Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Sep;86(17):6612–6616. doi: 10.1073/pnas.86.17.6612

Genetically engineered mutant of the cyanobacterium Synechococcus PCC 7942 defective in nitrate transport

Tatsuo Omata *, Masayuki Ohmori , Nobuyuki Arai *, Teruo Ogawa *
PMCID: PMC297894  PMID: 16594065

Abstract

Nitrate-grown cells of Synechococcus PCC 7942 (Anacystis nidulans R2) contain a 45-kDa protein as a major protein in the cytoplasmic membrane but ammonium-grown cells lack it. A mutant (M45) was constructed by inactivating the gene encoding the 45-kDa protein. M45 did not grow under low concentrations of nitrate but high concentrations of nitrate could support its growth, with the optimal concentration being 40-70 mM. The growth rate of M45 was as high as that of the wild-type cells when ammonium was the nitrogen source. The 45-kDa protein was absent in M45 irrespective of the growth conditions. The activities of nitrate and nitrite reductases were higher in M45 than in wild type. The rate of nitrate-dependent O2 evolution in wild type measured in the presence of L-methionine D,L-sulfoximine and D,L-glyceraldehyde showed saturation kinetics with respect to nitrate concentration in the external medium. The nitrate concentration required to produce half the maximal rate was 1 μM. In M45, the rate of nitrate-dependent O2 evolution was nearly zero at nitrate concentrations <1 mM and was linearly increased as the concentration increased. The presumed absence of nitrate transport in M45 demonstrated by these results suggested that the 45-kDa protein is a nitrate transporter.

Keywords: cytoplasmic membrane, 45-kDa protein, in vitro mutagenesis, nitrate reductase, ammonium-grown cell

Full text

PDF
6612

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bullerjahn G. S., Sherman L. A. Identification of a carotenoid-binding protein in the cytoplasmic membrane from the heterotrophic cyanobacterium Synechocystis sp. strain PCC6714. J Bacteriol. 1986 Jul;167(1):396–399. doi: 10.1128/jb.167.1.396-399.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  3. Golden S. S., Brusslan J., Haselkorn R. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 1987;153:215–231. doi: 10.1016/0076-6879(87)53055-5. [DOI] [PubMed] [Google Scholar]
  4. Herrero A., Flores E., Guerrero M. G. Regulation of nitrate reductase levels in the cyanobacteria Anacystis nidulans, Anabaena sp. strain 7119, and Nostoc sp. strain 6719. J Bacteriol. 1981 Jan;145(1):175–180. doi: 10.1128/jb.145.1.175-180.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  6. Lara C., Romero J. M., Guerrero M. G. Regulated nitrate transport in the cyanobacterium Anacystis nidulans. J Bacteriol. 1987 Sep;169(9):4376–4378. doi: 10.1128/jb.169.9.4376-4378.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Oka A., Sugisaki H., Takanami M. Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol. 1981 Apr 5;147(2):217–226. doi: 10.1016/0022-2836(81)90438-1. [DOI] [PubMed] [Google Scholar]
  8. Omata T., Ogawa T. Biosynthesis of a 42-kD Polypeptide in the Cytoplasmic Membrane of the Cyanobacterium Anacystis nidulans Strain R2 during Adaptation to Low CO(2) Concentration. Plant Physiol. 1986 Feb;80(2):525–530. doi: 10.1104/pp.80.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 1971 Jun;35(2):171–205. doi: 10.1128/br.35.2.171-205.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Williams J. G., Szalay A. A. Stable integration of foreign DNA into the chromosome of the cyanobacterium Synechococcus R2. Gene. 1983 Sep;24(1):37–51. doi: 10.1016/0378-1119(83)90129-4. [DOI] [PubMed] [Google Scholar]
  11. Young R. A., Davis R. W. Yeast RNA polymerase II genes: isolation with antibody probes. Science. 1983 Nov 18;222(4625):778–782. doi: 10.1126/science.6356359. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES