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Abstract

An ultimate goal of genetic research is to understand the connection between genotype and phenotype in order to
improve the diagnosis and treatment of diseases. The quantitative genetics field has developed a suite of statistical
methods to associate genetic loci with diseases and phenotypes, including quantitative trait loci (QTL) linkage mapping and
genome-wide association studies (GWAS). However, each of these approaches have technical and biological shortcomings.
For example, the amount of heritable variation explained by GWAS is often surprisingly small and the resolution of many
QTL linkage mapping studies is poor. The predictive power and interpretation of QTL and GWAS results are consequently
limited. In this study, we propose a complementary approach to quantitative genetics by interrogating the vast amount of
high-throughput genomic data in model organisms to functionally associate genes with phenotypes and diseases. Our
algorithm combines the genome-wide functional relationship network for the laboratory mouse and a state-of-the-art
machine learning method. We demonstrate the superior accuracy of this algorithm through predicting genes associated
with each of 1157 diverse phenotype ontology terms. Comparison between our prediction results and a meta-analysis of
quantitative genetic studies reveals both overlapping candidates and distinct, accurate predictions uniquely identified by
our approach. Focusing on bone mineral density (BMD), a phenotype related to osteoporotic fracture, we experimentally
validated two of our novel predictions (not observed in any previous GWAS/QTL studies) and found significant bone density
defects for both Timp2 and Abcg8 deficient mice. Our results suggest that the integration of functional genomics data into
networks, which itself is informative of protein function and interactions, can successfully be utilized as a complementary
approach to quantitative genetics to predict disease risks. All supplementary material is available at http://cbfg.jax.org/
phenotype.
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Introduction

Understanding the genetic bases of human disease has been an

overarching goal of biology since the foundation of genetics as a

scientific discipline. Efforts in quantitative genetics have utilized

new laboratory technology to quickly genotype and phenotype

large populations in order to determine which sequence features

are most related to specific phenotypes. There are currently two

major quantitative genetics approaches used to identify these

genotype-phenotype associations [1]. First, linkage mapping

examines genetically well-characterized populations, such as the

progeny of the crosses of reference strains or individuals related

through a known pedigree, to identify quantitative trait loci (QTL)

that contain causal mutations. Second, genome-wide association

studies (GWAS) can be performed on a more arbitrary population

to identify common genetic factors associated with a phenotype.

Hundreds of GWAS and QTL studies have been performed in

humans and in model organisms, resulting in the identification of

thousands of loci associated with phenotypes and diseases.

Despite promising results, each of these approaches for

quantitative genetics have common and unique unresolved issues

that limits their utility. Both QTL and GWAS approaches can

suffer from sampling biases. Population structure and proper

selection of representative case and control groups are challenges

for many GWAS, while linkage disequilibrium and limited genetic

diversity are challenges for many QTL studies [1–4]. Further,

many linkage mapping QTL studies lack the statistical power to

narrowly define a causal loci, often resulting in regions spanning

entire chromosomes that contain hundreds of candidate genes [5].

While these QTL regions are often broad, they can typically

explain a large fraction of phenotypic variation. In contrast,

GWAS typically define narrow regions of interest, but the amount

of heritable variation explained by these loci tends to be small,

possibly due to epistatic effects, rare alleles, or sampling biases [6].

For example, a meta-analysis GWAS of bone mineral density

(BMD) based on nearly 20,000 genotyped and phenotyped

individuals can only account for less than 3% of the observed

heritability of BMD [7].
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Thus, there is a strong need for complementary approaches to

quantitative genetic techniques that are independent from the

biases inherent in linkage mapping QTLs and GWAS. Many of

the shortcomings of quantitative genetics could be attenuated by

considering the functional roles of proteins and by evaluating

existing large-scale experimental evidence. As such, we propose a

complementary, alternative approach to discovering gene-pheno-

type associations that applies machine learning techniques to

functional genomic measurements of the activities of genes and

proteins (e.g. expression, interactions, etc.) to identify candidate

genes that may be involved in a phenotypic outcome.

Recent efforts have undertaken the task of summarizing the

entirety of the experimental genomic literature into functional

networks of genes. These networks typically encode genes as

nodes, and contain experimental evidence of the relationships

between genes as edges between nodes. Computationally explor-

ing diverse functional genomics data through networks has been

intensively studied, with the purpose of elucidating the functional

roles of genes [8–11], predicting physical interactions [12,13], and

determining pathway structures [14]. Functional networks have

been produced in several organisms, including yeast [9,15], worm

[11,16], plant [17], mouse [10], and human [18]. These networks

have the advantage of being able to efficiently handle very-high

dimensional data and allow for visual analysis of results. However,

attempts to extract phenotypic information from these functional

networks are limited, with only the most naı̈ve summarization of

links being applied in model organisms [11,17,19] as well as

human [20]. In order to utilize functional networks to identify

phenotypically important genes in higher organisms, where we

face complex biology and increased data heterogeneity, more

sophisticated computational approaches must be developed.

Historically, the fields of quantitative genetics and functional

genomics have been largely isolated from each other. A major

exception to this observation is the recent development of genetical

genomics and expression QTL studies [21,22]. These approaches

use the mapping populations of traditional quantitative genetics,

but utilize gene expression measurements as the phenotype to

map, rather than direct physiological or disease phenotypes. These

studies have begun to illuminate the regulatory programs of gene

networks and have quantified the effects of genetic diversity on

gene expression. However, these efforts suffer from the same

technical problems as other QTL studies, and the interpretation of

results is currently limited and is often disconnected from more

clinically relevant phenotypes and analyses [23].

We propose that functional genomics approaches can comple-

ment the potential shortcomings of quantitative genetics results in

two ways: first, by identifying candidates that may have been

missed due to biases in sampling or low allele frequency; and

second, by prioritizing candidates in loci containing many genes

due to limited mapping resolution. Here, we adopt a state-of-the-

art machine learning algorithm (support vector machine) to

analyze the functional network of the laboratory mouse to identify

genes involved in phenotypes and diseases. We show that our

approach significantly out-performs previous naı̈ve functional

genomic methods used to predict phenotypes. Further, we

demonstrate that our results are complimentary to quantitative

genetics methods since a statistically significant number of our

predictions fall within QTLs or GWAS loci, but several of our

most confident predictions fall outside of these regions as well. We

have experimentally validated a phenotypic role for two genes

predicted to be involved in bone mineral density (BMD), a risk

factor for osteoporotic fracture, which were not identified by any

previous quantitative genetics study (Timp2 and Abcg8). Our results

concretely demonstrate that the combination of quantitative

genetics and functional genomics approaches can more compre-

hensively associate genes with phenotypes or diseases, which may

aid in identifying risk factors and potential drug targets.

Results/Discussion

In this study, we develop a new algorithm that accurately

predicts the phenotypic effects of genetic perturbations based on

functional genomic data, and we demonstrate that this approach

complements the results of quantitative genetics studies. In the

following sections, we first demonstrate that combining a genome-

wide functional relationship network with a state-of-the-art

machine learning algorithm can produce improved predictions

of genotype-phenotype relationships compared to previous naı̈ve

algorithms. Second, we observe that both existing prior knowledge

and the biological nature of phenotypes affect the accuracy of our

approach. Third, we quantitatively show that our results

compensate for some of the shortcomings of prior GWAS and

QTL studies by providing complementary predictions based on

large-scale functional genomic data. Finally, we experimentally

demonstrate the power of this alternative approach by in vivo

validation of two of our unique predictions of genes involved in

bone physiology. The predictions made by our approach for all

examined phenotypes (as well as input data files, raw data outputs,

and source code) are available online at http://cbfg.jax.org/

phenotype.

Machine learning classification based on a functional
relationship network accurately predicts gene-
phenotype associations

Integrated functional relationship networks have the advantage

of summarizing multiple complex datasets into a concise, visually

interpretable graph representation where genes are nodes and

connections between them represent the probability that two genes

work together [8–11,15,17–19]. We applied a Bayesian network

approach for supervised data integration, which assesses the

Author Summary

Many recent efforts to understand the genetic origins of
complex diseases utilize statistical approaches to analyze
phenotypic traits measured in genetically well-character-
ized populations. While these quantitative genetics meth-
ods are powerful, their success is limited by sampling
biases and other confounding factors, and the biological
interpretation of results can be challenging since these
methods are not based on any functional information for
candidate loci. On the other hand, the functional genomics
field has greatly expanded in past years, both in terms of
experimental approaches and analytical algorithms. How-
ever, functional approaches have been applied to under-
standing phenotypes in only the most basic ways. In this
study, we demonstrate that functional genomics can
complement traditional quantitative genetics by analyti-
cally extracting protein function information from large
collections of high throughput data, which can then be
used to predict genotype-phenotype associations. We
applied our prediction methodology to the laboratory
mouse, and we experimentally confirmed a role in
osteoporosis for two of our predictions that were not
candidates from any previous quantitative genetics study.
The ability of our approach to produce accurate and
unique predictions implies that functional genomics can
complement quantitative genetics and can help address
previous limitations in identifying disease genes.

Using Functional Genomics to Find Disease Genes
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conditional probability that individual data sources contain

evidence for gene relationships based on a training set of positive

examples (e.g. gene pairs known to interact) and negative examples

(e.g. gene pairs not known to interact). Given these learned

conditional probabilities for each data source and prior probabil-

ities for gene relationships, Bayesian inference is used to generate a

network defined by pair-wise posterior probabilities of functional

relationships between all genes. In order to use this network to

predict genotype-phenotype associations, we must exclude pheno-

typic data to avoid circularity. Therefore we gathered diverse

genomic data for inputs, including protein-protein physical

interactions [24–27], phylogenetic profiles [28,29], homologous

functional relationship predictions in yeast [9], and expression and

tissue localization data [30–32] to construct a functional

relationship network for the laboratory mouse (Figure 1; input

data sources and integration methods are available in Supple-

mental Text S1). We integrated these diverse data using a

Bayesian network trained using a gold standard derived from the

Mouse Genome Informatics (MGI) [33] annotations to the Gene

Ontology (GO) [34] biological process branch as described

previously [10] and in Supplemental Text S1. This procedure

resulted in a probabilistic functional relationship network for the

laboratory mouse that combines diverse knowledge and data.

Given this integrated functional relationship network, we

applied two methodologies to generate hypotheses about geno-

type-phenotype associations. Each method is supervised, and thus

requires a starting set of genes known to be associated with each

phenotype or disease of interest. Here, we used the mammalian

phenotype (MP) ontology [35] annotations to create our training

sets of gene-phenotype associations. For each phenotype exam-

ined, genes were considered positive examples if any allele is

annotated to the phenotype and all other genes were considered

negative examples.

First, our new approach treats the connection weights from the

integrated network (i.e. the inferred probabilities that genes are

functionally related) as features for support vector machine (SVM)

classification [36]. In order to reduce the size of the feature space,

only connection weights to known genes associated with a

phenotype (i.e. positive examples) are used for training. We then

apply the trained SVM to classify all genes for each phenotype

(Figure 1). For ease of interpretation, the raw SVM scores were

normalized to represent probabilities of gene-phenotype associa-

tion as described in the Methods section. The result of this

approach is used in all of our later analyses, and is denoted simply

as ‘‘SVM’’ below.

Second, in order to establish a baseline for comparison, we also

explored a naı̈ve method previously used in other model

organisms [11,17,19], as well as human [20], which assigns a

score to an unknown gene by its summed connection weights to

all known genes associated with a phenotype in the integrated

network. For this method, genes were ranked according to their

summed connection weight, which we denote as ‘‘summed

weight’’ throughout the text. (In addition to these two

approaches, we also trained SVMs directly on the input data

Figure 1. Schematic of our SVM-based functional genomics approach to phenotype prediction. As shown in the upper half, a functional
relationship network was first constructed for the laboratory mouse based on integration of diverse data types, excluding phenotype and disease
data to avoid contamination in evaluation. These data were integrated together using Gene Ontology annotations as a gold standard using an
established Bayesian pipeline [10]. The resulting network consists of genes as nodes and connections between them representing the probability of
two genes participating in the same biological process. This network was used as the basis for an SVM classifier to predict genes associated with
phenotypes. As shown in the lower half, annotations to the mammalian phenotype (MP) ontology were used to create gold standards (i.e. training
sets) for each SVM. Annotations were propagated along the ontology tree to produce positive training examples (genes associated with the
phenotype, labeled P and shown in red). All other genes were considered as unknowns (labeled U and shown in grey). SVMs were provided with
input features consisting of network connection weights to positive genes for each phenotype and each SVM was trained to classify unknown
examples in this phenotype-specific feature space.
doi:10.1371/journal.pcbi.1000991.g001

Using Functional Genomics to Find Disease Genes

PLoS Computational Biology | www.ploscompbiol.org 3 November 2010 | Volume 6 | Issue 11 | e1000991



used to create the functional relationship network. As detailed in

Supplemental Text S2, this approach induced a dramatic

increase in feature space and running time, and was always

outperformed by our method.)

Each of these approaches was applied to a set of 1157 diverse

phenotypes defined by the mammalian phenotype (MP) ontology

[35]. Predictions were computationally evaluated through boot-

strapping for each method and phenotype. Performance

summary statistics were calculated, including the area under

the precision-recall curve (AUPRC) and precision at n% recall.

To establish general performance measures, we first focused on

30 MP terms from the first level of the ontology, which represent

a wide sampling of ‘‘high-level,’’ well-characterized phenotypic

areas [37]. Cross-validation performance for these 30 high-level

terms revealed significant improvement in performance for our

new SVM-based approach compared to the summed weight

method (Figure 2). The median AUPRC for these terms using

SVM is roughly 1.8 fold greater than for the summed weight

approach (results for a sampling of three representative MP terms

are shown Figure 2B; full results for all 30 phenotypes are

available in Supplemental Figure S1). This performance

improvement is especially apparent for our most confident

predictions (i.e. at the low-recall, high-precision end), which is

most important for subsequent biological validation where only a

handful of candidates can be reasonably examined. At 1% recall

(roughly 200 predictions), our SVM approach achieved a median

of 75% precision, compared to 43% for the summed weight

method; and at 10% recall (roughly 2000 predictions) our SVM

approach outperforms summed weight by 40% to 15%. The

comparisons of precisions at multiple levels of recall confirm the

overall improved quality of our algorithm over naı̈ve methods

(Figure 2C).

SVM-based phenotype predictions are most accurate for
large phenotype terms

Prediction algorithms often show drastic differences in baseline

performance related to the number of training examples (i.e. the

number of genes annotated to each MP term) [38], which is an

important factor in fully evaluating the strength of algorithms. We

therefore assembled all phenotype terms into groups of 30–50, 50–

100, 100–200, and 200–300 annotated genes to assess the impact

of term size on results. Both the summed weight and the SVM

method achieved better performance than random, regardless of

term size (Figure 3A). However, our SVM-based method

demonstrated a more significant improvement for reasonably

large terms (with more than 100 genes annotated, or .0.5% of the

genome; shown in Figure 3B). For example, in the 200–300

annotation group, our SVM approach achieved an average

improvement of 1.78 fold over summed weight, and in the 100–

200 annotation group we observed a 1.67 fold improvement. The

superior performance of our SVM-based method implies that

more sophisticated machine learning techniques are better able to

fully extract phenotypic information from functional networks

than previous simpler approaches.

Phenotype prediction is particularly accurate for
biologically specific phenotypes

As discussed above, there is a significant effect on prediction

accuracy based on the number of known gene annotations to each

phenotype. In addition to this size effect, there appears to be a

strong correlation between prediction accuracy and the ability of a

phenotype to be accurately and reproducibly measured. For

example, among the phenotypes most accurately predicted by our

approach are ‘‘decreased IgE level’’ (MP:0002492) and ‘‘decreased

circulating free fatty acid level’’ (MP:0002702). Each of these is a

Figure 2. Significantly improved performance of our network-based SVM method for predicting well-defined phenotypes. Thirty
well defined, high level MP terms were obtained from MGI [37], which represent a wide sampling of phenotypes. A. Precision at 10% recall is shown
for these 30 MP terms using our method (SVM; y-axis) and the summed weight method (x-axis). B. Precision-recall curves for an indicative selection of
three high level phenotypes for our SVM-based method and the summed weight method. Full results for all examined phenotypes are available at
the supplementary website (http://cbfg.jax.org/phenotype) and in Supplemental Figure S1. C. Box and whisker plots comparing our SVM approach to
summed weight using several different summary statistics, including AUPRC (area under the precision recall curve), precision at 1%, 10%, 20% and
50% recall, each expressed as fold change over random precision. In all cases our approach outperforms the summed weight method.
doi:10.1371/journal.pcbi.1000991.g002

Using Functional Genomics to Find Disease Genes
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concrete phenotype that is measurable using an unbiased metric

such as ‘‘concentration’’ or ‘‘width’’. In contrast, among the most

poorly predicted phenotypes are ‘‘head bobbing’’ (MP:0001410),

‘‘disheveled coat’’ (MP:0001511), and ‘‘lethargy’’ (MP:0005202),

which are more qualitative in nature (i.e. presence/absence calls)

or which are measured based on a subjective ‘‘severity score’’.

While it is difficult to concretely assess the notion of ‘‘phenotypic

specificity,’’ we generally observe in our overall results that more

concrete phenotypes tend to perform more accurately. In order to

quantify this effect, we conducted a small, blinded survey of 19

laboratory biologists. Survey respondents ranked phenotypes on a

scale from 1 (not specific, qualitative) to 5 (highly specific,

quantitative). Based on these results, we found a small, but

significant, difference between the top and bottom 20 phenotypes

ranked by overall precision (3.6 versus 3.3; p = 0.008; full survey

results in online supplement), which confirms our observation that

more quantitative phenotypes tend to perform better. This

phenomenon is not surprising in that functional genomic evidence

is more likely to be informative for well-defined phenotypes.

However, this effect is also promising in that better defined

phenotypes are more likely to reflect specific molecular-level

changes that may be more relevant from a drug target or clinical

diagnosis perspective.

Network-based SVM predictions complement
quantitative genetics in identifying disease genes

Our prediction approach is based on an integrated functional

relationship network, rather than pure genotype and phenotype

information, and thus potentially avoids several of the caveats of

quantitative genetics methods. While we expect that our approach

and GWAS/QTL studies will share many candidates, since the

underlying assumptions of functional genomics and quantitative

genetics are very different, we also expect to obtain predictions

unique to each method. We evaluated the utility of our functional

genomic approach both by comparing our predictions to previous

quantitative genetics loci, and by experimentally validating

predictions unique to our approach.

We selected bone mineral density (BMD) as an example to

evaluate our approach since this is an extensively studied heritable

trait in both human populations and mammalian model organisms

[5]. We compared the predictions for the phenotype ‘‘abnormal

bone mineralization’’ (MP:0002896) from our functional genomic

approach against a comprehensive list of mouse linkage QTLs and

human GWAS results examining BMD [5]. Due to the limited

resolution of some mouse QTL studies, fully 83% of mouse genes

lie under the confidence interval of at least one BMD QTL

reported in the literature (Figure 4). Despite this lack of specificity,

we still observe a significant overlap between our top predictions

and these QTLs as 93 of our top 100 predictions are contained

within a QTL confidence region (hypergeometric p-value = 0.002).

Similarly, genomic regions within 5cM of a QTL peak contain

16% of mouse genes, but contain 71 of our top 100 predictions

(hypergeometric p-value = 7610232).

While this overlap is significant, a large number of our most

confident predictions (,30% of the top 100) do not fall within

5cM of a QTL peak and are thus not likely candidates from

previous studies. We consider these to be candidates likely missed

by prior quantitative genetics studies due to sampling, population

biases, epistasis, or other circumstances. In fact, two of our most

confident predictions for genes associated with BMD are not

candidates from previous quantitative genetics studies, but both

have been experimentally verified as described below.

In vivo testing validates a role for Timp2 and Abcg8 in
mammalian bone density

For experimental validation, we selected two of our genes

predicted for association with BMD that are not candidates from

any previously reported linkage QTL or GWAS regions [5]: Timp2

and Abcg8. These genes are our two most confident predictions for

involvement in BMD that are not quantitative genetics candidates

and that have existing, live knockout strains available for testing

(see Supplemental Table S3 for all top BMD predictions). In the

laboratory mouse, the Timp2 gene falls on the distal end of

chromosome (Chr) 11, outside of all previous QTLs identified on

Figure 3. Network-based SVM approach performs best for reasonably large terms. A. Phenotypes were grouped by the number of genes
annotated to each MP term (200,300, 100,200, 50,100 and 30,50, respectively). The performance of summed weight (dark blue), and our
network-based SVM approach (red) are compared against random (cyan) using box-and-whisker plots of precision at 1% recall. B. Fold improvement
of summary statistics over random for our network-based SVM approach (red) and the summed weight method (dark blue) for reasonably large terms
(.1.5% of the genome annotated, i.e. 200–300 genes).
doi:10.1371/journal.pcbi.1000991.g003

Using Functional Genomics to Find Disease Genes
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Chr 11. The Abcg8 gene lies on the distal end of Chr 17. One

previous QTL study found a BMD QTL on Chr 17 that contains

over 100 genes, including Abcg8 [39]. However, Abcg8 was not

considered as a possible candidate gene in this study because there

is no known polymorphism within 20 kb of Abcg8 in the two strains

crossed for linkage mapping (NZB/B1NJ and RF/J). None of the

20 BMD loci identified in human GWAS lie near either Timp2 or

Abcg8 (Figure 4).

We have high confidence in the accuracy of these candidates for

two reasons. First, our approach produced accurate cross-

validation results for many osteoporosis and BMD related

phenotypes such as ‘‘abnormal bone density’’ (MP:0005007) and

‘‘abnormal bone structure’’ (MP:0003795) (Figure 5A–B). Second,

in our functional network, Timp2 and Abcg8 are linked to several

genes known to be related to BMD and bone diseases in the

Online Mendelian Inheritance in Man (OMIM) database

(Figure 5C and Supplemental Tables S1 and S2). For example,

Timp2 is directly linked to Mmp2, which is a known player in

hereditary osteolysis (OMIM # 259600). It is also linked to the

metalloproteinases Mmp8 and Mmp14, the collagen Col1a1, and the

glycoprotein Sparc, all of which have been associated with bone

defects in the literature [40,41]. Among the top interactors of

Abcg8 are the collagens Col1a2 and Col1a1, which are involved in

osteoporosis (OMIM #166710). Additional interactors of Abcg8

include the bone related genes Sparc and the proteoglycan Bgn. All

of these connections are supported by multiple evidence sources,

including expression, physical interactions and phylogenetic

profiles (Supplemental Table S1).

Despite the connections apparent in our functional network, to

our knowledge no bone related phenotypes have been reported for

either Timp2 or Abcg8 knockout mouse strains. However, there is

limited evidence in the literature that these genes may play a role

in bone biology. Polymorphisms in the human Timp2 gene were

found to be weakly associated with increased risk of non-vertebral

osteoporotic fracture in a small study of post-menopausal women

[42]. Abcg8 is involved in cholesterol absorption and serum

cholesterol levels [43], which are processes that have been related

to bone homeostasis through other genes [44,45]. These two cases

show that our integrative approach is able to draw implicit

information from a variety of high throughput data to confidently

associate these two proteins with BMD defects.

We examined femoral volumetric BMD (vBMD) in male Timp2

and Abcg8 knockout mice at 16 weeks of age. Animals homozygous

for deletion were compared to heterozygous littermate controls. As

shown in Figure 6A, we observed a significant decrease of roughly

8% of vBMD in Timp22/2 male mice (p-value = 0.033) and a

significant increase of roughly 6.5% was observed in Abcg82/2

male mice (p-value = 0.044). Most individual mouse QTLs account

for a 3–6% change in vBMD [5], which places our observed

differences in the high end of this range. We also examined

phenotype results from the Deltagen and Lexicon collections of

over 200 knockout mouse strains (http://www.informatics.jax.

org/external/ko/) to assess the likelihood of identifying genes with

a significant affect on BMD. While these strains were not

randomly selected, we can use these results to gain an estimate

of how often single gene deletions affect bone density. Of 206

strains tested, only 20 exhibited a significant alteration in BMD,

indicating a roughly 10% background rate. Thus, our confirma-

tion of 2 out of 2 predictions is well above the expected result by

chance.

Furthermore, we observed morphological defects in the bones of

both strains, including an increase in periosteal circumference in

the Timp22/2 mice (p-value = 0.0105) and an increase in cortical

thickness in the Abcg82/2 mice (p-value = 0.032) as shown in

Figure 4. Two of our accurate predictions were not implicated by previous quantitative genetics studies. A chromosomal map of the
laboratory mouse genome is shown, labeled with results compiled from previous human GWAS (red triangles) and mouse QTL studies (blue lines) of
bone mineral density (BMD) [5]. Due to the limited resolution of some QTL studies, 83% of the mouse genome lies underneath the 95% confidence
interval of at least one QTL. We experimentally confirmed two of our most confident predictions for bone defects that were not implicated in any
previous QTL or GWAS effort: Timp2 and Abcg8 (green arrows). While Abcg8 falls underneath a single QTL on chromosome 17, it was not a candidate
gene for the loci as there are no polymorphisms within 20kb of Abcg8 in the strains crossed for this study [39]. Timp2 does not lie under any
previously implicated loci.
doi:10.1371/journal.pcbi.1000991.g004

Using Functional Genomics to Find Disease Genes
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Figure 6BC. Osteoporotic fracture risk increases with decreasing

bone mass, but morphologic factors such as bone shape also

contribute to fracture risk [46]. The decrease in bone density seen

in Timp22/2 and the increase density seen in Abcg82/2, along with

the noted differences in bone morphology, indicate that these

genes are likely related to osteoporotic fractures. Neither of these

genes is a candidate from any previous quantitative genetics study

of BMD, which indicates that our approach produces results that

are complementary to GWAS and QTL studies.

Conclusions
We have developed a novel SVM-based classification method to

predict genotype-phenotype associations based on a probabilistic

functional relationship network integrated from diverse data

sources. Through bootstrapping and cross validation we confirmed

its superior performance compared to previous approaches. Using

osteoporosis related phenotypes as an example, we have

computationally demonstrated and experimentally validated how

integration of functional genomics data can facilitate disease gene

identification in a complementary manner to quantitative genetics

approaches.

This study demonstrates the potential for integrative functional

relationship networks to be applied in new ways, especially when

successfully combined with sophisticated machine learning

techniques. Functional networks have been intensively studied

during recent years, resulting in multiple networks available for

several model organisms [8–11,15–19] as well as for humans

[18,20]. In addition to the original applications of these networks,

our results demonstrate that functional relationship networks can

be used to accurately predict gene-phenotype associations, and

that supervised machine learning approaches outperform the

simple fusion methods previously applied to this problem

[11,17,19,20]. By combining two computational learning meth-

odologies (Bayesian network integration of diverse data into a

probabilistic relationship network and SVM classification), we

were able to utilize the complementary advantages of each method

to produce accurate results. We anticipate that such an approach

could be a prototype for other forms of network-assisted prediction

methods in cases where gold standard positive and negative

examples are available for training.

We have also shown that our integration of functional genomics

data is able to identify potential disease genes not yet identified by

any quantitative genetics screens. The caveats of quantitative

genetics, including sampling biases, rare allele effects, epistasis, and

potentially limited explanatory power have been recognized for

years [1–4]. Our approach suggests a complementary new avenue

Figure 5. Predicting novel candidates associated with bone phenotypes. Precision-recall curves of the cross-validation results for A.
‘‘abnormal bone density’’ (MP:0005007) and B. ‘‘abnormal bone structure’’ (MP:0003795). For both phenotypes, our network-based SVM achieved a
better performance than summed weight. C. A network view of functional relationships centered around Timp2 and Abcg8. Nodes indicate genes,
and the thickness of lines indicates relationship confidence. Both Timp2 and Abcg8 are connected to several genes that demonstrate a bone
mineralization phenotype or are otherwise implicated in osteoporosis. Networks were visualized using VisANT [50].
doi:10.1371/journal.pcbi.1000991.g005
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to address some of these limitations through the analysis of existing

genomics data in model organisms, which is generally not included

in quantitative genetics studies. We expect that a combination of

complementary approaches will be required to realize the ultimate

goals of improved genetic diagnosis, treatment, and prevention

that form the basis of personalized medicine.

Methods

Constructing the functional relationship network
To avoid circularity in the phenotype prediction process, we

created a functional relationship network that excludes phenotypic

data. We pre-computed this network following the Bayesian

method described in [10] by integrating diverse sources of

genome-scale data. This results in a network with genes as nodes

and links between them representing the probability that the pair

participates in the same biological processes. The input data used

to generate this network is listed in Supplemental Text S1 and

the complete network is downloadable at http://cbfg.jax.org/

phenotype.

Gold standards for phenotype predictions
We utilized the annotations to the mammalian phenotype (MP)

ontology [35] as the gold standard gene sets. The MP ontology is

organized into a multi-level hierarchy, with broader terms

describing more general phenotypes at the top and more specific

terms describing detailed phenotypes toward the bottom. Within

this hierarchy, any annotation to a child node implies annotation

to all of its parent nodes. Therefore, for each MP term, positive

examples were taken as the genes annotated directly to this term or

to any descendent of this term. Negative examples were assumed

to be all other genes.

We obtained the phenotype annotations for mouse from MGI

[33] in Jan 2009. These included 134722 entries, containing alleles

for 11382 genes in total (,55% of the mouse proteome). If any

allele of a gene was annotated to a phenotype, we associated that

gene with the phenotype. For each term, the number of positive

examples np, corresponds to all genes known to be associated with

the phenotype or its descendents in the MP hierarchy. All other

genes were considered as negative examples; the total number of

negative examples is denoted as nn.

Phenotype prediction by summed weight
A summed weight approach has been applied in previous

studies [11,17,19,20] to predict phenotypes of uncharacterized

mutants in other model organisms. Variants of this approach have

been used for function prediction and other forms of analysis [18].

For each phenotype, a score, f, is calculated for each gene, x, as the

sum of all links between the gene and all positive examples from

the gold standard:

f (x)~
Xnp

i~1

(K(xi,x)),

where K(xi, x) represents the connection weight between the genes

xi and x in the probabilistic functional network.

Phenotype prediction using positive examples as
features in a SVM

Predicting phenotypic effects by summing connection weights

to positive examples has achieved satisfactory performance

[11,17,19,20]. Although straightforward, this approach does not fully

explore the predictive potential of functional networks that can be

achieved by applying more principled machine learning techniques.

We therefore designed a new method combining Support Vector

Machine (SVM) classifiers with a functional relationship network to

predict phenotypes associated with each mouse gene.

For each phenotype, we constructed a specific feature space

consisting of the network connection weights to all positive

examples of the phenotype. Therefore the number of features

varies across different phenotypes and is equal to np, the number of

genes positively associated with that phenotype. These features

were used as input vectors for a set of linear SVMs [36]:

Minimize :
1

2
DD~wwDD2zj

X

p:yi~1

jpz
X

n:yj~{1

jn

Figure 6. Bone phenotype assessment for Timp2 and Abcg8
deficient mice. A. Total femoral volumetric bone mineral density
(vBMD) is significantly lower in Timp2 deficient male mice (N = 5) as
compared to haploinsufficent littermate controls (N = 7, p = 0.033). In
contrast, a significant increase in vBMD was observed in Abcg8 deficient
male mice (N = 7) as compared to haploinsufficent littermate controls
(N = 9, p = 0.044). Error bars represent standard error. In addition to BMD
effects, morphological defects were observed in both strains. B. Abcg8
deficient male mice show an increase in cortical thickness compared to
controls (p = 0.032). C. Timp2 deficient male mice exhibit increased
periosteal circumference compared to controls (p = 0.0105).
doi:10.1371/journal.pcbi.1000991.g006
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Subject to : Vk : yk½~ww:~xxkzb�§1{jk

where xi is the feature vector for gene i (i.e. the connection weight

to the positive examples), yi equals to 1 or 21 depending on

whether gene i is annotated to the phenotype term or not, p is any

gene annotated to the term in study, and n is any of the other

genes.

Alternately, we could use the connection weight to all examples

as the input vectors, regardless of whether they are positive or

negative examples. However, this construction is excessively time-

consuming for SVM calculations. For example, in a Lagrangian

SVM, the running time is approximately O(nN2), where n is the

number of examples and N is the number of features. In

comparison, our approach takes only an average of 6 minutes

(approximately 100 fold reduction in time) for a 25-round

bootstrap validation to generate the prediction results for each

phenotype term. Another intuitive algorithm is to directly input all

original data into a linear SVM [38]. However, this approach is

both time consuming due to the large number of features involved

and performed less accurately than our approach (see Supple-

mentary Text S2).

Predicting phenotypes and evaluating predictive
performance by bootstrapping

In order to limit over-fitting, and because each phenotype is

only associated with a limited set of genes, we consider bootstrap

cross-validation to be an ideal method for estimating error rates

[47]. We therefore applied bootstrap aggregation to predict genes

associated with each phenotype and to estimate accuracy.

Intuitively, this method trains models on a subset of genes and

tests it on a different subset of genes repeatedly, thus minimizing

the possibility of over-fitting and the effects of potentially mis-

annotated genes. Specifically, for each iteration, genes were

sampled with replacement to form a training set, and all the

remaining genes form a test set. Classification values were only

recorded for the test set during each iteration. The final outputs

were calculated as the median of the out-of-bag values across 25

independent bootstraps, and the precision-recall curves were

derived from these median values.

Probability estimation
The outputs from the SVMs represent the distances from the

examples to the separating hyperplane [36], which are not

intuitive to understand. To make the value of these outputs more

comprehensible, we estimated the probability of being annotated

to a phenotype by fitting the output distribution of positive and

negative examples with two normal distributions. According to

Bayes’ rule,

p(yDX )~
p(X Dy)p(y)

p(X )
~

p(X Dy)p(y)

p(X Dy)p(y)zp(X Dn)p(n)

where

p(X Dy)~
1ffiffiffiffiffiffi

2p
p

sy

e
{

(x{my)2

2sy
2

and p(X Dn)~
1ffiffiffiffiffiffi

2p
p

sn

e
{

(x{mn)2

2sn
2

,

where X is the raw output value for a gene, y represents positive

examples, n represents negative examples, sy and sn are the

standard deviations of the raw outputs for positive and negative

examples, and my and mn are the mean of the raw outputs for

positive and negative examples. Based on these distributions we

estimate the probability of a gene being associated with a

phenotype as p(y|X), given its observed value X. Outputs with a

value lower than the average of negative examples are assigned as

zero. Transforming to probability does not affect the ordering of

results, and consequently has no effect on our performance

evaluation metrics. We provide the complete list of predictions in

terms of probability on our supporting website http://cbfg.jax.

org/phenotype.

Performance evaluation
To assess the performance of the phenotype predictions, we

obtained precision-recall curves and summary statistics for each

phenotype. We computed the precision at various recall rates as

previously described [48]. Precision is defined as the number of

genes correctly classified as having a certain phenotype (true

positives, TP) divided by the total number of genes classified as

having that phenotype (TP and false positives, FP):

TP

TPzFP

Recall is defined as the percentage of genes annotated to a given

phenotype that were classified as having that phenotype:

TP

TPzFN

where FN represents the number of false negative predictions.

There is a trade off between precision and recall in that the most

confident predictions are more likely to be accurate, whereas in

order to achieve high levels of recall, we must accept a lower level

of precision. As such, precision values are measured at many levels

of recall to produce a curve. In order to produce single number

summary statistics from these curves, we use the area under the

precision-recall curve (AUPRC) as well as the precision at fixed

levels of recall, including 1%, 10%, 20% and 50%.

Ethics statement and animal husbandry
All studies and procedures were approved by the Institutional

ACUC of The Jackson Laboratory. The B6.129S4-Timp2tm1Pds/J

(Stock Number 0008120) and B6.129-Abcg8tm1Elk/J (Stock

Number 008763) mice were originally purchased from the

resource colonies of The Jackson Laboratory (Bar Harbor, ME)

and colonies were maintained by pair mating heterozygous mice.

After weaning, mice were maintained in groups of 3–5 in

polycarbonate boxes (130 cm2) on bedding of sterilized white

pine shavings under conditions of 12 hours light; 12 hours

darkness. All mice used in this study had free access to water

and diet for the duration of the study.

Peripheral quantitative computed tomography
assessment of volumetric BMD

Total femoral volumetric BMD (vBMD) and femoral geometry

was assessed ex vivo by peripheral quantitative computed

tomography (pQCT). Specifically, mice were killed at 16 weeks

of age and femurs were isolated and fixed in 95% ethanol for 14

days. Femurs were measured for density using an SA Plus pQCT

densitometer (Orthometrics, Stratec SA Plus Research Unit,

White Plains, NY) as previously described [49]. Daily quality

control of the SA Plus instrument’s operation was checked with a
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manufacturer supplied phantom. The bone scans were analyzed

with threshold settings to separate bone from soft tissue and to

separate cortical from sub-cortical bone. Precision of the SA Plus

for repeated measurements of a single femur was previously found

to be 1.2–1.4%. Isolated femurs were scanned at 7 locations at

2 mm intervals, beginning 0.8 mm from the distal ends of the

epiphyseal condyles. Total vBMD values were calculated by

dividing the total mineral content by the total bone volume and

expressed as mg/mm3. Periosteal circumference and cortical

thickness measures were made at the exact midshaft of the femur.

Supporting Information

Figure S1 Well defined, high level MP terms were obtained

from MGI, which represent a wild sampling of phenotypes.

Precisions at different levels of recall were calculated for both the

summed weight method (left) and the network-based SVM method

(right), where the latter shows significant improvement.

Found at: doi:10.1371/journal.pcbi.1000991.s001 (1.35 MB TIF)

Table S1 Supporting evidence for top connectors to the

candidate genes.

Found at: doi:10.1371/journal.pcbi.1000991.s002 (0.06 MB

DOC)

Table S2 Interaction weights (posteriors) of local networks

surrounding Timp2 and Abcg8.

Found at: doi:10.1371/journal.pcbi.1000991.s003 (0.07 MB

DOC)

Table S3 Top 100 genes predicted for association with

‘abnormal bone mineralization’.

Found at: doi:10.1371/journal.pcbi.1000991.s004 (0.17 MB

DOC)

Text S1 Integration of diverse data for constructing a functional

relationship network.

Found at: doi:10.1371/journal.pcbi.1000991.s005 (0.07 MB

DOC)

Text S2 Training SVMs on raw data as a baseline for

performance evaluation.

Found at: doi:10.1371/journal.pcbi.1000991.s006 (0.06 MB

DOC)
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