Abstract
The title sydnone derivative [systematic name: 2-bromo-1-(5-oxido-3-phenyl-1,2,3-oxadiazolium-4-yl)-3-phenylprop-2-en-1-one], C17H11BrN2O3, exists in a Z configuration with respect to the acyclic C=C bond. An intramolecular C—H⋯Br hydrogen bond generates a six-membered ring, producing an S(6) ring motif. The 1,2,3-oxadiazole ring in the sydnone unit is essentially planar [maximum deviation = 0.011 (2) Å] and forms dihedral angles of 55.39 (13) and 57.12 (12)° with the two benzene rings. In the crystal structure, intermolecular C—H⋯O hydrogen bonds link molecules into two-molecule-thick arrays parallel to the bc plane. The crystal structure also features a short intermolecular N⋯C contacts [3.030 (3) Å] as well as C—H⋯π and π–π interactions [centroid–centroid distances = 3.3798 (11) and 3.2403 (12) Å].
Related literature
For general background to and applications of sydnone derivatives, see: Baker et al. (1949 ▶); Hedge et al. (2008 ▶); Rai et al. (2008 ▶). For related structures, see: Baker & Ollis (1957 ▶); Goh et al. (2010 ▶); Grossie et al. (2009 ▶). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995 ▶). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 ▶).
Experimental
Crystal data
C17H11BrN2O3
M r = 371.19
Monoclinic,
a = 15.0512 (5) Å
b = 5.9887 (2) Å
c = 22.3940 (6) Å
β = 129.444 (2)°
V = 1558.80 (8) Å3
Z = 4
Mo Kα radiation
μ = 2.65 mm−1
T = 293 K
0.38 × 0.27 × 0.17 mm
Data collection
Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009 ▶) T min = 0.435, T max = 0.658
18185 measured reflections
4816 independent reflections
3232 reflections with I > 2σ(I)
R int = 0.030
Refinement
R[F 2 > 2σ(F 2)] = 0.041
wR(F 2) = 0.103
S = 1.02
4816 reflections
252 parameters
All H-atom parameters refined
Δρmax = 0.64 e Å−3
Δρmin = −0.83 e Å−3
Data collection: APEX2 (Bruker, 2009 ▶); cell refinement: SAINT (Bruker, 2009 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015205/tk2656sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015205/tk2656Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 is the centroid of the C12–C17 benzene ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C2—H2A⋯O3i | 0.87 (3) | 2.58 (3) | 3.126 (3) | 122 (2) |
| C3—H3A⋯O3i | 0.93 (3) | 2.53 (3) | 3.140 (4) | 124 (2) |
| C5—H5A⋯O2ii | 0.92 (3) | 2.47 (3) | 3.388 (3) | 171 (2) |
| C17—H17A⋯Br1 | 0.97 (3) | 2.66 (3) | 3.364 (3) | 130 (3) |
| C14—H14A⋯Cg1iii | 0.96 (3) | 2.86 (3) | 3.639 (3) | 139 (2) |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.
supplementary crystallographic information
Comment
Sydnones constitute a well-defined class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in 1949 has proved to be fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structure and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008). Chalcone derivatives were obtained by the base catalyzed condensation of 4-acetyl-3-aryl sydnones with aromatic aldehydes in aqueous alcoholic medium at 273–278 K. Bromination of chalcones with bromine in glacial acetic acid afforded dibromo chalcones. The dibromochalcones obtained were subjected to dehydrobromination in presence of triethylamine in dry benzene medium to get 2-bromopropenones.
The title sydnone derivative (Fig. 1) exists in a Z configuration with respect to the acyclic C10═C11 bond [C10═C11 = 1.335 (3) Å; torsion angle of C9–C10–C11–C12 = 179.9 (2)°]. An intramolecular C17—H17A···Br1 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The 1,2,3-oxadiazole ring (N1/N2/O1/C7/C8) is essentially planar, with the maximum deviation of -0.011 (2) Å at atom N2. The C1-C6 and C12-C17 benzene rings incline at dihedral angles of 55.39 (13) and 57.12 (12)°, respectively, to the 1,2,3-oxadiazole ring. As reported previously (Goh et al., 2010; Grossie et al., 2009), the exocyclic C7–O2 bond length of 1.193 (3) Å does not support the formulation of Baker & Ollis (1957), which reported the delocalization of a positive charge in the ring, and a negative charge in the exocyclic oxygen. The bond lengths are comparable to those observed in closely related sydnone structures (Goh et al., 2010; Grossie et al., 2009).
In the crystal structure, intermolecular C2—H2A···O3, C3—H3A···O3 and C5—H5A···O2 hydrogen bonds (Table 1) link molecules into two-molecule-thick arrays parallel to the bc plane (Fig. 2). An interesting feature of the crystal structure is the presence of a short N2···C7 interaction [N2···C7 = 3.030 (3) Å; symmetry code: -x+1, -y+1, -z+1] which is shorter than the sum of the van der Waals radii of the relevant atoms. The crystal structure is further stabilized by weak C14—H14A···Cg1 (Table 1) as well as aromatic Cg2···Cg2 stacking interactions [Cg2···Cg2ii = 3.3798 (11) Å and Cg2···Cg2iii = 3.2403 (12) Å; (ii) -x+1, -y+2, -z+1 and (iii) -x+1, -y+1, -z+1 where Cg1 and Cg2 are the centroids of C12-C17 benzene and 1,2,3-oxadiazole rings, respectively].
Experimental
To a stirred suspension of 2,3-dibromo-1-(3'-phenylsydnon-4'-yl)-3-phenyl-propan-1-one (0.01 mol) in benzene was added a solution of triethylamine (0.04 mol) in dry benzene (20 ml) at room temperature. The reaction mixture was stirred at room temperature for 24 h. After removing the separated triethylamine hydrobromide, the filtrate was concentrated under reduced pressure to give 2-bromo propenone which was purified by recrystallization from ethanol. Single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.
Refinement
All hydrogen atoms were located from difference Fourier map [range of C—H = 0.87 (3)–0.97 (3) Å] and allowed to refine freely.
Figures
Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
Fig. 2.
The crystal structure of the title compound, viewed along the b axis, showing two-molecule-thick arrays parallel to the bc plane. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
Crystal data
| C17H11BrN2O3 | F(000) = 744 |
| Mr = 371.19 | Dx = 1.582 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 4335 reflections |
| a = 15.0512 (5) Å | θ = 2.4–29.8° |
| b = 5.9887 (2) Å | µ = 2.65 mm−1 |
| c = 22.3940 (6) Å | T = 293 K |
| β = 129.444 (2)° | Block, yellow |
| V = 1558.80 (8) Å3 | 0.38 × 0.27 × 0.17 mm |
| Z = 4 |
Data collection
| Bruker SMART APEXII CCD area-detector diffractometer | 4816 independent reflections |
| Radiation source: fine-focus sealed tube | 3232 reflections with I > 2σ(I) |
| graphite | Rint = 0.030 |
| φ and ω scans | θmax = 30.6°, θmin = 1.8° |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −20→21 |
| Tmin = 0.435, Tmax = 0.658 | k = −8→8 |
| 18185 measured reflections | l = −32→29 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.103 | All H-atom parameters refined |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.043P)2 + 0.6594P] where P = (Fo2 + 2Fc2)/3 |
| 4816 reflections | (Δ/σ)max = 0.001 |
| 252 parameters | Δρmax = 0.64 e Å−3 |
| 0 restraints | Δρmin = −0.83 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br1 | 0.90010 (2) | 0.71291 (5) | 0.499676 (17) | 0.06462 (12) | |
| O1 | 0.50418 (13) | 0.7541 (2) | 0.52358 (8) | 0.0376 (3) | |
| O2 | 0.69784 (14) | 0.7260 (2) | 0.61954 (8) | 0.0452 (4) | |
| O3 | 0.66790 (15) | 0.8945 (4) | 0.42133 (10) | 0.0688 (5) | |
| N1 | 0.49069 (14) | 0.7454 (2) | 0.42344 (9) | 0.0320 (3) | |
| N2 | 0.42695 (15) | 0.7565 (3) | 0.44402 (10) | 0.0370 (4) | |
| C1 | 0.4535 (2) | 0.5529 (4) | 0.31430 (14) | 0.0492 (5) | |
| C2 | 0.3975 (2) | 0.5418 (5) | 0.23612 (15) | 0.0590 (7) | |
| C3 | 0.3218 (2) | 0.7063 (5) | 0.18686 (14) | 0.0584 (7) | |
| C4 | 0.3014 (2) | 0.8844 (5) | 0.21526 (14) | 0.0603 (7) | |
| C5 | 0.3563 (2) | 0.9003 (4) | 0.29352 (13) | 0.0485 (5) | |
| C6 | 0.43174 (17) | 0.7337 (3) | 0.34129 (11) | 0.0364 (4) | |
| C7 | 0.61978 (17) | 0.7329 (3) | 0.55169 (12) | 0.0345 (4) | |
| C8 | 0.60568 (16) | 0.7289 (3) | 0.48251 (11) | 0.0331 (4) | |
| C9 | 0.68943 (17) | 0.7596 (3) | 0.46933 (12) | 0.0394 (4) | |
| C10 | 0.79547 (16) | 0.6228 (4) | 0.51474 (11) | 0.0379 (4) | |
| C11 | 0.80979 (17) | 0.4513 (4) | 0.55817 (12) | 0.0387 (4) | |
| C12 | 0.90186 (17) | 0.2897 (3) | 0.60789 (12) | 0.0399 (4) | |
| C13 | 0.87661 (19) | 0.1127 (4) | 0.63547 (13) | 0.0437 (5) | |
| C14 | 0.9577 (2) | −0.0474 (4) | 0.68386 (14) | 0.0520 (6) | |
| C15 | 1.0664 (2) | −0.0325 (5) | 0.70620 (16) | 0.0600 (7) | |
| C16 | 1.0933 (2) | 0.1406 (5) | 0.68038 (19) | 0.0679 (8) | |
| C17 | 1.0137 (2) | 0.3022 (5) | 0.63199 (17) | 0.0588 (7) | |
| H1A | 0.505 (2) | 0.445 (4) | 0.3489 (14) | 0.054 (7)* | |
| H2A | 0.411 (2) | 0.426 (5) | 0.2196 (16) | 0.065 (8)* | |
| H3A | 0.286 (2) | 0.695 (4) | 0.1345 (17) | 0.059 (8)* | |
| H4A | 0.251 (2) | 0.995 (5) | 0.1826 (16) | 0.072 (9)* | |
| H5A | 0.343 (2) | 1.015 (4) | 0.3145 (14) | 0.053 (7)* | |
| H11A | 0.7463 (18) | 0.430 (4) | 0.5558 (12) | 0.039 (6)* | |
| H13A | 0.802 (2) | 0.111 (4) | 0.6204 (13) | 0.045 (6)* | |
| H14A | 0.937 (2) | −0.169 (5) | 0.7008 (16) | 0.064 (8)* | |
| H15A | 1.122 (3) | −0.135 (5) | 0.7404 (17) | 0.074 (9)* | |
| H16A | 1.167 (3) | 0.148 (6) | 0.6941 (19) | 0.086 (10)* | |
| H17A | 1.034 (2) | 0.422 (5) | 0.6138 (16) | 0.073 (9)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.05352 (16) | 0.0904 (2) | 0.0739 (2) | 0.00434 (13) | 0.05173 (15) | 0.01659 (14) |
| O1 | 0.0456 (8) | 0.0357 (7) | 0.0432 (8) | 0.0004 (6) | 0.0337 (7) | −0.0005 (6) |
| O2 | 0.0507 (9) | 0.0494 (9) | 0.0344 (7) | 0.0007 (7) | 0.0265 (7) | 0.0009 (6) |
| O3 | 0.0518 (9) | 0.0982 (14) | 0.0619 (11) | 0.0083 (10) | 0.0387 (9) | 0.0395 (10) |
| N1 | 0.0357 (8) | 0.0292 (8) | 0.0359 (8) | 0.0006 (6) | 0.0250 (7) | −0.0002 (6) |
| N2 | 0.0399 (8) | 0.0339 (8) | 0.0432 (9) | 0.0009 (6) | 0.0293 (8) | −0.0012 (7) |
| C1 | 0.0559 (13) | 0.0462 (12) | 0.0469 (12) | 0.0092 (11) | 0.0333 (11) | −0.0010 (10) |
| C2 | 0.0718 (17) | 0.0574 (15) | 0.0522 (14) | 0.0037 (13) | 0.0415 (13) | −0.0145 (12) |
| C3 | 0.0565 (14) | 0.0771 (18) | 0.0352 (12) | 0.0021 (13) | 0.0261 (11) | −0.0098 (12) |
| C4 | 0.0563 (14) | 0.0746 (18) | 0.0367 (12) | 0.0199 (13) | 0.0233 (11) | 0.0045 (12) |
| C5 | 0.0504 (12) | 0.0527 (13) | 0.0381 (11) | 0.0135 (10) | 0.0261 (10) | −0.0010 (10) |
| C6 | 0.0348 (9) | 0.0411 (10) | 0.0335 (9) | −0.0005 (8) | 0.0218 (8) | −0.0036 (8) |
| C7 | 0.0411 (10) | 0.0282 (9) | 0.0401 (10) | −0.0015 (7) | 0.0285 (9) | 0.0002 (8) |
| C8 | 0.0350 (9) | 0.0327 (9) | 0.0340 (9) | 0.0010 (7) | 0.0230 (8) | 0.0024 (7) |
| C9 | 0.0378 (10) | 0.0495 (12) | 0.0352 (10) | −0.0033 (8) | 0.0252 (9) | 0.0032 (9) |
| C10 | 0.0345 (9) | 0.0492 (11) | 0.0377 (10) | −0.0044 (8) | 0.0265 (8) | −0.0041 (9) |
| C11 | 0.0329 (9) | 0.0438 (11) | 0.0432 (11) | −0.0032 (8) | 0.0259 (9) | −0.0038 (9) |
| C12 | 0.0344 (9) | 0.0425 (11) | 0.0439 (11) | −0.0014 (8) | 0.0254 (9) | −0.0038 (9) |
| C13 | 0.0373 (10) | 0.0471 (12) | 0.0443 (11) | −0.0038 (9) | 0.0247 (9) | −0.0031 (9) |
| C14 | 0.0500 (13) | 0.0471 (13) | 0.0534 (13) | 0.0009 (10) | 0.0302 (11) | 0.0039 (11) |
| C15 | 0.0490 (13) | 0.0571 (15) | 0.0614 (15) | 0.0134 (12) | 0.0291 (12) | 0.0067 (12) |
| C16 | 0.0410 (13) | 0.0770 (19) | 0.083 (2) | 0.0117 (12) | 0.0384 (14) | 0.0138 (15) |
| C17 | 0.0417 (12) | 0.0630 (15) | 0.0771 (18) | 0.0039 (11) | 0.0402 (13) | 0.0134 (14) |
Geometric parameters (Å, °)
| Br1—C10 | 1.8867 (19) | C5—H5A | 0.92 (3) |
| O1—N2 | 1.376 (2) | C7—C8 | 1.424 (3) |
| O1—C7 | 1.431 (2) | C8—C9 | 1.477 (3) |
| O2—C7 | 1.193 (3) | C9—C10 | 1.480 (3) |
| O3—C9 | 1.213 (3) | C10—C11 | 1.335 (3) |
| N1—N2 | 1.303 (2) | C11—C12 | 1.462 (3) |
| N1—C8 | 1.359 (2) | C11—H11A | 0.93 (2) |
| N1—C6 | 1.450 (2) | C12—C13 | 1.396 (3) |
| C1—C6 | 1.377 (3) | C12—C17 | 1.405 (3) |
| C1—C2 | 1.380 (3) | C13—C14 | 1.380 (3) |
| C1—H1A | 0.93 (3) | C13—H13A | 0.94 (2) |
| C2—C3 | 1.374 (4) | C14—C15 | 1.376 (4) |
| C2—H2A | 0.87 (3) | C14—H14A | 0.96 (3) |
| C3—C4 | 1.373 (4) | C15—C16 | 1.368 (4) |
| C3—H3A | 0.93 (3) | C15—H15A | 0.93 (3) |
| C4—C5 | 1.387 (3) | C16—C17 | 1.377 (4) |
| C4—H4A | 0.92 (3) | C16—H16A | 0.95 (3) |
| C5—C6 | 1.373 (3) | C17—H17A | 0.97 (3) |
| N2—O1—C7 | 111.17 (15) | C7—C8—C9 | 131.22 (18) |
| N2—N1—C8 | 115.34 (16) | O3—C9—C8 | 118.59 (19) |
| N2—N1—C6 | 117.16 (16) | O3—C9—C10 | 122.82 (19) |
| C8—N1—C6 | 127.29 (16) | C8—C9—C10 | 118.59 (17) |
| N1—N2—O1 | 104.55 (15) | C11—C10—C9 | 122.08 (18) |
| C6—C1—C2 | 118.1 (2) | C11—C10—Br1 | 125.70 (16) |
| C6—C1—H1A | 119.2 (16) | C9—C10—Br1 | 112.17 (15) |
| C2—C1—H1A | 122.8 (16) | C10—C11—C12 | 134.49 (19) |
| C3—C2—C1 | 120.7 (2) | C10—C11—H11A | 112.3 (13) |
| C3—C2—H2A | 122.1 (19) | C12—C11—H11A | 113.2 (14) |
| C1—C2—H2A | 117.2 (19) | C13—C12—C17 | 117.8 (2) |
| C4—C3—C2 | 120.0 (2) | C13—C12—C11 | 116.55 (19) |
| C4—C3—H3A | 121.3 (17) | C17—C12—C11 | 125.6 (2) |
| C2—C3—H3A | 118.7 (17) | C14—C13—C12 | 121.4 (2) |
| C3—C4—C5 | 120.6 (2) | C14—C13—H13A | 122.0 (15) |
| C3—C4—H4A | 120.5 (18) | C12—C13—H13A | 116.5 (14) |
| C5—C4—H4A | 118.9 (18) | C15—C14—C13 | 119.7 (2) |
| C6—C5—C4 | 118.0 (2) | C15—C14—H14A | 121.0 (17) |
| C6—C5—H5A | 118.9 (15) | C13—C14—H14A | 119.4 (17) |
| C4—C5—H5A | 123.2 (15) | C16—C15—C14 | 119.9 (2) |
| C5—C6—C1 | 122.6 (2) | C16—C15—H15A | 119.6 (19) |
| C5—C6—N1 | 119.33 (18) | C14—C15—H15A | 120.4 (19) |
| C1—C6—N1 | 118.08 (18) | C15—C16—C17 | 121.5 (2) |
| O2—C7—C8 | 136.9 (2) | C15—C16—H16A | 120 (2) |
| O2—C7—O1 | 120.12 (19) | C17—C16—H16A | 118 (2) |
| C8—C7—O1 | 102.93 (16) | C16—C17—C12 | 119.7 (3) |
| N1—C8—C7 | 105.97 (17) | C16—C17—H17A | 120.5 (17) |
| N1—C8—C9 | 121.14 (17) | C12—C17—H17A | 119.8 (17) |
| C8—N1—N2—O1 | 1.9 (2) | O2—C7—C8—C9 | −14.3 (4) |
| C6—N1—N2—O1 | 176.99 (14) | O1—C7—C8—C9 | 164.64 (19) |
| C7—O1—N2—N1 | −2.04 (18) | N1—C8—C9—O3 | 34.8 (3) |
| C6—C1—C2—C3 | −0.3 (4) | C7—C8—C9—O3 | −128.2 (2) |
| C1—C2—C3—C4 | 0.1 (5) | N1—C8—C9—C10 | −144.59 (19) |
| C2—C3—C4—C5 | −0.1 (5) | C7—C8—C9—C10 | 52.3 (3) |
| C3—C4—C5—C6 | 0.3 (4) | O3—C9—C10—C11 | −169.2 (2) |
| C4—C5—C6—C1 | −0.6 (4) | C8—C9—C10—C11 | 10.2 (3) |
| C4—C5—C6—N1 | 179.9 (2) | O3—C9—C10—Br1 | 8.3 (3) |
| C2—C1—C6—C5 | 0.5 (4) | C8—C9—C10—Br1 | −172.26 (15) |
| C2—C1—C6—N1 | −180.0 (2) | C9—C10—C11—C12 | 179.9 (2) |
| N2—N1—C6—C5 | 57.7 (3) | Br1—C10—C11—C12 | 2.7 (4) |
| C8—N1—C6—C5 | −127.9 (2) | C10—C11—C12—C13 | −171.1 (2) |
| N2—N1—C6—C1 | −121.9 (2) | C10—C11—C12—C17 | 11.2 (4) |
| C8—N1—C6—C1 | 52.6 (3) | C17—C12—C13—C14 | −1.0 (4) |
| N2—O1—C7—O2 | −179.32 (17) | C11—C12—C13—C14 | −178.9 (2) |
| N2—O1—C7—C8 | 1.49 (18) | C12—C13—C14—C15 | 0.5 (4) |
| N2—N1—C8—C7 | −1.0 (2) | C13—C14—C15—C16 | 0.0 (4) |
| C6—N1—C8—C7 | −175.51 (16) | C14—C15—C16—C17 | −0.1 (5) |
| N2—N1—C8—C9 | −167.81 (17) | C15—C16—C17—C12 | −0.4 (5) |
| C6—N1—C8—C9 | 17.6 (3) | C13—C12—C17—C16 | 0.9 (4) |
| O2—C7—C8—N1 | −179.3 (2) | C11—C12—C17—C16 | 178.6 (3) |
| O1—C7—C8—N1 | −0.36 (18) |
Hydrogen-bond geometry (Å, °)
| Cg1 is the centroid of the C12–C17 benzene ring. |
| D—H···A | D—H | H···A | D···A | D—H···A |
| C2—H2A···O3i | 0.87 (3) | 2.58 (3) | 3.126 (3) | 122 (2) |
| C3—H3A···O3i | 0.93 (3) | 2.53 (3) | 3.140 (4) | 124 (2) |
| C5—H5A···O2ii | 0.92 (3) | 2.47 (3) | 3.388 (3) | 171 (2) |
| C17—H17A···Br1 | 0.97 (3) | 2.66 (3) | 3.364 (3) | 130 (3) |
| C14—H14A···Cg1iii | 0.96 (3) | 2.86 (3) | 3.639 (3) | 139 (2) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y+2, −z+1; (iii) −x+2, y−1/2, −z+3/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2656).
References
- Baker, W. & Ollis, W. D. (1957). Q. Rev. Chem. Soc.11, 15–29.
- Baker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307–314.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
- Goh, J. H., Fun, H.-K., Nithinchandra, Kalluraya, B. (2010). Acta Cryst. E66 FJ2294 [DOI] [PMC free article] [PubMed]
- Grossie, D. A., Turnbull, K., Felix-Balderrama, S. & Raghavapuram, S. (2009). Acta Cryst. E65, o554–o555. [DOI] [PMC free article] [PubMed]
- Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem., 43, 2831–2834. [DOI] [PubMed]
- Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem.43, 1715–1720. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015205/tk2656sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015205/tk2656Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


