Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 30;66(Pt 5):o1225–o1226. doi: 10.1107/S1600536810015205

2-Bromo-3-phenyl-1-(3-phenyl­sydnon-4-yl)prop-2-en-1-one

Jia Hao Goh a,, Hoong-Kun Fun a,*,§, Nithinchandra b, B Kalluraya b
PMCID: PMC2979081  PMID: 21579251

Abstract

The title sydnone derivative [systematic name: 2-bromo-1-(5-oxido-3-phenyl-1,2,3-oxadiazo­lium-4-yl)-3-phenyl­prop-2-en-1-one], C17H11BrN2O3, exists in a Z configuration with respect to the acyclic C=C bond. An intra­molecular C—H⋯Br hydrogen bond generates a six-membered ring, producing an S(6) ring motif. The 1,2,3-oxadiazole ring in the sydnone unit is essentially planar [maximum deviation = 0.011 (2) Å] and forms dihedral angles of 55.39 (13) and 57.12 (12)° with the two benzene rings. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link mol­ecules into two-mol­ecule-thick arrays parallel to the bc plane. The crystal structure also features a short inter­molecular N⋯C contacts [3.030 (3) Å] as well as C—H⋯π and π–π inter­actions [centroid–centroid distances = 3.3798 (11) and 3.2403 (12) Å].

Related literature

For general background to and applications of sydnone deriv­atives, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008). For related structures, see: Baker & Ollis (1957); Goh et al. (2010); Grossie et al. (2009). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o1225-scheme1.jpg

Experimental

Crystal data

  • C17H11BrN2O3

  • M r = 371.19

  • Monoclinic, Inline graphic

  • a = 15.0512 (5) Å

  • b = 5.9887 (2) Å

  • c = 22.3940 (6) Å

  • β = 129.444 (2)°

  • V = 1558.80 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.65 mm−1

  • T = 293 K

  • 0.38 × 0.27 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.435, T max = 0.658

  • 18185 measured reflections

  • 4816 independent reflections

  • 3232 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.103

  • S = 1.02

  • 4816 reflections

  • 252 parameters

  • All H-atom parameters refined

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.83 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015205/tk2656sup1.cif

e-66-o1225-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015205/tk2656Isup2.hkl

e-66-o1225-Isup2.hkl (235.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C12–C17 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 0.87 (3) 2.58 (3) 3.126 (3) 122 (2)
C3—H3A⋯O3i 0.93 (3) 2.53 (3) 3.140 (4) 124 (2)
C5—H5A⋯O2ii 0.92 (3) 2.47 (3) 3.388 (3) 171 (2)
C17—H17A⋯Br1 0.97 (3) 2.66 (3) 3.364 (3) 130 (3)
C14—H14ACg1iii 0.96 (3) 2.86 (3) 3.639 (3) 139 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

Sydnones constitute a well-defined class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in 1949 has proved to be fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structure and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008). Chalcone derivatives were obtained by the base catalyzed condensation of 4-acetyl-3-aryl sydnones with aromatic aldehydes in aqueous alcoholic medium at 273–278 K. Bromination of chalcones with bromine in glacial acetic acid afforded dibromo chalcones. The dibromochalcones obtained were subjected to dehydrobromination in presence of triethylamine in dry benzene medium to get 2-bromopropenones.

The title sydnone derivative (Fig. 1) exists in a Z configuration with respect to the acyclic C10═C11 bond [C10═C11 = 1.335 (3) Å; torsion angle of C9–C10–C11–C12 = 179.9 (2)°]. An intramolecular C17—H17A···Br1 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The 1,2,3-oxadiazole ring (N1/N2/O1/C7/C8) is essentially planar, with the maximum deviation of -0.011 (2) Å at atom N2. The C1-C6 and C12-C17 benzene rings incline at dihedral angles of 55.39 (13) and 57.12 (12)°, respectively, to the 1,2,3-oxadiazole ring. As reported previously (Goh et al., 2010; Grossie et al., 2009), the exocyclic C7–O2 bond length of 1.193 (3) Å does not support the formulation of Baker & Ollis (1957), which reported the delocalization of a positive charge in the ring, and a negative charge in the exocyclic oxygen. The bond lengths are comparable to those observed in closely related sydnone structures (Goh et al., 2010; Grossie et al., 2009).

In the crystal structure, intermolecular C2—H2A···O3, C3—H3A···O3 and C5—H5A···O2 hydrogen bonds (Table 1) link molecules into two-molecule-thick arrays parallel to the bc plane (Fig. 2). An interesting feature of the crystal structure is the presence of a short N2···C7 interaction [N2···C7 = 3.030 (3) Å; symmetry code: -x+1, -y+1, -z+1] which is shorter than the sum of the van der Waals radii of the relevant atoms. The crystal structure is further stabilized by weak C14—H14A···Cg1 (Table 1) as well as aromatic Cg2···Cg2 stacking interactions [Cg2···Cg2ii = 3.3798 (11) Å and Cg2···Cg2iii = 3.2403 (12) Å; (ii) -x+1, -y+2, -z+1 and (iii) -x+1, -y+1, -z+1 where Cg1 and Cg2 are the centroids of C12-C17 benzene and 1,2,3-oxadiazole rings, respectively].

Experimental

To a stirred suspension of 2,3-dibromo-1-(3'-phenylsydnon-4'-yl)-3-phenyl-propan-1-one (0.01 mol) in benzene was added a solution of triethylamine (0.04 mol) in dry benzene (20 ml) at room temperature. The reaction mixture was stirred at room temperature for 24 h. After removing the separated triethylamine hydrobromide, the filtrate was concentrated under reduced pressure to give 2-bromo propenone which was purified by recrystallization from ethanol. Single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement

All hydrogen atoms were located from difference Fourier map [range of C—H = 0.87 (3)–0.97 (3) Å] and allowed to refine freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the b axis, showing two-molecule-thick arrays parallel to the bc plane. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C17H11BrN2O3 F(000) = 744
Mr = 371.19 Dx = 1.582 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4335 reflections
a = 15.0512 (5) Å θ = 2.4–29.8°
b = 5.9887 (2) Å µ = 2.65 mm1
c = 22.3940 (6) Å T = 293 K
β = 129.444 (2)° Block, yellow
V = 1558.80 (8) Å3 0.38 × 0.27 × 0.17 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4816 independent reflections
Radiation source: fine-focus sealed tube 3232 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 30.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −20→21
Tmin = 0.435, Tmax = 0.658 k = −8→8
18185 measured reflections l = −32→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.043P)2 + 0.6594P] where P = (Fo2 + 2Fc2)/3
4816 reflections (Δ/σ)max = 0.001
252 parameters Δρmax = 0.64 e Å3
0 restraints Δρmin = −0.83 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.90010 (2) 0.71291 (5) 0.499676 (17) 0.06462 (12)
O1 0.50418 (13) 0.7541 (2) 0.52358 (8) 0.0376 (3)
O2 0.69784 (14) 0.7260 (2) 0.61954 (8) 0.0452 (4)
O3 0.66790 (15) 0.8945 (4) 0.42133 (10) 0.0688 (5)
N1 0.49069 (14) 0.7454 (2) 0.42344 (9) 0.0320 (3)
N2 0.42695 (15) 0.7565 (3) 0.44402 (10) 0.0370 (4)
C1 0.4535 (2) 0.5529 (4) 0.31430 (14) 0.0492 (5)
C2 0.3975 (2) 0.5418 (5) 0.23612 (15) 0.0590 (7)
C3 0.3218 (2) 0.7063 (5) 0.18686 (14) 0.0584 (7)
C4 0.3014 (2) 0.8844 (5) 0.21526 (14) 0.0603 (7)
C5 0.3563 (2) 0.9003 (4) 0.29352 (13) 0.0485 (5)
C6 0.43174 (17) 0.7337 (3) 0.34129 (11) 0.0364 (4)
C7 0.61978 (17) 0.7329 (3) 0.55169 (12) 0.0345 (4)
C8 0.60568 (16) 0.7289 (3) 0.48251 (11) 0.0331 (4)
C9 0.68943 (17) 0.7596 (3) 0.46933 (12) 0.0394 (4)
C10 0.79547 (16) 0.6228 (4) 0.51474 (11) 0.0379 (4)
C11 0.80979 (17) 0.4513 (4) 0.55817 (12) 0.0387 (4)
C12 0.90186 (17) 0.2897 (3) 0.60789 (12) 0.0399 (4)
C13 0.87661 (19) 0.1127 (4) 0.63547 (13) 0.0437 (5)
C14 0.9577 (2) −0.0474 (4) 0.68386 (14) 0.0520 (6)
C15 1.0664 (2) −0.0325 (5) 0.70620 (16) 0.0600 (7)
C16 1.0933 (2) 0.1406 (5) 0.68038 (19) 0.0679 (8)
C17 1.0137 (2) 0.3022 (5) 0.63199 (17) 0.0588 (7)
H1A 0.505 (2) 0.445 (4) 0.3489 (14) 0.054 (7)*
H2A 0.411 (2) 0.426 (5) 0.2196 (16) 0.065 (8)*
H3A 0.286 (2) 0.695 (4) 0.1345 (17) 0.059 (8)*
H4A 0.251 (2) 0.995 (5) 0.1826 (16) 0.072 (9)*
H5A 0.343 (2) 1.015 (4) 0.3145 (14) 0.053 (7)*
H11A 0.7463 (18) 0.430 (4) 0.5558 (12) 0.039 (6)*
H13A 0.802 (2) 0.111 (4) 0.6204 (13) 0.045 (6)*
H14A 0.937 (2) −0.169 (5) 0.7008 (16) 0.064 (8)*
H15A 1.122 (3) −0.135 (5) 0.7404 (17) 0.074 (9)*
H16A 1.167 (3) 0.148 (6) 0.6941 (19) 0.086 (10)*
H17A 1.034 (2) 0.422 (5) 0.6138 (16) 0.073 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.05352 (16) 0.0904 (2) 0.0739 (2) 0.00434 (13) 0.05173 (15) 0.01659 (14)
O1 0.0456 (8) 0.0357 (7) 0.0432 (8) 0.0004 (6) 0.0337 (7) −0.0005 (6)
O2 0.0507 (9) 0.0494 (9) 0.0344 (7) 0.0007 (7) 0.0265 (7) 0.0009 (6)
O3 0.0518 (9) 0.0982 (14) 0.0619 (11) 0.0083 (10) 0.0387 (9) 0.0395 (10)
N1 0.0357 (8) 0.0292 (8) 0.0359 (8) 0.0006 (6) 0.0250 (7) −0.0002 (6)
N2 0.0399 (8) 0.0339 (8) 0.0432 (9) 0.0009 (6) 0.0293 (8) −0.0012 (7)
C1 0.0559 (13) 0.0462 (12) 0.0469 (12) 0.0092 (11) 0.0333 (11) −0.0010 (10)
C2 0.0718 (17) 0.0574 (15) 0.0522 (14) 0.0037 (13) 0.0415 (13) −0.0145 (12)
C3 0.0565 (14) 0.0771 (18) 0.0352 (12) 0.0021 (13) 0.0261 (11) −0.0098 (12)
C4 0.0563 (14) 0.0746 (18) 0.0367 (12) 0.0199 (13) 0.0233 (11) 0.0045 (12)
C5 0.0504 (12) 0.0527 (13) 0.0381 (11) 0.0135 (10) 0.0261 (10) −0.0010 (10)
C6 0.0348 (9) 0.0411 (10) 0.0335 (9) −0.0005 (8) 0.0218 (8) −0.0036 (8)
C7 0.0411 (10) 0.0282 (9) 0.0401 (10) −0.0015 (7) 0.0285 (9) 0.0002 (8)
C8 0.0350 (9) 0.0327 (9) 0.0340 (9) 0.0010 (7) 0.0230 (8) 0.0024 (7)
C9 0.0378 (10) 0.0495 (12) 0.0352 (10) −0.0033 (8) 0.0252 (9) 0.0032 (9)
C10 0.0345 (9) 0.0492 (11) 0.0377 (10) −0.0044 (8) 0.0265 (8) −0.0041 (9)
C11 0.0329 (9) 0.0438 (11) 0.0432 (11) −0.0032 (8) 0.0259 (9) −0.0038 (9)
C12 0.0344 (9) 0.0425 (11) 0.0439 (11) −0.0014 (8) 0.0254 (9) −0.0038 (9)
C13 0.0373 (10) 0.0471 (12) 0.0443 (11) −0.0038 (9) 0.0247 (9) −0.0031 (9)
C14 0.0500 (13) 0.0471 (13) 0.0534 (13) 0.0009 (10) 0.0302 (11) 0.0039 (11)
C15 0.0490 (13) 0.0571 (15) 0.0614 (15) 0.0134 (12) 0.0291 (12) 0.0067 (12)
C16 0.0410 (13) 0.0770 (19) 0.083 (2) 0.0117 (12) 0.0384 (14) 0.0138 (15)
C17 0.0417 (12) 0.0630 (15) 0.0771 (18) 0.0039 (11) 0.0402 (13) 0.0134 (14)

Geometric parameters (Å, °)

Br1—C10 1.8867 (19) C5—H5A 0.92 (3)
O1—N2 1.376 (2) C7—C8 1.424 (3)
O1—C7 1.431 (2) C8—C9 1.477 (3)
O2—C7 1.193 (3) C9—C10 1.480 (3)
O3—C9 1.213 (3) C10—C11 1.335 (3)
N1—N2 1.303 (2) C11—C12 1.462 (3)
N1—C8 1.359 (2) C11—H11A 0.93 (2)
N1—C6 1.450 (2) C12—C13 1.396 (3)
C1—C6 1.377 (3) C12—C17 1.405 (3)
C1—C2 1.380 (3) C13—C14 1.380 (3)
C1—H1A 0.93 (3) C13—H13A 0.94 (2)
C2—C3 1.374 (4) C14—C15 1.376 (4)
C2—H2A 0.87 (3) C14—H14A 0.96 (3)
C3—C4 1.373 (4) C15—C16 1.368 (4)
C3—H3A 0.93 (3) C15—H15A 0.93 (3)
C4—C5 1.387 (3) C16—C17 1.377 (4)
C4—H4A 0.92 (3) C16—H16A 0.95 (3)
C5—C6 1.373 (3) C17—H17A 0.97 (3)
N2—O1—C7 111.17 (15) C7—C8—C9 131.22 (18)
N2—N1—C8 115.34 (16) O3—C9—C8 118.59 (19)
N2—N1—C6 117.16 (16) O3—C9—C10 122.82 (19)
C8—N1—C6 127.29 (16) C8—C9—C10 118.59 (17)
N1—N2—O1 104.55 (15) C11—C10—C9 122.08 (18)
C6—C1—C2 118.1 (2) C11—C10—Br1 125.70 (16)
C6—C1—H1A 119.2 (16) C9—C10—Br1 112.17 (15)
C2—C1—H1A 122.8 (16) C10—C11—C12 134.49 (19)
C3—C2—C1 120.7 (2) C10—C11—H11A 112.3 (13)
C3—C2—H2A 122.1 (19) C12—C11—H11A 113.2 (14)
C1—C2—H2A 117.2 (19) C13—C12—C17 117.8 (2)
C4—C3—C2 120.0 (2) C13—C12—C11 116.55 (19)
C4—C3—H3A 121.3 (17) C17—C12—C11 125.6 (2)
C2—C3—H3A 118.7 (17) C14—C13—C12 121.4 (2)
C3—C4—C5 120.6 (2) C14—C13—H13A 122.0 (15)
C3—C4—H4A 120.5 (18) C12—C13—H13A 116.5 (14)
C5—C4—H4A 118.9 (18) C15—C14—C13 119.7 (2)
C6—C5—C4 118.0 (2) C15—C14—H14A 121.0 (17)
C6—C5—H5A 118.9 (15) C13—C14—H14A 119.4 (17)
C4—C5—H5A 123.2 (15) C16—C15—C14 119.9 (2)
C5—C6—C1 122.6 (2) C16—C15—H15A 119.6 (19)
C5—C6—N1 119.33 (18) C14—C15—H15A 120.4 (19)
C1—C6—N1 118.08 (18) C15—C16—C17 121.5 (2)
O2—C7—C8 136.9 (2) C15—C16—H16A 120 (2)
O2—C7—O1 120.12 (19) C17—C16—H16A 118 (2)
C8—C7—O1 102.93 (16) C16—C17—C12 119.7 (3)
N1—C8—C7 105.97 (17) C16—C17—H17A 120.5 (17)
N1—C8—C9 121.14 (17) C12—C17—H17A 119.8 (17)
C8—N1—N2—O1 1.9 (2) O2—C7—C8—C9 −14.3 (4)
C6—N1—N2—O1 176.99 (14) O1—C7—C8—C9 164.64 (19)
C7—O1—N2—N1 −2.04 (18) N1—C8—C9—O3 34.8 (3)
C6—C1—C2—C3 −0.3 (4) C7—C8—C9—O3 −128.2 (2)
C1—C2—C3—C4 0.1 (5) N1—C8—C9—C10 −144.59 (19)
C2—C3—C4—C5 −0.1 (5) C7—C8—C9—C10 52.3 (3)
C3—C4—C5—C6 0.3 (4) O3—C9—C10—C11 −169.2 (2)
C4—C5—C6—C1 −0.6 (4) C8—C9—C10—C11 10.2 (3)
C4—C5—C6—N1 179.9 (2) O3—C9—C10—Br1 8.3 (3)
C2—C1—C6—C5 0.5 (4) C8—C9—C10—Br1 −172.26 (15)
C2—C1—C6—N1 −180.0 (2) C9—C10—C11—C12 179.9 (2)
N2—N1—C6—C5 57.7 (3) Br1—C10—C11—C12 2.7 (4)
C8—N1—C6—C5 −127.9 (2) C10—C11—C12—C13 −171.1 (2)
N2—N1—C6—C1 −121.9 (2) C10—C11—C12—C17 11.2 (4)
C8—N1—C6—C1 52.6 (3) C17—C12—C13—C14 −1.0 (4)
N2—O1—C7—O2 −179.32 (17) C11—C12—C13—C14 −178.9 (2)
N2—O1—C7—C8 1.49 (18) C12—C13—C14—C15 0.5 (4)
N2—N1—C8—C7 −1.0 (2) C13—C14—C15—C16 0.0 (4)
C6—N1—C8—C7 −175.51 (16) C14—C15—C16—C17 −0.1 (5)
N2—N1—C8—C9 −167.81 (17) C15—C16—C17—C12 −0.4 (5)
C6—N1—C8—C9 17.6 (3) C13—C12—C17—C16 0.9 (4)
O2—C7—C8—N1 −179.3 (2) C11—C12—C17—C16 178.6 (3)
O1—C7—C8—N1 −0.36 (18)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 benzene ring.
D—H···A D—H H···A D···A D—H···A
C2—H2A···O3i 0.87 (3) 2.58 (3) 3.126 (3) 122 (2)
C3—H3A···O3i 0.93 (3) 2.53 (3) 3.140 (4) 124 (2)
C5—H5A···O2ii 0.92 (3) 2.47 (3) 3.388 (3) 171 (2)
C17—H17A···Br1 0.97 (3) 2.66 (3) 3.364 (3) 130 (3)
C14—H14A···Cg1iii 0.96 (3) 2.86 (3) 3.639 (3) 139 (2)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y+2, −z+1; (iii) −x+2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2656).

References

  1. Baker, W. & Ollis, W. D. (1957). Q. Rev. Chem. Soc.11, 15–29.
  2. Baker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307–314.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  6. Goh, J. H., Fun, H.-K., Nithinchandra, Kalluraya, B. (2010). Acta Cryst. E66 FJ2294 [DOI] [PMC free article] [PubMed]
  7. Grossie, D. A., Turnbull, K., Felix-Balderrama, S. & Raghavapuram, S. (2009). Acta Cryst. E65, o554–o555. [DOI] [PMC free article] [PubMed]
  8. Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem., 43, 2831–2834. [DOI] [PubMed]
  9. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem.43, 1715–1720. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015205/tk2656sup1.cif

e-66-o1225-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015205/tk2656Isup2.hkl

e-66-o1225-Isup2.hkl (235.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES