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Abstract

Obesity has a strong genetic component, but few of the genes that predispose to obesity are known. Genetic screens in
invertebrates have the potential to identify genes and pathways that regulate the levels of stored fat, many of which are
likely to be conserved in humans. To facilitate such screens, we have developed a simple buoyancy-based screening
method for identifying mutant Drosophila larvae with increased levels of stored fat. Using this approach, we have identified
66 genes that when mutated increase organismal fat levels. Among these was a sirtuin family member, Sir2. Sirtuins regulate
the storage and metabolism of carbohydrates and lipids by deacetylating key regulatory proteins. However, since
mammalian sirtuins function in many tissues in different ways, it has been difficult to define their role in energy homeostasis
accurately under normal feeding conditions. We show that knockdown of Sir2 in the larval fat body results in increased fat
levels. Moreover, using genetic mosaics, we demonstrate that Sir2 restricts fat accumulation in individual cells of the fat
body in a cell-autonomous manner. Consistent with this function, changes in the expression of metabolic enzymes in Sir2
mutants point to a shift away from catabolism. Surprisingly, although Sir2 is typically upregulated under conditions of
starvation, Sir2 mutant larvae survive better than wild type under conditions of amino-acid starvation as long as sugars are
provided. Our findings point to a Sir2-mediated pathway that activates a catabolic response to amino-acid starvation
irrespective of the sugar content of the diet.
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Introduction

Obesity reflects an imbalance between the utilization and

storage of energy, and involves a complex interplay between

various tissues. At the cellular level, the pathways mediating the

incorporation of circulating energy sources into intracellular

storage forms such as triacylglycerides (TAGs) and glycogen are

well understood, as are the pathways that convert stored energy

into utilizable forms. In contrast, it is less clear how tissues balance

these counteracting processes within an intact organism.

Drosophila larvae represent a promising model system for using

a genetic approach to study the regulation of fat storage and

utilization. The larval phase of development is dedicated to

feeding, a behavior modulated by circuits in the brain. Ingested

nutrients are used to synthesize cellular macromolecules required

for the growth of larval tissues and for the growth and proliferation

of cells of the imaginal discs, the precursors of adult structures such

as the eye and the wing. In addition, energy is stored in a

specialized organ called the fat body (FB), mostly as TAGs and

glycogen. Fat stored in the FB can be broken down and utilized in

other parts of the animal during the non-feeding pupal phase of

development. Thus Drosophila larvae must have mechanisms that

regulate the partitioning of ingested nutrients between storage and

the generation of energy. The amount of fat stored in the larval FB

is likely determined by regulation at the level of individual cells of

the FB as well as endocrine and neuronal signals that involve other

tissues.

Genetic screens for abnormalities in the mechanisms that

regulate fat storage have been conducted in C. elegans and have

demonstrated that a genetic approach in invertebrates can be used

successfully to identify genes whose orthologs function in mammals

to regulate fat storage [1,2]. However, in contrast to the FB of

Drosophila, which is an organ devoted primarily to energy storage,

fat in C. elegans is stored in lipid droplets in intestinal epithelial cells.

Thus screens that use Drosophila larvae have the added potential

of uncovering pathways that are of relevance to the regulation of a

tissue that is specialized for energy storage. Screens have been

conducted in Drosophila tissue culture cells and Drosophila adults

for increased fat stores [3,4]. However, no screens of the larval

stage have been reported to date.

In order to characterize mechanisms that regulate fat storage in

the context of a growing organism, we designed a simple

buoyancy-based screening strategy for identifying larvae that have

increased levels of stored fat. Here we utilize this approach to

identify 66 genes that potentially regulate organismal fat content,

many of which have conserved mammalian orthologs. We also
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present the characterization of one of these genes, Sir2, in the

tissue-specific regulation of fat levels, and demonstrate an

unexpected survival advantage displayed by Sir2 mutants under

conditions of amino acid starvation.

Results

A buoyancy-based assay to identify mutant larvae with
increased body fat levels

To identify genes that regulate the storage and utilization of

energy at the level of the entire organism, we devised an indirect

assay for body fat content in Drosophila larvae, based on the

premise that individuals with a higher fat content float better in a

solution of fixed density than lean individuals. This method is

extremely rapid, inexpensive, and non-invasive, and enables the

efficient screening of large numbers of animals. Importantly,

following this type of non-invasive analysis, the larvae can be

retrieved and either analyzed further or allowed to develop into

viable and fertile adults.

When larvae were immersed in a ,10% solution of sucrose, the

majority of wild-type (wt) animals sink whereas adipose (adp) mutant

larvae float (Figure 1A). adp is a conserved anti-obesity gene first

identified as a naturally-occurring mutation in Drosophila [5,6].

Equivalent results (not shown) were observed for the mutant

brummer, which has increased fat levels. brummer is the ortholog of

human adipocyte triglyceride lipase [7]. Conversely, larvae of the

known lean mutant lsd2 displayed a sinking phenotype in a lower-

density sucrose solution in which wt larvae float (data not shown);

lsd2 encodes a protein with a perilipin-like PAT domain [8] and

regulates formation of lipid droplets.

Using this technique, we screened a collection of ,870

homozygous-viable mutants, comprising single transposon inser-

tions in approximately 500 distinct genes [9]. For each mutant, the

site of insertion has been mapped, thus simplifying the identifi-

cation of the gene whose disruption most likely accounts for the

mutant phenotype. After adding a 10% solution of sucrose in PBS

to vials in which larvae had developed from eggs to the third larval

instar stage, when they have the highest levels of stored fat, we

selected mutant lines for which the majority of the larvae were

floating. In addition, wild-type control (Oregon R) and positive

control (adp) larvae were always assayed in parallel. Only those

mutant lines with a reproducibly high percentage of floating larvae

were analyzed further, with the exception of occasional lines with

high scores in only a single test (Table 1).

Using this screening approach, we identified 66 genes that when

mutated result in increased floatation, including a number of genes

previously implicated in the regulation of fat storage in Drosophila

or other organisms. For example, insertions in the olfactory receptor

gene or83b caused floating phenotypes, consistent with reports that

or83b adult Drosophila have increased TAG levels [10], thus

demonstrating that this method is also capable of identifying non-

cell-autonomous regulators of fat storage. The cricklet gene encodes a

lipase expressed in the larval FB that is normally involved in the

developmentally-induced breakdown of this tissue [11]; larvae

lacking the cricklet gene product displayed floating phenotypes,

which could be caused by the accumulation of extra fatty tissue. Akt

is a kinase involved in insulin-mediated regulation of glucose and

lipid metabolism, and adipose tissue accumulates in knockout mice

with impaired Akt signaling [12]. Larvae with insertions in the

Drosophila akt1 gene also floated. Importantly, two thirds of the

genes picked in our screen have predicted mammalian orthologs

(Table 1), emphasizing the potential of this method to identify

conserved regulators of body fat levels. Finally, in our screen we

identified a line with a transposon insertion that disrupted the Sir2

gene, which we chose to characterize further.

Density and fat content of ‘‘floater’’ mutants are highly
correlated

In order to determine whether the floating phenotype correlates

with an increase in the levels of stored fat, eight ‘‘floater’’ mutants

were chosen for more careful analysis. First, their floating

phenotypes were quantified. Equivalent numbers of animals per

vial were allowed to develop for 5 days to the wandering stage, at

which point the floatation assay was performed. Developmental

timing and crowding of cultures influences these results (data not

shown). Hence, we only analyzed vials with 20–40 wandering (late

third instar) larvae.

In order to measure levels of fat directly, we turned to gas

chromatography/mass spectrometry (GC/MS), which allows an

accurate quantitative and qualitative comparison of lipid content.

From among the same animals scored for floatation (including

floaters and sinkers), ten larvae per sample were chosen at random,

and total neutral lipids were organically extracted. Neutral lipids

derive primarily from stored TAGs, but also include circulating

diacylglycerydes and free fatty acids. Values for percentage body

fat represent the calculated total mass of all fatty acids (free and

esterified) divided by the sample weight. All eight ‘‘floater’’

mutants selected for fat analysis by GC/MS displayed increased

levels of body fat. The data for five of these are shown in Figure 1B.

As previously reported [13], we find that in wt Drosophila,

saturated C14 and saturated and monounsaturated C16 fatty acids

predominate, with only traces of fatty acids longer than C18 (data

not shown). The GC/MS profile indicated that for each of the

eight mutants analyzed, there was a proportional increase in each

fatty acid, showing that the mutations that were examined using

this approach affect fat metabolism globally and not specific

enzymatic reactions (e.g. fatty acid elongation). Moreover, when

calculated as total neutral lipids per sample weight, percentage

body fat correlated strongly with the floatation phenotype

(Figure 1B) thus validating the use of buoyancy as a good

indicator of organismal fat content.

Mutation of the Sir2 gene increases levels of stored fat in
Drosophila larvae

The NAD-dependence of the sirtuin family of protein deacety-

lases couples cellular redox state to the acetylation state of sirtuin

substrates, which include known regulators of glycolysis, gluconeo-

Author Summary

Obesity is a major problem in affluent societies. In addition
to dietary intake, there are clearly genetic factors that
make some people more likely to become obese. At
present, we have a poor understanding of what the
genetic differences are that predispose some individuals to
obesity. In order to discover genes that regulate the
amount of stored fat, we have conducted a study using
larvae of the fruit fly Drosophila and shown that 66
different genes, when mutated, cause these larvae to store
more fat. For the majority of these genes, very similar
genes exist in humans. We have also shown that the Sir2
gene has a role in protecting these larvae from storing
excessive amounts of fat and that it does so by regulating
the synthesis and breakdown of fat in individual cells of a
tissue where fat is stored. Finally, we demonstrate a role
for Sir2 in changing metabolism when certain types of
nutrients (amino acids) are lacking in the diet.

Sir2 Regulates Fat Storage in Drosophila
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genesis, adipogenesis, and fatty acid oxidation, suggesting a central

role for sirtuins in cellular energy homeostasis [14]. Moreover, in

many species, including Drosophila, sirtuins appear to mediate the

lifespan-extending effects of caloric restriction [15], implicating

sirtuins in the physiological responses to the nutritional status of the

organism. In addition to their short lifespan Drosophila Sir2 mutants

display a wide variety of apparently unrelated phenotypes, such as

abnormalities in the physiological response to ethanol [16], defects

in apoptosis [17], and a disruption of certain regions of

heterochromatin [18]. However, a role in body fat regulation

equivalent to that suggested for mammalian sirtuins has not been

reported for Drosophila Sir2 so far.

In our density-based screen we identified a line with a transposon

insertion that is predicted to disrupt the Sir2 gene. We therefore

tested two independently-derived null alleles of Sir2 and found that

those mutants also had increased fat levels (Figure 1C). Sir217 lacks

DNA sequences encoding the first 579 amino acids [18], whereas in

the Sir22a.7.11 allele, all of the coding region is deleted [19]. Larvae

heterozygous for Sir217 or Sir22a.7.11 scored consistently higher (less

dense) than the wt control in the buoyancy assay (Figure 1C) and, by

GC/MS, had ,20% higher levels of body fat (Figure 1D). Animals

homozygous for Sir22a.7.11 or trans-heterozygous for the two mutant

Sir2 alleles (17/2a.7.11) displayed even higher floatation scores

(Figure 1C) and had ,50% more fat than wt (Figure 1D).

Sir2 mutants eat less than wild-type larvae
Expression of the mammalian Sir2 homolog, SIRT1, is induced

in the rodent hypothalamus upon fasting [20,21], suggesting a

Figure 1. A buoyancy-based screen identifies a role for Sir2 in regulating fat levels in Drosophila larvae. (A) Wt or adp mutant larvae
were immersed in the same concentration sucrose solution in plastic cuvettes and photographed after reaching equilibrium. Arrows, top of solution;
arrowheads, bottom of solution. (B) For the indicated genotypes, mean floatation scores (% floating larvae; y-axis) were calculated from three
independent biological replicates, for each using ,50 larvae submerged in sucrose as in (A), and plotted against mean % body fat (x-axis) measured
for triacylglycerides (TAG) by GC/MS and normalized to body weight (three independent biological replicates), as described in Materials and Methods.
Oregon R (OR) is a wt control, white (w) and CG18418, a line from the collection that did not have a floating phenotype, are negative controls for the
genetic background. The diagonal line shows the best-fit linear correlation (R2 = 0.73). (C) Flotation scores, determined for nine biological replicates of
wt, heterozygous, or homozygous Sir2 mutants as in Figure 1B. (D) % body fat, determined as in Figure 1B for five independent biological replicates.
Error bars represent SEM.
doi:10.1371/journal.pgen.1001206.g001

Sir2 Regulates Fat Storage in Drosophila
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Table 1. List of mutant Drosophila genes isolated in the floatation screen.

Mutant gene Buoyancy scorea Molecular functionb Mammalian orthologb

Oregon Rc –

adpc ++ binding Wdtc1

CG32541 +++ unknown –

NFAT +++ transcriptor factor activity NFAT

Fur1 +++ serine-type endopeptidase activity Furin

CG6767 +++ ribose phosphate diphosphokinase activity Prps1

Mod +++ chromatin binding BACH1

CG6854 +++ CTP synthase activity Ctps

Arc1 +++ nucleic acid binding –

trx +++ DNA binding Mll1

msn +++ protein serine/threonine kinase activity Mink1

Sip1 +++ protein binding Slc9a3r1

jim +++ transcription factor activity Mzf1

trn +++ protein binding Lrrn2

CG11550 +++ unknown –

CG1746 +++ hydrogen-exporting ATPase activity Atp5g2

shep +++ mRNA binding Rbms2

4EHP +++ protein binding Eif4e2

neb +++ protein phosphatase 1 binding Kif14

CG32683 +++ unknown –

CG3777 +++ unknown –

grp +++ protein kinase activity Chek1

CG12587 +++ unknown –

Glut1 +++ glucose transmembrane transporter activity –

RpS23 +++ structural constituent of ribosome Rps23

esg +++ d RNA polymerase II transcription factor activity Scrt2

boi +++ d unknown Cdon

dnt +++ d transmembrane receptor protein tyrosine kinase activity Ryk

bgm +++ d long-chain-fatty-acid-CoA ligase activity Acsbg1

eip75B +++ heme binding Thra

Dek +++ d nucleic acid binding DEK

CG32699 +++ d acyltransferase activity Lpcat1

slim ++ d unknown –

CG32560 ++ Ras GTPase activator activity –

Fatp ++ d long-chain fatty acid transporter activity Slc27a1

cpo ++ mRNA binding –

CG15309 ++ unknown Ypel2

Sir2 ++ d NAD-dependent histone deacetylase activity Sirt1

Akt1 ++ protein serine/threonine kinase activity Akt3

pum ++ mRNA binding Pum1

CG13791 ++ unknown –

CG1806 ++ unknown –

Cerk ++ ceramide kinase activity Cerk

CG3774 ++ nucleotide-sugar transmembrane transporter activity Slc35b4

Gdi ++ GDP-dissociation inhibitor activity Gdi1

CG14440 ++ unknown –

Fas2 ++ protein binding Ncam2

Vha16 ++ hydrogen-exporting ATPase activity, phosphorylative
mechanism

Atp6v0c

B-H2 ++ d transcription factor activity Barhl2

psq ++ d DNA binding –

Sir2 Regulates Fat Storage in Drosophila
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possible neuronal role for sirtuins in energy homeostasis. Indeed,

when fasted rats were fed, inhibition of SIRT1 function in the

hypothalamus decreased their food intake and reduced the amount

of weight they gained [21]. Paradoxically, SIRT1 expression has

also been shown to increase in the hypothalamus upon feeding and

its induction was hypothesized to play a role in satiety [22].

Consistent with previous studies that suggest that Sir2 is widely

expressed [23], a GFP-expressing enhancer-trap line inserted near

Drosophila Sir2 is expressed in most, if not all, cells of every tissue

examined, including the brain (Figure S1). To address the possibility

that a behavioral defect in Sir2 mutant larvae makes them eat more

food and accumulate fat, we quantified rates of food consumption in

Sir2 mutant larvae. Following exposure to artificially-dyed food,

developmentally-matched larvae were homogenized, a simple

aqueous extraction was performed, and the amount of dye (directly

related to the amount of food consumed) was quantified

spectrophotometrically. Sir22a.7.11 mutants ingested ,15% less

food than their wt counterparts over a 30-min feeding interval

(normalized proportional consumption 6 standard deviation

0.8560.12, n = 3; P = 0.0148 for paired two-tailed t test). Thus,

the high-fat phenotype of Sir2 mutants was not a result of increased

food consumption. In addition, an RNA-mediated interference

(RNAi) construct that clearly depleted endogenous Sir2 (data not

shown) had no detectable effect on feeding behavior when expressed

specifically in neurons (Figure S2A) and knockdown of neuronal

Sir2 caused a modest but reproducible ‘‘sinker’’ phenotype in the

floatation assay (Figure S2B), accompanied by a slight decrease in

stored fat (Figure S2C). These observations do not exclude the

possibility that Drosophila Sir2 may have an important function in

specific neuronal circuits in regulating feeding behavior, since

opposing functions for Sir2 in different sets of neurons would not be

revealed if Sir2 levels were simultaneously reduced in all neurons.

However, these observations suggest that the increased fat levels

observed in Sir2 mutants are not likely to result from a global loss of

Sir2 function in the brain. We therefore chose to examine the role of

Sir2 in the FB, an energy storage organ that performs some of the

functions attributed to the liver and adipose tissue in mammals.

Sir2 functions in the fat body to regulate organismal fat
stores

Phenotypes elicited by tissue-specific SIRT1 manipulation have

sometimes suggested seemingly contradictory functions for SIRT1

[24–26] (see Discussion). In any case, mammalian SIRT1 appears

to regulate metabolic pathways in the liver, white adipose tissue,

skeletal muscle and pancreatic beta cells [14]. To determine

whether Sir2 regulates metabolic pathways in the cells of the FB,

we depleted Sir2 from the FB using RNAi. When we used the cg-

gal4 driver [27,28], which is expressed at high levels in the FB, the

resulting larvae had consistently higher floatation scores (lower

density) than control larvae in which the interfering RNA was

homologous to the white (w) gene (Figure 2A). A weaker flotation

phenotype was observed using the lsp-2 driver [29], which has

weaker expression in the FB (data not shown). Thus, knockdown of

Sir2 in the FB appears to recapitulate the low-density phenotype of

the Sir2 mutants.

To determine whether these differences in larval density

correspond to differences in total body fat content, the amount

of neutral lipids was measured by GC/MS. Knockdown of Sir2

using cg-gal4 increased total body fat levels by approximately 20%

(Figure 2B, mean 6 SEM 6%60.2% for Sir2 RNAi compared to

5%60.1% for w RNAi control; p = 0.01 for Paired t-test). The

increase in fat content upon Sir2 knockdown using cg-gal4 (,20%)

was less severe than that observed for homozygous Sir2 mutants

Table 1. cont.

Mutant gene Buoyancy scorea Molecular functionb Mammalian orthologb

CG32556 ++ d unknown –

chm ++ d transcription coactivator activity Myst2

Sytb ++ d calcium-dependent phospholipid binding –

clt + carboxylesterase activity –

or83b +d protein binding –

nuf + microtubule binding Rab11fip4

smi35A + protein serine/threonine kinase activity Dyrk4

lilli + transcription factor activity Aff3

h + transcription repressor activity H and E(spl)4

CG13917 + protein binding –

CG10641 + calcium ion binding Efhd2

hdc + unknown Heca

tmod + actin binding Tmod1

jing + transcription repressor activity –

CG33967 + protein binding Wwc1

CR32360 + tRNA –

tlk + protein kinase activity Tlk2

l(1)G0007 + ATP-dependent RNA helicase activity Dhx38

a Qualitative comparison of fraction of larvae floating in ,10% sucrose.
b According to Flybase; blank means no ortholog predicted.
c Wild-type (Oregon R) and positive (adp) controls.
d Scored as floater in one experiment; insufficient animals due to sub-viability or developmental delay made the duplicate experiment unreliable.
doi:10.1371/journal.pgen.1001206.t001

Sir2 Regulates Fat Storage in Drosophila
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(,50%). This may result from residual Sir2 activity in the FB

following knockdown and/or contributions to body fat regulation

by normal Sir2 activity in other tissues. Food consumption was

unaffected by Sir2 knockdown using cg-gal4 (data not shown),

suggesting that Sir2 functions in the FB itself to regulate fat storage

and metabolism.

Figure 2. FB-specific manipulation of Sir2: knockdown increases organismal fat, whereas overexpression depletes lipid stores.
(A) Floatation percentage and (B) %TAG per body weight of FB-specific Sir2 depletion (‘‘cg.isir2’’) compared to control (‘‘cg.iw’’). Values represent
averages of nine independent biological replicates for floating values and seven replicates for body fat; error bars, SEM. All lines are in the same
genetic background, w1118. Floatation (data not shown) and %TAG for control UAS-Sir2RNAi animals lacking the Gal4 driver (5.6%60.1%) were
indistinguishable from Gal4-less UAS-wRNAi (5.6%60.1%). (C) Larval FB tissue from animals ectopically expressing in clones of cells (green) GFP alone
(top row) or GFP and Sir2 (bottom row) generated by FLP-mediated recombination (as described in Materials and Methods), stained with the lipophilic
dye Nile Red (middle column; red in right column). Dashed yellow lines outline single cells, as assessed by GFP fluorescence. Clones were obtained
without induction of flp, relying on ‘‘leaky’’ flp expression during FB development.
doi:10.1371/journal.pgen.1001206.g002

Sir2 Regulates Fat Storage in Drosophila
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Excess Sir2 can function cell-autonomously in the FB to
deplete fat stores

Our results point to a role for Sir2 in the FB to restrict fat

storage. If Sir2 functions by directly promoting catabolism of

stored energy in the FB, then increasing Sir2 levels could reduce

fat stores. To test this possibility, we generated mosaic animals in

which cells overexpressing both Sir2 and GFP were dispersed

within an otherwise wild-type FB. The FB was stained with the

lipophilic dye Nile Red to visualize lipid droplets and examined

microscopically. Based on their morphology and the appearance

of lipid droplets in those cells, control cells expressing GFP alone

were indistinguishable from the surrounding wt cells (Figure 2C).

In contrast, cells overexpressing Sir2 were markedly smaller and

contained fewer and smaller lipid droplets (Figure 2C), demon-

strating that, even under conditions where nutrients were

abundant, excess Sir2 was sufficient to decrease fat stores in

individual FB cells, despite the presence of surrounding wt cells.

Thus, Sir2 functions in a cell-autonomous manner to regulate fat

stores in individual cells of the FB. This effect on the amount of fat

stored in individual cells could result directly from regulation of fat

metabolism by Sir2. Alternatively, Sir2 overexpression could

potentially reduce cell size and thereby indirectly prevent lipid

droplet accumulation. Interestingly, consistent with an effect on

depletion of energy stores, constitutive Sir2 overexpression

throughout the FB using the cg-gal4 driver – but not constitutive

pan-neuronal overexpression using elav-gal4 – induced a develop-

mental arrest and subsequent lethality (data not shown).

Changes in expression of metabolic genes suggest a shift
away from catabolism in the absence of Sir2

Since Sir2 can modulate the level of stored fat in individual cells,

it is likely to operate via the regulation of cellular metabolism.

Indeed, studies in cultured mammalian cells have identified several

ways that SIRT1 influences cellular metabolism, mostly by

regulating the transcription of key metabolic enzymes. SIRT1

directly deacetylates transcriptional regulators such as PGC-

1alpha and FOXO1, resulting in increased levels of effectors of

gluconeogenesis and fatty acid oxidation [14]. Also, deacetylation

of SREBP, results in inhibition of lipid synthesis and fat storage

[30]. Additionally, interaction of SIRT1 with cofactors of the

nuclear receptor PPARc activates the expression of genes that

promote fat mobilization and represses genes required for fat

storage [14]. SIRT1 is also found in the cytoplasm of some cells

[31], where it can directly modify metabolic enzymes involved in

lipogenesis, such as acetyl-coA synthetases [32]. Likewise,

Drosophila Sir2 is predominantly nuclear but in certain situations

exhibits cytoplasmic localization [33]. To determine whether gene

expression changes are involved in the altered cellular metabolism

of Sir2 mutants, and to identify candidate downstream molecular

targets of Sir2, we examined RNA levels of a panel of twenty key

metabolic enzymes. When compared to developmentally-matched

wt larvae, quantitative real-time reverse transcription PCR

(qPCR) of mRNA from Sir2 mutant larvae revealed pronoun-

ced alterations in the expression of 14 of 20 genes encoding

components of glycolytic, gluconeogenic, fatty acid oxidation, and

lipid processing pathways (Figure 3A and Figure S3). Two

housekeeping genes, actin5c and alpha-tubulin84B, displayed little

or no change.

Notably, in response to nutrient withdrawal, the levels of many

of these same RNAs have been reported previously to undergo

significant changes in wt larvae [34], but in directions opposite of

those we observed under conditions of normal feeding for Sir2

mutants. For example, RNA levels of the CG9390 gene, encoding

acetyl coenzyme A synthetase (AcCoAS), are repressed ,5-fold in

starved wt animals [34], but were ,3-fold induced in Sir2 mutants

(Figure 3A). Similarly, phosphoenolpyruvate carboxykinase

(PEPCK; CG17725) is elevated ,3-fold in starved wt animals

[34] but decreased ,3-fold in Sir2 mutants. AcCoAS catalyzes an

important step in fatty acid synthesis (www.genome.jp/kegg/

pathway.html), whereas PEPCK activity promotes gluconeogen-

esis (www.genome.jp/kegg/pathway.html). Accordingly, if the wt

response to starvation represents a shift away from energy storage

and towards mobilization, then the transcriptional changes we

observed in Sir2 mutants fed a standard diet appear to be biased

towards energy storage/anabolism and away from energy

mobilization/catabolism. Sir2 is itself upregulated during starva-

tion [34], suggesting that it likely functions in a pathway that

mediates energy mobilization from the FB. Moreover, the changes

in the levels of body fat and gene expression in fed Sir2 mutants

indicate that even on a standard diet Sir2 plays an important role

in maintaining energy homeostasis.

Sir2 mutant larvae are resistant to amino acid starvation
Since Sir2 expression is upregulated during starvation, and the

high-fat phenotype of Sir2 mutants suggested a defect in mobilizing

stored energy, it seemed likely that starvation would be particularly

deleterious to Sir2 mutants. When wt larvae are reared in the

absence of amino acids, and provided with a source of sugar, they

arrest development at the second instar and perish after ,10 days

[35]. During this starvation-like arrest, the FB undergoes gradual

and visible diminution, suggesting depletion of fat stores. To

examine the requirement for Sir2 in this process, Sir22A.7.11/

Sir22A.7.11 homozygotes, Sir22A.7.11/+ heterozygotes, and wt

animals were reared on a sugar-based medium that lacks amino

acids. Surprisingly, Sir2/Sir2 and Sir2/+ larvae outlived wt larvae

under these conditions (Figure 3B and 3C). Median survival in a

sucrose solution was increased in Sir22A.7.11/+ (10 days, n = 148

larvae) and Sir22A.7.11/Sir22A.7.11 larvae (9 days, n = 147) relative to

wt (8 days, n = 150), and the longest-surviving larvae were

Sir22A.7.11/Sir22A.7.11 homozygotes (four larvae survived past 13

days, a point at which all wt and heterozygous animals had

perished; Figure 3B). The survival advantage conferred by Sir2

mutation is all the more remarkable considering that, under

normal conditions, Sir2 mutants are short-lived and sensitive to

various stressors [15], Notably, while FB tissue was visibly

diminished in wt larvae at late time points, the FB persisted in

mutant animals (data not shown), suggesting they maintained their

fat stores during the time course of the experiment.

Discussion

Using a simple screening method based on buoyancy, we have

identified a number of genes that when mutated potentially

increase the levels of stored fat in Drosophila larvae. From 870

homozygous-viable lines, representing ,500 genes, we retained 66

lines. i.e. approximately 13% of lines tested. If a similar proportion

of all Drosophila genes function as negative regulators of fat

storage, we would expect that approximately 1000–2000 genes

would score positive in this assay. This is higher than the number

of genes (216) identified in a RNAi-based genome-wide screen that

used a colorimetric assay for increased fat levels in adult

Drosophila [4]. This might reflect the relative sensitivity of the

two types of screening. Alternatively, a greater proportion of genes

may regulate the levels of fat storage in the larval phase than in

adults. One of the advantages of our screening method is that the

stringency of the method can be altered easily by changing the

density of the sucrose solution. For instance, a small decrease in
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Figure 3. Starvation resistance and a shift in gene expression away from energy catabolism in Sir2 mutants. (A) According to the
legend at left, heat maps of changes in transcript levels of selected metabolic regulatory genes as detected by qPCR. ‘‘fed Sir2’’, Sir2 mutant larvae fed
a standard diet, and compared to wt on the same diet, for three independent biological replicates (one replicate per column). ‘‘starved wt’’, published
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density would result in the identification of fewer ‘‘floaters’’.

Importantly, at the density that we used, eight out of eight

‘‘floaters’’ tested had increased levels of stored fat, as directly

measured by GC/MS. Moreover, the fat levels correlated with the

‘‘flotation score’’. This implies that genes cannot be simply divided

into those that affect the levels of stored fat and those that do not.

Rather, these differences are quantitative and graded. Also, there

was remarkably little overlap between our screen and the RNAi-

based screen conducted in Drosophila adults. Only one gene (Arc1)

was identified as a negative regulator of fat storage in both screens.

Thus it is clear that multiple approaches, each with its advantages

and ‘‘blind spots’’, will perform complementary functions in

identifying genes that regulate the levels of stored fat in

Drosophila.

Our screen identified Sir2 as a negative regulator of fat storage

in Drosophila larvae. Although sirtuin function in mammalian

energy homeostasis is a subject of intense research, it remains

unclear how mammalian sirtuins operating in diverse tissues

regulate metabolism at the organismal level. Sirtuin functions vary

dramatically in different cell types, and transgenic mouse models

often display complex phenotypes that vary even between

seemingly identical experiments [26]. For example, while

mammalian SIRT1 is thought to directly regulate adipogenesis

in white adipose tissue [36] and gluconeogenesis and glycolysis in

the liver, [37,38] mice with liver-specific Sirt1 depletion had either

higher body weight and more fat in liver cells [24], or lower body

weight and less fat in white adipose tissues [25].

At least in Drosophila, most of the effects of a reduction in Sir2

function on fat storage can be explained by a cell-autonomous

function in the FB of Drosophila larvae. Thus this mode of

regulation of fat levels by sirtuins may be evolutionarily more

ancient. Organisms that have either evolved more complex ways

of regulating fat storage in individual tissues or have linked

environmental cues to fat storage in more sophisticated ways (e.g.

anticipating food availability, impending hibernation) may have

co-opted sirtuins to function in other tissues in novel ways.

Our studies have also uncovered an unexpected role for Sir2

under conditions of amino-acid starvation. Under conditions of

nutrient limitation, Drosophila larvae appear to sense the absence

of amino acids and initiate a starvation response involving

activation of a program of catabolism in the FB to generate

energy for survival. This would eventually deplete their existing

energy stores and result in their death. Mammalian SIRT1 is

required for an analogous switch to catabolism upon nutrient

deprivation [38]. If Drosophila Sir2 performs an equivalent

function, Sir2 mutant larvae might fail to undergo a catabolic

switch under conditions of amino-acid starvation. Paradoxically,

this might provide them with a survival advantage under artificial

conditions in which amino acids are lacking but sugar is plentiful.

Under these conditions, wt larvae may activate a catabolic

program in the FB while Sir2 mutants may be able to preserve

stores in the FB and use the dietary sugar as their sole energy

source. Indeed, the presence of sugar in the diet was necessary for

the survival of Sir2 larvae, since complete starvation resulted in

lethality (data not shown). If this interpretation of this phenom-

enon is correct, it suggests that in wt larvae, a switch in utilization

from dietary sources to stored energy occurs in response to amino

acid starvation irrespective of the sugar content of the diet, and

that Sir2 functions in mediating this switch.

In summary, we have shown that a simple screening method

based on buoyancy can be utilized to identify mutations that result

in increased fat storage in Drosophila larvae. Our characterization

of Sir2 mutants shows that they accumulate excessive fat, that Sir2

functions in the Drosophila fat body in a cell-autonomous manner

to regulate fat storage, and that this occurs, at least in part, via the

regulation of RNA levels of key metabolic enzymes. Finally, our

studies implicate Sir2 as a key regulator in the switch from utilizing

ingested nutrients to stored fat as an energy source.

Materials and Methods

Fly strains and food
Oregon R, w1118, w; Sir217, w; Sir22a.7.11 and w; elav-gal4 were

obtained from the Bloomington stock center. Other lines have

been reported elsewhere: w; cg-gal4 [27], w, UAS-Sir2 RNAi from

the Vienna Drosophila RNAi Center [39], adp [5,40], and w;

UAS-Sir2 [17], w; act.cd2.gal4 UAS-GFP and yw hs flp122 [41].

Animals were reared at 25uC on a modified Bloomington media

(with malt) containing 35 g yeast per liter. Food was made fresh

every week and used within 2 weeks.

For all experiments, eggs were collected on grape plates at 25uC
and 24 hr later 50 first-instar larvae were transferred to each vial.

Density assay
,50 animals per vial were allowed to develop for 5 days to the

wandering stage before adding 10 ml of 10% sucrose (Fisher

Scientific) dissolved in PBS. Developmental timing influences these

results; hence, analysis was limited to vials with 20–40 wandering

larvae. After gentle mixing and several minutes without agitation

to achieve equilibrium, we counted the number of larvae floating

at the surface. The total number of larvae in the vial was then

determined by slowly adding 20% sucrose until all animals floated.

Screen
The floatation assay was performed to screen a collection of

,870 homozygous-viable mutants, each containing a single

transposon insertion [9]. For each mutant, the site of insertion

has been mapped, allowing easy identification of the gene most

likely to be responsible for the mutant phenotype. Briefly, adult

flies in vials were allowed to lay eggs overnight, whereupon the

adults were removed and eggs were allowed to develop until the

wandering larval stage. A 10% solution of sucrose (Fisher

Scientific) in PBS was added to each vial and, after allowing the

animals to reach density equilibrium, mutant lines for which the

majority of the larvae were floating were selected. Wild-type

control (Oregon R) and positive control (adp) larvae were always

cultivated and assayed in parallel. In each screening session,

,100–200 lines were screened in duplicate or triplicate, and only

those with reproducibly high floatation scores were analyzed

further, with the exception of occasional lines with high scores in

only a single test.

expression changes [34] for starved wt larvae relative to fed. All larvae were at the third instar wandering stage. Text color corresponds to pathways
shown in Figure S3. For Sir2 samples, two independent primer sets (vertical lines) were used for most genes; for these genes in the starved wt sample,
the same single value is shown in duplicate. (B) Larvae of the indicated genotypes were reared in amino acid-free media. Survival curves for larvae in a
sucrose solution. For each genotype, three independent replicates of ,50 larvae were pooled together after determining by Log-rank test that they
were not significantly different (P.0.05). Differences between wt and the mutants were highly significant (Log-rank P values: wt vs. Sir2/+, ,0.0001;
wt vs. Sir2/Sir2, ,0.0001; Sir2/+ vs. Sir2/Sir2, 0.27). (C) Larvae of the indicated genotype reared in a grape juice agar medium were photographed at
day 12. Arrows, larvae; arrowheads, disruption of the agar surface due to larval feeding activity.
doi:10.1371/journal.pgen.1001206.g003
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Lipid extraction and GC/MS
Ten larvae from among the total in each vial (including floaters

and sinkers) were chosen at random and frozen in liquid nitrogen.

These were weighed as a group, homogenized with a motorized

pestle, and neutral lipids were extracted and analyzed by GC/MS

as previously described [42]. Values for percentage body fat

represent the total of all fatty acids divided by the sample weight.

Feeding assay
Twenty five larvae (90–96 hr AED) per sample were added to a

spot of yeast paste containing 0.5% food coloring FD&C Red #40

(Spectrum) in the center of a grape plate. Following 30 min at

25uC, twenty larvae per sample were washed and homogenized in

900 ml PBS. The absorbance at 520 nm of the aqueous phase was

measured with a Spectronic Genesys 5 spectrophotometer.

Importantly, as with control animals, all experimental larvae (i.e.,

mutant or expressing RNAi constructs) were found in or on the

yeast paste (unpublished observations), demonstrating that differ-

ences in dye uptake were not the result of consumption of the

grape juice agar instead of the dyed food.

Mosaic analysis
Wandering third-instar larvae of the genotypes hs flp122;

act.cd2.gal4 UAS-GFP or hs flp122; act.cd2.gal4 UAS-GFP

UAS-Sir2 were dissected in PBS and fixed 1 hr @RT in 8%

paraformaldehyde (Electron Microscopy Sciences)/PBS. Carcass-

es were stained at RT for 30 min with 62.5 ng/ml Nile Red

(Invitrogen) dissolved in PBS.

RT-qPCR
For each sample, RNA was extracted from 10 larvae using

Trizol (Invitrogen) according to the manufacturer’s instructions.

RNA was purified using the RNaesy kit (Qiagen). RT was

performed using Oligo d(T) 23 VN (NEB) and M-MuLV Reverse

transcriptase (NEB) per manufacturer’s instructions. qPCR was

performed using SYBR GreenER qPCR Super Mix (Invitrogen),

and primer sets were calibrated using serial dilutions of cDNA.

Reactions were run in an Applied Biosystems Step One Plus

qPCR machine. For each experiment, three independent

biological replicates were performed. When possible, two inde-

pendent primer sets were used per target. Primer sequences,

available upon request, were designed to amplify the 39 end of

mRNA and span introns when possible. qPCR data were

normalized to an average of the levels of actin5c, alpha-tubulin84B,

dhr3, cg5321 and cg12703.

Starvation resistance
For each sample, 50 larvae were placed in a 20% sucrose/PBS

solution and daily analyzed for viability by response to physical

prodding. Dead larvae were removed immediately after scoring

and the medium was changed daily. Prism 4 was used for statistical

analysis and generation of survival curves.

Supporting Information

Figure S1 Expression of Drosophila Sir2 in larval tissues. An

enhancer-trap line in which GFP is expressed from the Sir2 locus

[Kelso, et al] was used to examine Sir2 expression patterns in

larval tissues. Tissues were dissected and stained with the indicated

reagents before examination by fluorescence microscopy. Green,

GFP fluorescence. (A) Brain; yellow, overlap of staining with anti-

Elav antibodies and GFP fluorescence. (B) Fat body. (C) Gut. (D)

Salivary gland; blue, DAPI (DNA). Note that the restricted

subcellular localization of GFP in certain cell types suggests the

GFP insertion at the Sir2 locus encodes a fusion of GFP with non-

GFP sequences that influence its localization. [Kelso RJ, Buszczak

M, Quinones AT, Castiblanco C, Mazzalupo S, et al. (2004)

Flytrap, a database documenting a GFP protein-trap insertion

screen in Drosophila melanogaster. Nucleic Acids Res 32: D418-

420.

Found at: doi:10.1371/journal.pgen.1001206.s001 (2.48 MB TIF)

Figure S2 Neuron-specific Sir2 depletion does not affect food

intake but decreases organismal fat levels. (A) Quantity of food

ingested (absorbance) per 20 larvae of neuronal-specific Sir2

depletion when compared to control. Values represent averages of

three independent biological replicates; error bars, standard

deviation. (B) Decrease in larval buoyancy upon brain-specific

depletion of Sir2. (C) Decrease in % TAG per body weight upon

brain-specific Sir2 depletion. Values represent averages of nine

independent biological replicates for floating values and seven

replicates for body fat; error bars, SEM. All lines are in the same

genetic background, w1118.

Found at: doi:10.1371/journal.pgen.1001206.s002 (0.18 MB TIF)

Figure S3 Selected elements of putative Drosophila fatty acid

synthesis, fatty acid oxidation, glycolysis and gluconeogenesis

pathways. Genes whose expression was examined were assigned to

particular reactions (solid arrows) according to the Kegg Pathway

Database (www.genome.jp/kegg/pathway.html). Arrows on both

ends indicate reversible reactions. Dashed arrows pointing to genes

indicate activation of that gene’s expression or enzymatic function;

bar-headed lines indicate inhibition.

Found at: doi:10.1371/journal.pgen.1001206.s003 (0.46 MB TIF)
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