that
it could be ignored.

The determination of h2(t), is entirely dependent on the applicability of the superposition
theorem. The requirements are that the system be linear and stationary.5, 6 (1) Stationarity
means constant flow. (2) The indicator must travel in exactly the same fashion as the substance
which it is considered to label. (In this experiment, plasma protein or perhaps simply plasma
is labelled by indocyanine green but erythrocytes are not.) (3) There must be no loss or gain
of indicator or its carrier during passage through the system between the femoral and dorsalis
pedis arteries. (4) The sampling of the bloodstream for indicator concentration should be not
only from all of the cross section of the vessel at the tip of the sampling system but also from
each portion of this cross section in proportion to the flow across it (flow-averaged sample).5
(5) The system must also be linear such that, when
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and

then

Experimentally, t1 or t2 cannot be zero and therefore a test of linearity using the latter equation
is dependent on the persistence of steady flow over a period of at least a few minutes.

While it is obvious that none of these conditions can be completely fulfilled, the deviations
from ideal are not so great as to vitiate the practical application of superposition theory.7

COMPUTATION OF THE CONVOLUTION INTEGRAL
Digital computation of integrals of continuous functions is done by means of numerical
approximations. The accuracy of a numerical integration is increased by decreasing the size
of the intervals chosen. For these experiments, the interval, Δt, was 0.25 second which was
1/35 to 1/100 of the passage time of the primary curves. The functions f(t), h(t), and g(t) are
considered as sequences fi, hi, and gi where i is an integer subscript valued 1 to n. fi is the
amplitude of a pseudo-impulse and substitutes for the area of f(t) during a period, Δt, whose
midpoint is ti.

The convolution integral (equation 1) was calculated in the recursive form:

(9)

This Euler integration was found to be as accurate for these experiments as a Simpson’s rule
or a Runge-Kutta integration and was very much faster.

ESTIMATION OF THE TRANSFER FUNCTION
The transfer function appropriate to each pair of recorded curves, Ci(t) and Co(t), was
determined in terms of a suitably defined lagged normal density curve1 whose equation is:
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(10)

in which tc is the median of a normal density curve of standard deviation, σ, and τ is the time
constant of a superimposed exponential (first order) lag. This model, which is the same one as
that used by Nicholes and co-workers,8 was generated using a Runge-Kutta method. Values
of h(t) for t < 0 were ignored and, in practice, values were less than 0.5% of the peak value
until t > 0.5 (τ + tc). The curve was arbitrarily truncated on its downslope following the peak
when values were less than 1% of the peak. The first, second, and third moments of h(t) are,
respectively, τ + tc, σ2 + τ2, and 2τ8.

It should be emphasized that this model is used to provide a concise numerical description of
the transfer function. It is not unique, for several other models could be used, and there is no
direct means of interpreting its parameters in physical terms, such as a velocity profile or other
blood-flow characteristics. It is simply a stochastic, descriptive model which has been chosen
on the basis of its mathematical similarity to equations for turbulent diffusion and the random
walk and because, empirically, it does provide a sufficiently accurate description of the time-
domain transfer function.

A trial transfer function, h(t), was generated by using arbitrary values for σ, τ, and tc and had
values at intervals of 0.25 second. A trial output curve, C′o(t), was computed by the convolution
of Ci(t) and h(t), by equation 9; C′o(t) was compared with Co(t) by determining the coefficient
of variation. If the coefficient of variation was higher than a prescribed value, usually 0.005,
then h(t) was changed by adjusting the parameters of the lagged normal density curve, the
convolution was repeated, and the new C′o(t) was compared with Co(t). This process was
repeated either until the coefficient was less than the prescribed value or until 10 trials were
completed, at which point the best result was printed out and plotted. The adjustment of the
parameters was made automatically by the computer: if C′o(t) was too steep on the upslope,
σ was increased; if C′o(t) was too steep on the downslope, τ was increased; if the peak was too
early, tc was increased. Interaction between the effects of these adjustments was taken into
account (for example, an increase in τ also decreases the upslope and delays the peak) but there
still tended to be a small oscillation about the best solution. This was seen when the prescribed
goal for the coefficient of variation was set at an impossibly low value such as 0.002.

Results
USE OF THE LAGGED NORMAL DENSITY CURVE AS THE TRANSFER FUNCTION

The transfer function was determined in terms of a lagged normal density curve for 29 pairs
of curves recorded after injection of indicator into the superior vena cava and for 28 pairs after
injection into the aorta. Typical results are shown in figure 2. In each panel the computed
downstream curve, C′o(t), represented by the + signs, is superimposed on the continuous line
representing the dye curve recorded at the dorsalis pedis artery, Co(t). The parameters of the
transfer function are listed in each panel. The coefficients of variation between C′o(t) and
Co(t) were significantly (P < 0.001) less for pairs of curves recorded after injection of dye into
the superior vena cava (mean coefficient of variation = 0.0053, SEM = 0.0004) than for those
recorded after aortic injection (0.0094 ± 0.0008). The average for the 57 transfer functions was
0.0070 ± 0.0005 with a range from 0.002 to 0.020. In only four instances was the coefficient
of variation greater than 0.011.

Under conditions of stationarity of flow, the transfer function of the segment during the period
of recirculation should be the same as that for the dye passing the sampling sites for the first
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time. The better-than-average result in the left upper panel of figure 2 shows this most clearly.
Following aortic injection, the recirculation peaks were smaller because smaller amounts of
dye were injected and because a larger proportion of the indicator goes into the vasculature of
the lower part of the body, from which recirculation is much slower.9 Adjustment of the
parameters of the transfer function was made in accordance with comparisons of the primary
portions of curves Co(t) and C′o(t). As a result the later parts of the curves, representing
recirculated indicator, did not match as well. This may be due to variability in the physiologic
state (change of flow or distribution of flow) or perhaps variation in sensitivity or drift in base
line of the densitometers during the recording.

The ratios of areas of the femoral curves to those at the dorsalis pedis artery averaged 0.96
(SEM = 0.011). The areas should be identical and the variation is an expression of the
experimental error. Differences could be due to lack of stationarity, instrumental errors, or,
least likely, to a difference in the error due to time-averaged sampling instead of volume-
averaged sampling at the two sites.10 No significant change in sensitivity of the densitometers
to known concentrations of dye in blood from the subjects was apparent on tests done
periodically during each experiment. Lack of representative mixing was probably a minor
factor because the variation in area was slightly greater following injections into the aorta. The
systematic difference was due primarily to the error in extrapolation of the femoral curves (see
fig. 5 of reference 1).

Lack of stationarity is a probable source of much of the variation noted in this study. Positive
evidence of a change in flow is seen in figure 3. These data were recorded while the subject’s
physiologic status was apparently undisturbed and unchanging (no changes in heart rate, blood
pressure, or respiratory rate). A sudden injection of dye was made into the thoracic aorta, and
the upper pair of curves was recorded. The transfer function had the shape represented by the
open circles in the left upper panel. The computed output curve, C′o(t), is superimposed on the
recorded curve, Co(t), in the right upper panel (coefficient of variation = 0.006). Fifty seconds
after the first injection, two injections of dye were made three seconds apart into the aorta, and
the curves shown in the lower panels were recorded. As above, the transfer function, h(t)
(labelled “dispersion process”), and a theoretical output curve, C′o(t), were computed, and C
′o(t) was compared with Co(t) in the lower right panel. The coefficient of variation was 0.010.
Lack of stationarity is shown by the difference in mean transit time: τ + tc equalled 14.5 seconds
initially (upper panel) but was 13.5 seconds, less than a minute later (lower panel). If the change
in flow occurred in the few seconds between these recordings, then both transfer functions may
be valid. If a gradual change was occurring, then the error in each will be small. If the change
occurred during the recording of one of the primary peaks the error would be quite significant.
Differences of 0.5 to 1.0 second in t̄ were found fairly frequently even when the determinations
were made at intervals as short as 50 seconds. This reflects presumably a continual variation
in total blood flow in the leg or of distribution of flow in the leg vessels.

TEST OF THE MATHEMATICAL LINEARITY OF THE ARTERIAL SEGMENT
The data of figure 4 were obtained in a manner similar to those in figure 3, except that adenosine
triphosphate was being infused into the right common iliac artery at a rate of 1.0 mg/min,
producing a marked decrease in mean transit time and in dispersion. The mean transit time
between sampling sites was the same (3.1 sec) after a single injection as it was, less than a
minute later, after a pair of injections 4 sec apart. If this is taken as evidence for stationarity,
then the curves may be used to test whether the transfer function is the same for input curves
of widely differing form. The transfer function for the curves of the upper panel is described
by a lagged normal density curve having σ = 0.20 sec, τ = 0.26 sec, and tc = 2.8 sec. That for
the doubly peaked curves of the lower panels had σ = 0.19 sec, τ = 0.31 sec, and tc = 2.75 sec.
The coefficients of variation were 0.007 and 0.011. The conclusion is that, when stationarity
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is present, linearity was demonstrated by showing that the transfer function was independent
of the shape of the recorded concentration-time curves. During infusion of adenosine
triphosphate, stationarity was usually observed and five pairs of computed transfer functions
obtained in the above manner were similarly independent of the form of the dye dilution curves.
During the control state there were no consecutive pairs of transfer functions obtained at
precisely constant flow or mean transit time and therefore linearity could not be tested.

RELATIONSHIPS BETWEEN PARAMETERS OF THE TRANSFER FUNCTION
The transfer function was determined only in terms of the parametric model, the lagged normal
density curve. Figure 5 (left panel) shows that the square root of the variance, (σ2 + τ2)½, is
linearly proportional to the mean transit time, τ + tc. That the shape was rather variable is shown
by the relationships of σ and τ to τ + tc (fig. 5, middle and right panels). The least-squares
regression lines, calculated on the basis that error exists in values of ordinates and abscissas,
have approximately the same slopes as observed1 for the same relationships for the model fitted
to the recorded dye curves. The large variation is a reflection of the fact that the shape of the
transfer function is a caricature of the difference in the shapes of Ci(t) and Co(t). The parameters
σ and τ were unrelated (τ = 0.06).

The theoretical values for t̄ and π2
½ (the square root of the variance) were used in figure 5. The

actual calculated moments gave slightly smaller values because the curve ordinates were
computed at finite intervals (0.25 sec) and h(t) was terminated when its value on the downslope
was less than 1.5% of the peak value. As calculated, τ + to = 0.23 + 1.008 t̄ with a standard
deviation of 0.033 and a correlation coefficient, r, of 0.999; similarly, (σ2 + τ2)½ = − 0.08 +
1.13π2

½ (SD = 0.051, τ = 0.998). These relationships should fall on the line of identity; such
errors are more obvious with the higher moments.

The regression lines for the appearance time, ta and t̄ — ta versus t̄ for h(t) show relationships
(fig. 6) similar to those obtained for the recorded curves. These lines might be expected to pass
through the origin because there should be no influence from dispersion at the injection site or
upstream from the arterial segment under study. That they do not, suggests that there may be
some dependence of shape on the mean transit time. t̄ — ta is proportionately larger when t̄ is
smaller, suggesting that h(t) is more symmetric when t̄ is small. The same tendency is shown
in the relationship between t̄ — ta and π2

½ (fig. 6, right panel) and in the interrelationships
between σ, τ, t̄ — ta, and π2

½. For example, σ = −0.07 + 2.24(t̄—ta) (SD = 0.24, r = 0.73); this
is very close to the ratio, σ/(t̄ — ta) = 0.26. Thus, the relationship σ = 0.45 + 0.19 π2

½ (SD =
0.33, r = 0.38) must and does show a positive ordinate intercept, while values of τ were
relatively small when t̄ and π2

½ were small (fig. 5, right panel). τ = 0.51 + 1.23 π2
½ (SD = 0.30,

r = 0.94) and τ = −0.92 + 0.82(t̄ — ta) (SD = 0.60, r = 0.72).

Table 1 reflects the same tendency. The variations in σ/t̄ and in τ/t̄ were so great that no
significant differences due to injection site were seen. The average ratios are similar to those
obtained previously1 for recorded dye curves but are smaller following aortic injections, π2

½/
t̄ was significantly (P < 0.02) less with aortic injections. Similarly, the average (t̄ — ta)/ t̄ was
smaller and ta/t̄ was larger for aortic injections.

COMPARISON OF TRANSFER FUNCTION WITH RECORDED CURVES
The shape and variance of the transfer function may be compared with the recorded curves.
Figure 7 illustrates the relationships of the first and second moments of the transfer function
to those of the recorded curves. They should follow the line of identity. The systematic
deviation of the second moments from the relationship, π2h = π2DP — π2F (the subscripts DP
and F indicate the downstream [dorsalis pedis] and upstream [femoral] curves, respectively),
is due in part to integration error and to truncation error in the calculation. The scatter observed
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may be expected in a comparison of an error-containing parameter, (σ2 + τ2)½, with the
relatively small difference between two large and some-what erroneous values, π2DP and
π2F.

Discussion
LAGGED NORMAL DENSITY CURVE AS A MODEL

The purpose of these experiments was to compute a transfer function which was independent
of the influences of dispersion at the site of injection and of distortion by the sampling system.
Since these factors unavoidably affect the recorded concentration-time curve, use of this curve
as the transfer function, as Zierler11 advocated, serves only as a rough approximation.

In order to ascertain the transfer function without using transforms, h(t) may be assumed and
adjusted by some trial and error process until a suitable h(t) is found. Tedious as this is, such
a method has certain advantages because it avoids the division of the frequency-domain
transform of the recorded output curve by that of the input curve. Such a division is akin to
differentiation, and when the data are not smooth but have random or systematic variation
superimposed on the ideal Co(t) and Ci(t), the solution tends to have wide fluctuations and may
oscillate. Stephenson2 predicted this, and it has also been observed by Paynter12 and by Parrish
and co-workers.13 The use of the iterative computation of the output function in the time domain
(equation 9) is akin to integration or the use of linear filters and, because h(t) is smooth, it
results in C′o(t) being smoother than Ci(t) or Co(t).

A model is used because it provides convenience in defining and adjusting h(t). The lagged
normal density curve is thought to be easier to adjust than other models whose forms are not
visualized so readily from the parameters. It is a better model for the transfer function than it
is for recorded curves. For the 57 determinations, the average coefficient of variation between
Co(t) and C′o(t) was 0.007, which appears to be almost an order of magnitude better than the
0.056 found when comparing the model to the recorded curves.1 The improvement is not so
great as these numbers would imply because the calculation comparing C′o(t) to Co(t) uses the
data points beginning at the appearance time of Co(t) and ending at the last data point during
the recirculation; this produces a relative increase in the denominator and reduces the
coefficient of variation.

Various probability models could very likely be used as a transfer function in the manner
demonstrated here. This has not been attempted in this study, but the cascaded delay lines used
by Parrish and co-workers13 form transfer functions very similar to a normal density curve.
The response of a single delay line to a step input is a symmetric sigmoid curve which is
remarkably similar to a normal distribution curve.* Theirs is a complex model but, since each
delay line may be roughly approximated by a normal density curve, a cascade of n such units
in series may be described by:

(11)

in which i is the position of the delay line in the series, Ai is the coefficient for each delay line

and , Δt is the mean delay time of one unit, and σ is the square root of the variance

*For graphic illustrations, see “Time domain synthesis based on a passive tardigrade module.” In Lightning Empiricist: 11 (3) July, 1963.
Boston, G. A. Philbrick Researches, Inc.
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of h(t) for one unit. Thus, the system is describable by the n + 2 parameters, Ci, Δt, and σ. If
the nonzero coefficients are all equal, then h(t) will be symmetric. Skewing to the right was
produced by having higher coefficient settings for the longer delay lines than for the shorter.
If only one coefficient were used, then the model would be virtually identical to the lagged
normal density curve. The virtuosity of the Parrish model could be greatly extended and the
number of parameters reduced by the inclusion of exponential lags and, even in its present
state, could encompass the situation in which there are parallel systems with different mean
transit times. This, of course, can also be done with the lagged normal density curve by using
the sum of two curves as a transfer function. Recirculation to the heart by separate systemic
pathways can be described only in such terms.7,8,14,15

MATHEMATICAL LINEARITY OF THE VASCULAR SYSTEM
The most formidable requirement for linearity is stationarity.5 Zierler16 has said, “If phasic,
not necessarily regular, alterations in distribution of transit times fluctuate rapidly about some
central value, and if the periods of the phases are brief compared to the time required for
evolution of the sudden-injection indicator concentration-time curve, then the violation of
stationarity may not be important.” The same condition reduces the error induced by time-
averaged sampling of the flowing blood. It is then not surprising that the coefficients of
variation were smaller for the broad curves following injections into the superior vena cava,
because the passage time of the aortic curves may be as short as 5 to 7 sec.

Variation in vasomotor activity and in peripheral flow, as observed by Burton17 and Allwood
and Burry,18 is a more significant source of error. Figure 3 illustrates that this does not
necessarily prevent the calculation of transfer functions, but their validity must be doubted
because it is not known when the change of flow occurred. In certain instances the flow must
have increased during the period the indicator was passing the distal sampling site because
Co(t) was narrower than Ci(t) and the calculation of a transfer function was ridiculous. For such
reasons, similarity of area is a good criterion for selection of pairs of curves from which to
determine the transfer function.

Nicholes and co-workers8 described a test for linearity, with which they obtained a satisfactory
result. Injections of 0.5, 1.0, and 2.0 times the usual amount of dye were made into the superior
vena cava, and the blood was sampled from the pulmonary artery. The resulting concentration-
time curves had the same shape, and their areas were in proportion to the dye dose. This test
confirms both the laws of conservation of material and the basis for the use of dye techniques
to measure flow, but it is not a critical test of linearity because the shape of the primary portion
of the dye curve is so ubiquitous. Transfer functions for indicator recirculating to the pulmonary
artery were calculated from the primary curve (Ci) and the “first recirculation” curve (Co) but
were inconstant, which probably reflects the lack of stationarity of flow in the peripheral
vascular system.

The test shown in figure 4 is a good test of linearity over a specific vascular segment but, since
the two injections (lower panels) were 4 sec apart and the transfer function was short, the two
peaks remained separate throughout the segment. The shape of the curves changed very little
from those in the upper panels and therefore the criticism must be made that there is not a great
difference in the form of Ci(t) in the upper and lower panels. The assumption of linearity has
been justified by experiments in which transfer functions were obtained simultaneously for
three segments of the aorta in dogs.7

INTERRELATIONSHIPS BETWEEN PARAMETERS OF THE TRANSFER FUNCTION
The curves recorded at the two sampling sites have been shown1 to be basically similar in
shape. The transfer function should therefore also have the same shape. The output curve, C
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′o(t), computed by means of the convolution integral, must always have a degree of skewness
or kurtosis intermediate between those of the input curve Ci(t) and the transfer function h(t),
and it will be more spread out than either. For example, the lagged normal density curve is the
convolution of a normal density curve and a single exponential curve; it is neither as skewed
as the exponential nor as symmetric as the Gaussian curve. Therefore, when Ci(t) and Co(t)
differ in shape, the transfer function, h(t), must be more skewed than Co(t) if Co(t) is more
skewed than Ci(t). Or, if σ/t̄ of the model fitting Co(t) is greater than is σ/t̄ of the model fitting
Ci(t), then σ/t̄ of h(t) must be greater than τ/t̄ of Co(t) and τ/t̄ of h(t) must be less than τ/t̄ of
Co(t). The statement regarding τ follows from the fact that the variance of Ci(t) plus the variance
of h(t) should equal the variance of Co(t). In other words,

(12)

or

(13)

coupled with the empirical observation that π2
½ = 0.18 t̄, which holds approximately for both

the recorded curves and the transfer function (fig. 5 and table 1). This phenomenon of the
transfer function exaggerating the differences between Ci(t) and Co(t) is similar to the
exaggeration of irregularities produced by differentiating a function. This is the main reason
for the poor correlation between σ or τ and t̄ (fig. 5), and it results in the apparently random
relationship between σ and τ.

The relationships of ta and (t̄ — ta) to t̄ (fig. 6) show much less scatter than do those of σ or
τ to t̄. The difference between the average transit time and the shortest transit time is closely
related to the variance of the transfer function (right panel) and a quick and approximate
estimate of the variance could be obtained by the equation π2

½ = 0.55 (t̄ — ta). This value is a
rough average for the relationships of figure 5.

The observation that π2
½/t̄ and (t̄ — ta)/t̄ had smaller average values (table 1) following aortic

injection might suggest that the dispersion in the arterial system of the leg is influenced by the
site of injection. Such a thought is contrary to physiologic and mathematical expectations, and
the deviation is probably due to a small systematic experimental error.

RELATIONSHIPS OF PARAMETERS OF THE TRANSFER FUNCTION TO PARAMETERS OF
THE RECORDED CURVES

In table 2 are listed the average values of the slopes of the relationships of various parameters
to the mean transit times of the recorded curves1 (left column) and the slopes obtained for the
parameters of the transfer function (right column). These slopes and the ratios of the transfer
function parameters to t̄ (next to last column, table 1) should be influenced only by dispersion
within the vascular segment between the sampling sites. The similarity in the values indicates
that a rather good prediction of the transfer function could be made from the parameters of the
recorded curves.

The relationship between the transfer function mean transit time and the difference in mean
transit times between the curves recorded from the densitometers is obviously a necessary one
and should fall on the line of identity if the sampling systems are identical (fig. 7, left panel).
Some variation is expected because the three mean transit times necessary to plot each point
are calculated independently. Greater error is found in the estimates of variance principally
because of errors in the tails of the curves, and the variation from the line of identity (equation
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12) is larger (fig. 7, right panel). Computation error is greater for the higher moments and
produces a systematic underestimation.

SPATIAL AND TEMPORAL DISTRIBUTION OF INDICATOR PARTICLES
Because of the proportionality of spread to mean transit time and because of the small influence
of flow on this relationship, certain statements can be made about C(x, t), the distribution of
the indicator particles with respect to distance x along the system. In general, if any two of the
following are known, then the third may be calculated: (1) C(x1, t) at a point in the system
x1; (2) C(x1, t) the spatial distribution of concentration with respect to distance at a particular
time t1; (3) the rate of increase of spread of C(x) with time. This is somewhat oversimplified
since details such as cross-sectional versus flow sampling must be considered also.

One way of looking at these phenomena is to consider a system in which there is constant
proportionality of distribution of flow. Such a system might have turbulent or laminar flow but
the simplest example is a system (fig. 8) consisting of a number of parallel pathways, each
having piston flow and each carrying a constant proportion of the total flow. (Piston flow
defines the velocity to be the same at all points in a cross section of the tube.) Indicator injected
at point A in such a system will be dispersed, if the pathways have varied mean transit times,
at a given total flow rate, Q. It is obvious that, under these conditions, when an impulse input
is made at A, the spatial distribution, C(x), will be the same around B no matter what the flow
rate is. The temporal distribution at the point B, C(t), is a function of the spatial distribution
and of the flow rate. Let the curve at the lower left comer of the figure represent h1(t) when
the flow is stationary at Q1 ml/sec. The amount of indicator and the time for it to travel from
A to B through pathway D is given by the rectangle at time, tD1.

In a geometrically stable system the flow rate and mean transit time are related reciprocally:

(14)

in which V is the Stewart-Hamilton or the mean transit time volume of the system and need
not be defined anatomically. Equation 14 is applicable to the portion of the circulatory network
(including branches) in which there is constant proportionality of distribution of flow. As a
result, the transfer functions, h(t), at different flow rates are related by:

(15)

The scale factor, t̄1/t̄2 = Q2/Q1, is necessary to keep the transfer function at unit area. When
the concentration-time curves are related in the same fashion:

(16)

then the peak heights, C1p and C2p, are the same and the areas are inversely related to the flow,
Q. Similarly, C(tD2) = C(tD1) and C(tE2) = C(tE1) while tD2 = Q1tD1/Q2, and tE2 = Q1tE1/Q2.
This may be viewed merely as normalization of the time scale to t/t̄.

The model illustrated in figure 8 is a generalized streamline flow model. The parameters of the
spread of C(t), viz., π2

½, t̄ — ta, σ, τ, and any others, are in constant proportion to t̄. These
relationships will apply to any constant-volume streamline flow model over any range of flows
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so long as the requirement for constant proportionality of flow in each stream is fulfilled. They,
and also equations 14, 15, and 16, apply equally well to any turbulent or disturbed flow system
of constant volume in which the mean velocity profile is unchanged by flow changes. Because
the systemic pressure was constant in each subject despite large changes in femoral artery flow,
it is not surprising that the arterial volume was quite constant. It is unlikely that the highly
distensible venous system would have so little change in volume over such a range of flows.

The restriction of geometric stability and constant proportionality of distribution may be
relaxed to some extent in an open-ended system such as that between the femoral artery and
the dorsalis pedis artery. Stationarity need only be maintained in the main arterial stream
between these two points. Thus, the distribution of flow to each primary branch must be
constant, but in secondary branches the flow need not be clearly defined. The boundaries of
the volume, V, may be changed at will within the second and higher order branches of the
system.

It is important to realize that streamline flow is not necessarily implied by the observations of
this study. The generalized flow model has been discussed because it is simple and because
streaming flow is probable in the vascular system, even though true laminar flow is not, because
of the presence of erythrocytes. Any type of turbulent flow whose spatial dispersion is related
linearly or nonlinearly to the distance traveled and not to the flow will give similar results. The
six-fold range of mean transit times of h(t)′s indicates a similar range of flows, the highest of
which would result in Reynolds numbers of about 2,000 in the femoral artery if the flow were
not pulsatile. It seems unlikely that laminar flow could persist at such flows even if the artery
were a uniform cylinder. The similarity of the relationship of spread to mean transit time at
low flows to that at high flows, where turbulence is almost certainly present, suggests that flow
is usually turbulent. Turbulence may be expected at relatively low flows of nonhomogeneous
fluids driven by a pulsatile head of pressure through elastic, branched, tapering, curved tubes.
On the other hand, “complete” turbulence resulting in constant concentration over the cross
section of the artery and in longitudinal dispersion of indicator seems little more probable than
Newtonian laminar flow. Most likely, a compromise model embodying longitudinal and lateral
dispersion superimposed on some rather blunt velocity profile will turn out to be the most
realistic.

ROLE OF CIRCULATORY DISPERSION IN STUDIES ON DIFFUSIBLE INDICATORS
After injection of a bolus containing diffusible and nondiffusible indicators, simultaneous
concentration-time curves for the several substances may be obtained by sampling from the
venous outflow of an organ. Such data can be used to estimate the volume of distribution of
each indicator and rates of transfer of diffusible indicators from the bloodstream into the tissue.
19–21 Combination of this knowledge with information on the mode of transport within various
vascular segments should produce relatively complete descriptions of the movement of a
substance from one tissue to another, and complex models of the whole body or of single organ
systems could be formed without some of the simplifying assumptions made by Jacquez and
co-workers. 22–23
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FIGURE 1.
Block diagram of the experimental situation. Point 1 (left) is the injection site, 2 is the tip of
the femoral sampling system, 3 is the tip of the sampling system in the dorsalis pedis artery,
and 4 and 5 are the recorded outputs of the densitometers of the femoral and dorsalis pedis
sampling systems.
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FIGURE 2.
Use of a lagged normal density curve as the transfer function relating pairs of time-
concentration curves. The pair of curves (continuous lines) in each panel were recorded
simultaneously from the femoral and dorsalis pedis arteries. Femoral curves were convoluted
with lagged normal density curves whose parameters, σ, τ, and tc are listed. Computed output
curves (+ signs) closely approximate the recorded dorsalis pedis curves. Coefficients of
variation between these computed and recorded output curves were 0.003, 0.007, 0.009, and
0.012. The average coefficient of variation for all the experiments was 0.007. Curves in the
left upper panel, recorded after injection into the superior vena cava, illustrate one of the best
results. Aortic injections were used to produce the other curves.
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FIGURE 3.
Test of constancy of the transfer function at normal femoral flow rate. Left panels: curves
recorded from the femoral artery (asterisks) and the calculated transfer function (zeros) whose
parameters are listed and whose amplitude was 1. Right panels: curves recorded at the dorsalis
pedis artery (asterisks) and the computed output curve (zeros). Upper panels: single injection
into the thoracic aorta. Lower panels: two single injections 3 sec apart. Mean transit time (τ +
tc) after the single injection was 14.5 sec and after the double injection, 13.5 sec. This
inconstancy was typical and prohibits the use of these curves as a test of linearity.
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FIGURE 4.
Test of the constancy of the transfer function at a high femoral flow rate (during infusion of
adenosine triphosphate into the common iliac artery at a rate of 1.0 mg/min). The situation is
similar to that of figure 3. Lower panels: two injections 4 sec apart. In this case the mean transit
time remained constant at 3.1 sec and the transfer function was also the same despite the
difference in form of the two curves, thereby suggesting that the arterial segment may be
considered to behave as a linear system.
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FIGURE 5.
Parameters of the model simulating the transfer function. Left panel dispersion, as estimated
by the square root of the variance of the transfer function, (σ2 + τ2)½, is linearly related to the
mean transit time, τ + tc (which equals t̄), in a manner similar to that seen for the recorded
curves. Middle and right panels: σ and τ of the transfer function exhibit very scattered,
approximately linear relationships to τ + tc. Triangles denote data recorded following injection
into superior vena cava; +’s or x’s denote injection into the aorta. Length of the vertical line
at the average point is two standard deviations.
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FIGURE 6.
Dispersion of the transfer function. The relationships of ta and (t̄ — ta) to the mean transit time
between the sampling sites are similar to those relating the corresponding parameters of the
recorded curves, but the scatter is significantly greater. The positive Y-intercept in the
relationship between (t̄ — ta) and π2

½ suggests that the shape of the transfer function is slightly
affected by the flow rate. Symbols as in figure 5; ta is defined as the time at which h(t) first
exceeds 3% of its peak value.
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FIGURE 7.
Relationships between moments of the transfer function and moments of the recorded curves.
The systematic deviation of the relationship between the variances, the second moments, is
partly due to error in computing π2.
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FIGURE 8.
Diagrammatic representation of the effect of change of flow rate in a generalized flow system.
When the rate is doubled, the dilution curve is halved in area and the transit time through any
particular path, D or E, between A and B is also halved. In such a system the various measures
of the breadth of concentration-time curves are linearly related to the mean transit time.
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