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Mutations in Myosin Light Chain Kinase
Cause Familial Aortic Dissections

Li Wang,1,8 Dong-chuan Guo,1,8 Jiumei Cao,1 Limin Gong,1 Kristine E. Kamm,2 Ellen Regalado,1 Li Li,1

Sanjay Shete,3 Wei-Qi He,4 Min-Sheng Zhu,4 Stephan Offermanns,5 Dawna Gilchrist,6

John Elefteriades,7 James T. Stull,2 and Dianna M. Milewicz1,*

Mutations in smooth muscle cell (SMC)-specific isoforms of a-actin and b-myosin heavy chain, two major components of the SMC

contractile unit, cause familial thoracic aortic aneurysms leading to acute aortic dissections (FTAAD). To investigate whether mutations

in the kinase that controls SMC contractile function (myosin light chain kinase [MYLK]) cause FTAAD, we sequenced MYLK by using

DNA from 193 affected probands from unrelated FTAAD families. One nonsense and four missense variants were identified in MYLK

and were not present in matched controls. Two variants, p.R1480X (c.4438C>T) and p.S1759P (c.5275T>C), segregated with aortic

dissections in two families with a maximum LOD score of 2.1, providing evidence of linkage of these rare variants to the disease

(p ¼ 0.0009). Both families demonstrated a similar phenotype characterized by presentation with an acute aortic dissection with little

to no enlargement of the aorta. The p.R1480X mutation leads to a truncated protein lacking the kinase and calmodulin binding

domains, and p.S1759P alters amino acids in the a-helix of the calmodulin binding sequence, which disrupts kinase binding to calmod-

ulin and reduces kinase activity in vitro. Furthermore, mice with SMC-specific knockdown ofMylk demonstrate altered gene expression

and pathology consistent with medial degeneration of the aorta. Thus, genetic and functional studies support the conclusion that

heterozygous loss-of-function mutations in MYLK are associated with aortic dissections.
Myosin light chain kinase (MLCK [MIM 600922]), encoded

by MYLK, is a ubiquitously expressed kinase whose only

known target of phosphorylation is the 20 kDa regulatory

light chain (RLC [MIM 160781]) of smooth and nonmuscle

myosin II. RLC phosphorylation increases actin-activated

myosin II ATPase activity and regulates many cellular

actin-myosin II cytoskeleton-mediated functions, such as

secretion, endocytosis, cytokinesis, cell spreading and

migration, cytoskeletal clustering of integrins at focal

adhesions, and stress-fiber formation.1 MLCK is highly

expressed in smooth muscle cells (SMCs), where phos-

phorylation of RLC by MLCK initiates the physiologic

contraction of smooth muscle within hollow organs, and

targeted deletion of MLCK in mouse SMCs results in mark-

edly reduced RLC phosphorylation, as well as arterial

hypotension, reduced gut motility, and urinary dysfunc-

tion.2 In arteries, the SMC myogenic response to mechan-

ical load occurs as a result of the stretch activation of cation

channels, triggering an influx of calcium that binds to

calmodulin (CaM) encoded by CALM1 (MIM 114180).3,4

The association of the calcium/CaM complex to MLCK

activates the kinase, leading to RLC phosphorylation and

SMC contractile shortening.5,6 MLCK is also expressed in

other muscle cells: skeletal and cardiac muscle express

tissue-specific isoforms of MLCK, with MYLK2 (MIM

606566) predominantly expressed in skeletal muscle cells
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and MYLK3 (MIM 612147) expressed in cardiac muscle

cells.7–9

The necessity of maintaining proper SMC contractile

function in the ascending aorta throughout a lifetime is

suggested by the identification of heterozygous mutations

in genes encoding the SMC-specific isoforms of a-actin or

b-myosin heavy chain (ACTA2 and MYH11) in approxi-

mately 15% of families with inherited adult-onset thoracic

aortic disease (MIM 611788 and MIM 132900, respec-

tively).10–12 Approximately 20% of patients with thoracic

aortic disease have a family history of the disease, and

the disease is typically inherited in an autosomal-domi-

nant manner with decreased penetrance and variable

expression. The phenotype is usually characterized by

progressive enlargement of the ascending aorta, which

predisposes those affected to acute dissections. Acute aortic

dissections are a common cause of sudden death that can

be prevented if the aorta is surgically repaired prior to

dissection.13 However, in a subset of families, little to no

enlargement of the ascending thoracic aorta is present

prior to the dissection, making clinical decisions that

weigh risk of dissection against the risks of surgery

extremely difficult for family members unless a predispos-

ing gene mutation is identified. Given the pivotal role of

MLCK, CaM, and RLC in regulating SMC contractile func-

tion, we sequenced MYLK (NM_053025.3) and CALM1
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Figure 1. Identification of MYLK as
a Causative Gene Leading to Familial
TAAD
(A) This panel shows the two families with
MYLKmutations, p.S1759P and p.R1480X,
which segregate with TAAD. The disease
status and mutation status of individuals
are indicated in the figure key. Current
age or age at death for affected individuals
and the current age for unaffected individ-
uals are indicated under the individual ID.
(B) MYLK encodes three products from
independent promoters: long form, short
form, and telokin. The alterations in black
indicate polymorphisms that are present
in controls. The alterations in blue are
absent in ethnically matched controls,
but segregation with disease could not be
tested. These changes do not affect
conserved amino acids and do not disrupt
the kinase domain. The alterations shown
in red are predicted to affect kinase
activity.
(C) Three-dimensional structures of the
MLCK kinase domain and the CaM-
binding sequence are presented in green
and yellow, respectively. The remainder of
the structure is shown in gray. The CaM-
binding sequence forms a basic a-helix
secondary structure containing Alaline-
1754 and Serine-1759, shown in red.
(NM_006888.4), along with the light chains expressed in

SMCs MYL6 (MIM 609931), MYL6B (MIM 609930), and

MYL9 (MIM 609905), using DNA of 94 affected probands

from unrelated families with two or more members with

thoracic aortic aneurysms or aortic dissections (TAAD) in

whom the causative mutation was unknown (the study

was approved by the Committee for the Protection of

Human Subjects at the University of Texas Health Science

Center at Houston and informed consent was obtained

from study participants).10 We sought to identify rare

genetic variants leading to nonsynonymous amino acid

changes or disrupting splice donor or acceptor sites in

these genes. Although five variants leading to nonsynony-

mous amino acid changes were identified in MYLK, only
702 The American Journal of Human Genetics 87, 701–707, November 12, 2010
one variant, c.5275T>C (p.S1759P),

in family TAA026, was absent in 188

ethnically matched controls. In addi-

tion, this variant segregated with

aortic disease in family TAA026

(Figures 1A and B). No variants identi-

fied in the other genes fulfilled these

criteria. MYLK was sequenced in

DNA from an additional 99 probands

with familial TAAD, and another

alteration that met the described

criteria, c.4438C>T (p.R1480X), in

family TAA400, was identified. Three

additional variants were identified in
MYLK—c.5260G>A (p.A1754T) in TAA225, c.3637G>A

(p.V1213M) in TAA445, and c.4195G>A (p.E1399K) in

TAA043—that were not present in 188 ethnically matched

controls (controls of European descent were used for

comparison, with the exception of Hispanic controls

used for TAA225), but additional affected family members

were not available for segregation analysis.

MLCK p.S1759P segregated with aortic disease in family

TAA026 with a LOD score of 0.3, and p.R1480X segregated

in TAA400 with a LOD score of 1.2.10 Because aortic dissec-

tions can cause sudden death, two TAA400 family

members who died suddenly of unknown causes were

also included, which raised the LOD score to 1.8. Because

a candidate-gene approach was used to identify these rare



Figure 2. Expression of MLCK in Aorta
and Assessment of Kinase Activity in
MYLK Mutants
(A) Long-form and short-form MLCK were
examined in human and mouse aortas.
Only a 130 kDa protein band was detected
in extracts from aortic tissues. Positions of
molecular-weight markers are indicated at
the side of the panel.
(B) COS7 cells were transfected with an
empty vector (lane 1) or with vectors ex-
pressing Flag-tagged, wild-type short-form
MLCK (lane 2), or S1759P short-form
MLCK (lane 3). After 48 hr, whole cell
lysates were collected for detection of
target proteins by immunoblotting with
anti-MLCK and anti-Flag. In contrast to
lane 1, Flag-tagged short-form MLCK
proteins were detected in lanes 2 and 3.
Additional COS-7 cells were transfected
with empty vectors (lane 4) or with vectors
expressing Flag-tagged, wild-type short-
form MLCK (lane 5) or A1754T short-
form MLCK (lane 6). The target proteins
were also detected with anti-MLCK and
anti-Flag.
(C) Binding of CaM to MLCK mutants.
COS7 cell lysates expressing empty vectors
(lane 1), wild-type short-form MLCK
(lane 2), and S1759P short-form MLCK
(lane 3) were pulled down with the use of
anti-Flag. Immunoprecipitates were an-
alyzed by immunoblotting with the use of
anti-CaM. In the presence of 10 mM
CaCl2, CaM was coimmunoprecipitated
with wild-type short-form MLCK but not
with S1759P short-form MLCK. In the
absence of CaCl2, no a-CaM signal was de-
tected. Additional COS7 cell lysates ex-
pressing empty vectors (lane 4), wild-type
short-form MLCK (lane 5), and A1754T
short-form MLCK (lane 6) were pulled
down with the use of anti-Flag and blotted
with anti-CaM. The CaM band in lane 5 is
more strongly detected than the band in
lane 6 in the presence of 10 mM CaCl2.
(D) Assessment of kinase activity of wild-
type and mutant MLCK proteins. The
rate of 32P incorporation into RLC was
measured. The maximal activities of WT
MLCK (blue circle), A1754T MLCK (green
triangle), and S1759P MLCK (red square)
were obtained at different RLC concentra-

tions. The data points represented themean5 standard error of three ormore determinations. The data were fit to theMichaelis-Menten
equation for calculation of the Vmax values.
(E) CaM activation of wild-type andmutantMLCKproteins. The relative percentage ofmaximal kinase activity ofWTMLCK (blue circle),
A1754TMLCK (green triangle), and S1759PMLCK (red square)was plottedversus variousCaMconcentrations. Thedatawerepresented as
mean5 standard error from three experiments. The data were fit to the Michaelis-Menten equation to obtain the KCaM value.
genetic variants rather than a genome-wide search, the

combined LOD score of 2.1 provided significant evidence

of linkage of the genotype to the disease (p ¼ 0.0009).

MYLK encodes three gene products expressed from sepa-

rate promoters, with two isoforms containing the catalytic

and CaM-binding domains (the 220 kDa long form and the

130 kDa short form, respectively) and a third, small, non-

catalytic protein product called telokin (Figure 1B).1 Telo-

kin is a 17 kDa protein that affects calcium sensitivity of
The American
contraction, primarily in intestinal smooth muscle. Two

identified genetic variants, p.V1213M and p.E1399K, lie

outside the kinase domain and are not predicted to disrupt

kinase activity or telokin expression. The p.R1480X muta-

tion leads to either nonsense-mediated decay of the

message or a truncated protein missing the kinase and

CaM binding domains and is therefore predicted to disrupt

kinase activity but not to disturb telokin expression. The

missense alterations p.A1754T and p.S1759P disrupt
Journal of Human Genetics 87, 701–707, November 12, 2010 703



Figure 3. Aortic Pathology from Two
Patients with the MLCK mutation
p.S1759P, TAA026:II:2 and TAA026:II:3,
and an Unaffected Control
(A) Movat staining of aortas from patients
shows medial degeneration of the aorta, as
shown by increased proteoglycan deposi-
tion (blue, arrows) and elastic-fiber frag-
mentation and loss (black). Von Wille-
brand factor (marker of endothelial cells)
immunostaining of the aorta (red) was per-
formed to demonstrate the increased
vascularity in the medial layer in
TAA026:II2 and TAA026:II3 (arrows) as
compared to the control aorta.
(B) Quantification of the number of
arteries in the aortic media from patients
with MYLK mutations and controls. The
average number of arteries per field from
the patients’ aortic media is significantly
higher than that in the control aortas.
Data are expressed as mean 5 standard
error of the mean, and p values are indi-
cated.
amino acids in the a-helix of the CaM-binding sequence

(Figure 1C). The p.S1759P alteration was particularly inter-

esting because phosphorylation of this serine in MLCK

disrupts CaM binding, thereby desensitizing MLCK to acti-

vation by calcium/CaM.14 On the basis of this informa-

tion, we predicted that these last two alterations lead to

loss of MLCK function by altering CaM binding.

To test this hypothesis, we initially confirmed that the

130 kDa short form of MLCK is the expressed isoform in

human and mouse aortic tissue, as previously described

(Figure 2A).15 To assess the effect of the missense alter-

ations on MLCK function, the 130 kDa form of wild-type

MLCK along with the p.S1759P and p.A1754T MLCK

mutants were expressed in COS7 cells with an N-terminal

Flag tag. Immunoblot analysis using anti-MLCK and anti-

Flag indicated that endogenous expression of MLCK was

minimal in transfected COS7 cells, and protein levels

increased significantly with transfection of the MLCK

constructs (Figure 2B).16 Immunoprecipitation with anti-

Flag in the presence of calcium demonstrated that the

wild-typeMLCK binds to endogenous CaM in the presence

of Ca2þ, but the binding was abolished in the p.S1759P
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mutant MLCK and decreased in the

p.A1754T mutant MLCK (Figure 2C).

For further analysis of the kinase

activity and CaM binding, the wild-

type andmutantMLCKwere purified,

and the kinase activity (Vmax) and

binding to CaM (KCaM) were deter-

mined for both. MLCK mutants

p.S1759P and p.A1754T showed

significant reduction in kinase

activity, with a 6-fold reduction for

p.S1759P (Figure 2D). MLCK mutants

p.S1759P and p.A1754T also, respec-
tively, required 7- and 4-fold increases in CaM concentra-

tion for half-maximal activation as compared to wild-

type kinase, indicating reduced binding affinity to CaM

(Figure 2E). The genetic-segregation and functional studies

support the conclusion that p.S1759P and p.R1480X are

causative alterations for FTAAD. On the other hand, addi-

tional studies are needed to confirm whether p.A1754T,

p.V1213M, or p.E1399K lead to aortic disease.

All affected members of families TAA026 and TAA400

similarly presented with acute aortic dissections at variable

ages at onset (Table S1 available online), but the most

notable feature of these events was that acute aortic dissec-

tions occurred with little to no aortic enlargement. For

example, one individual (Figure 1A; TAA026, II:2) pre-

sented at the age of 43 years with chest pain but no

evidence of dissection and minimal ascending aortic

enlargement on aortic imaging (4.0 cm, BSA 1.55 m2),

although she was found to have a focal acute aortic dissec-

tion at the time of surgical repair.17 With acute aortic

dissections as the only clinical marker of the presence of

the defective gene in an individual, it is likely that there

are many other family members with the defective gene



Figure 4. Pathology of the Ascending Aorta with Smooth-Muscle-Specific Deficiency of MLCK in Mice
Mylkf/f mice were bred to homozygosity and crossed with a transgenic mouse line expressing tamoxifen-activated Cre under the control
of the smooth-muscle myosin heavy chain promoter.2 MlckSMKO male mice 12–13 weeks old and littermate controls harboring the Cre
transgene in mixed 129/B6 backgrounds were used for this study.
(A) Paraffin-embedded ascending aortic tissues from control (n¼ 3) and SM-Mylk-KO (n¼ 4) mice were sectioned and stained for proteo-
glycans and collagen. The upper panels are from the control mice (CTRL), and the lower panels are from the tamoxifen-treated Sm-Mylk-
KO mice (KO). The specific stains and magnifications are indicted above the panels. Alcian blue staining indicates increased proteo-
glycan accumulation (blue) in the SM-Mylk-KO mice compared with controls (arrows). Masson’s trichrome staining indicates increased
collagen fibers (blue) in the adventitia (arrows) in the SM-MYLK-KO mice compared with controls.
(B) Quantitative PCR was used to determine changes in expression levels of MYLK, MMP2, lumican, decorin, and type III collagen.
Expression analysis was performed with the use of RNA extracted from ascending aortas of control (n ¼ 4) and Sm-Mylk-KO (n ¼ 4)
mice. The analysis shows decreased MYLK expression, whereas MMP2 messages increased 13-fold, lumican messages increased 2-fold,
decorin messages increased 32-fold, and the type III procollagen (COL3A1) messages increased 5-fold. Gene-expression levels are stan-
dardized to GAPDH messages. The relative expression values were determined via the DDCt method, and assays were performed in trip-
licate. Data are expressed as mean 5 standard deviation.
who are phenotypically normal. Examination of ascending

aortic tissue available from twomembers of family TAA026

indicated medial degeneration of the aorta, characterized

by increased proteoglycan deposition andmild elastic fiber

thinning and fragmentation, along with a significant

increase in the presence of small arteries in themedial layer

of the aorta (Figure 3). Interestingly, a similar increase of

arteries in the medial layer has been described in a patient

with aMYH11mutation.18 Other clinical complications re-

ported by individuals harboringMYLKmutations involved

the gastrointestinal tract and included diverticulosis,

polyps, duodenal ulcers, adenocarcinoma of the colon,

and irritable bowel syndrome.

Conventional deletion of Mylk in mice leads to embry-

onic and perinatal lethality, whereas inducible, SMC-

specific deletion leads to reduced gut motility, airway

constriction, reduced blood pressure, and urinary dysfunc-

tion.2,19,20 Although themice survive only 17–20 days after

induction as a result of the gut hypomotility, arterial hypo-

tensionoccurs. Interestingly,missensemutations inACTA2

predispose humans to thoracic aortic disease but when
The American
deleted in mice also cause hypotension without reported

aneurysm formation.10,21

To determine whether deficiency of MLCK in mice leads

to aortic medial degeneration, we harvested aortas from

mice with tamoxifen-induced and SMC-specific knockout

ofMylk.Mylkf/fmicewere bred to homozygosity and crossed

with a transgenic mouse line expressing tamoxifen-acti-

vated Cre under the control of the smooth-muscle myosin

heavy chain promoter.2,22 This promoter yields a more effi-

cient Cre-mediated recombination in vascular SMCs than

the SM22promoter used in earlier studies.MLCKexpression

in knockout aortaswas reduced to 33.5%5 12.4%of that in

controls 13 days after initiation of tamoxifen injections

(n ¼ 4 per group, p < 0.01), and immunoblot analysis

showed that MLCK content in the aortas in the tamoxifen-

treated mice was 53.4% 5 24.2% of that in controls (n ¼ 3

per group, p ¼ 0.04). Aortas were harvested for histology at

day13before anyovert signsofmorbidity in themice. Previ-

ously studied mouse models of thoracic aortic disease have

determined that increased proteoglycan deposition can

be the initial pathogenic abnormality observed in the
Journal of Human Genetics 87, 701–707, November 12, 2010 705



progression of aortic disease.23 Although aortic dilation was

not present after 13 days, increased pools of proteoglycans

were found in the aortic media in the aortas of the tamox-

ifen-treated mice compared with controls, along with

increased expression of lumican and decorin (Figure 4).

Increased collagen staining in the adventitial layer and

increased type III collagen (COL3A1 [MIM 120180]) expres-

sion were also indentified, findings similar to adventitial

changes observed with aortic aneurysm formation with

angiotensin II infusion in mice.24,25 Although elastic fibers

were not degraded in the aortic media, expression of

MMP2 (MIM 120360), an elastin-degrading metalloprotei-

nase thathasbeen showntobe increased inascending aortic

aneurysms and in mouse models of aneurysm formation,

was also increased in the aortas of the mice.26–28

In summary, a candidate-gene approach to identifying

genes for familial thoracic aortic aneurysms and aortic

dissections, followed by linkage, structural, and functional

analyses, indicates that heterozygous loss-of-function

mutations inMYLK cause dissections of the thoracic aorta.

In contrast, sequencing of other genes encoding proteins

involved in regulating SMC contraction, including MYL6,

MYL6B,MYL9, and CALM1, failed to identify any causative

mutations. Given the ubiquitous expression of MYLK and

its role in many cellular processes involving actin-myosin

molecular motors, the absence of other phenotypic mani-

festations suggests that half of normal MLCK activity does

not disrupt type II myosin motors in the majority of cells

to an extent that a phenotype is manifested. This fact may

reflect that normal cellular molecular motors can function

effectively with only half of normal MLCK activity.

Although SMCs have an abundance of total CaM, the

Ca2þ/CaM complexes available to activate MLCK are

limiting, which would exacerbate physiological effects re-

sulting from reduced amounts of MLCK.5 Alternatively,

other kinases proposed to phosphorylate RLC may

compensate for the decreased MLCK activity in other cells,

such as integrin-linked kinase or zipper-interacting protein

kinase.29 It is not yet clear whether phosphorylation of RLC

by these other Ca2þ-independent kinasesmay significantly

affect SMC contraction.2,20 The phenotype ofMYLKmuta-

tions specifically involves the ascending thoracic aorta, the

arterial segment exposed to the highest biomechanical

force from pulsatile blood flow, suggesting that haploinsuf-

ficiency ofMLCKdecreases SMCcontractile function to the

extent that the aorta cannot withstand a lifetime of biome-

chanical forces.
Supplemental Data

Supplemental Data include one table and can be found with this

article online at http://www.cell.com/AJHG/.
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