Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 24;66(Pt 5):o1168. doi: 10.1107/S1600536810014571

N-(2,6-Dimethyl­phen­yl)-4-methyl­benzene­sulfonamide

P G Nirmala a, B Thimme Gowda a,*, Sabine Foro b, Hartmut Fuess b
PMCID: PMC2979196  PMID: 21579210

Abstract

In the title compound, C15H17NO2S, the mol­ecule is bent at the S atom, the C—SO2—NH—C torsion angle being 88.0 (2)°. The dihedral angle between the two aromatic rings is 49.8 (1)°. In the crystal, mol­ecules are linked into zigzag chains parallel to the a axis via N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Shetty & Gowda (2005). For our study of the effect of substituents on the structures of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2008, 2009, 2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).graphic file with name e-66-o1168-scheme1.jpg

Experimental

Crystal data

  • C15H17NO2S

  • M r = 275.36

  • Monoclinic, Inline graphic

  • a = 5.1412 (5) Å

  • b = 17.310 (2) Å

  • c = 16.429 (2) Å

  • β = 96.65 (1)°

  • V = 1452.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 299 K

  • 0.46 × 0.32 × 0.14 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD Detector.

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.906, T max = 0.970

  • 7741 measured reflections

  • 2580 independent reflections

  • 2090 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.116

  • S = 1.04

  • 2580 reflections

  • 178 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014571/vm2025sup1.cif

e-66-o1168-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014571/vm2025Isup2.hkl

e-66-o1168-Isup2.hkl (126.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (1) 2.20 (1) 3.040 (2) 169 (2)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

In the present work, as part of a study of the effect of substituents on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008, 2009, 2010), the structure of N-(2,6-dimethylphenyl)-4-methylbenzenesulfonamide (I) has been determined. The molecule is bent at the S atom (Fig. 1) with the C1—SO2—NH—C7 torsion angle of 88.0 (2)°, compared to the values of -51.6 (3)° in N-(phenyl)4-methylbenzenesulfonamide (II) (Gowda et al., 2009), -78.7 (2)° in N-(2,6-dimethylphenyl)- benzenesulfonamide (III) (Gowda et al., 2008) and -61.0 (2)° in N-(2,5-dimethylphenyl)-4-methylbenzenesulfonamide (IV), -61.8 (2)° in N-(3,4-dimethylphenyl)-4-methylbenzenesulfonamide (V) and 56.8 (2)° in N-(3,5-dimethylphenyl)-4-methylbenzenesulfonamide (VI)(Gowda et al., 2010).

The two benzene rings in (I) are tilted relative to each other by 49.8 (1)°, compared to the values of 68.4 (1)° in (II), 44.9 (1)° in (III), 49.4 (1)° in (IV), 47.8 (1)° in (V) and 53.9 (1)° in (VI). The other bond parameters are similar to those observed in (II), (III), (IV), (V), (VI) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, the intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into infinite zig-zag chains running parallel to the a-axis. Part of the crystal structure is shown in Fig. 2.

Experimental

4-Methylbenzenesulfonylchloride was obtained by treating the solution of toluene (10 ml) in chloroform (40 ml) with chlorosulfonic acid (25 ml) by the procedure reported earlier (Gowda et al., 2010). 4-Methylbenzenesulfonylchloride was then treated with 2,6-dimethylaniline in the stoichiometric ratio to obtain N-(2,6-dimethylphenyl)- 4-methylbenzenesulfonamide. The latter was recrystallized to constant melting point (110 °C) from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005).

The prism like single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (1) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C15H17NO2S F(000) = 584
Mr = 275.36 Dx = 1.259 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2102 reflections
a = 5.1412 (5) Å θ = 2.5–27.7°
b = 17.310 (2) Å µ = 0.22 mm1
c = 16.429 (2) Å T = 299 K
β = 96.65 (1)° Prism, colourless
V = 1452.2 (3) Å3 0.46 × 0.32 × 0.14 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD Detector. 2580 independent reflections
Radiation source: fine-focus sealed tube 2090 reflections with I > 2σ(I)
graphite Rint = 0.052
Rotation method data acquisition using ω and phi scans. θmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −6→6
Tmin = 0.906, Tmax = 0.970 k = −20→20
7741 measured reflections l = −18→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.6128P] where P = (Fo2 + 2Fc2)/3
2580 reflections (Δ/σ)max = 0.011
178 parameters Δρmax = 0.25 e Å3
1 restraint Δρmin = −0.35 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0076 (4) 0.79081 (11) 0.32294 (13) 0.0373 (5)
C2 0.1791 (5) 0.79695 (14) 0.39383 (14) 0.0499 (6)
H2 0.3173 0.8319 0.3971 0.060*
C3 0.1426 (5) 0.75041 (15) 0.45988 (15) 0.0571 (6)
H3 0.2573 0.7546 0.5078 0.069*
C4 −0.0596 (5) 0.69793 (14) 0.45655 (15) 0.0537 (6)
C5 −0.2303 (5) 0.69408 (15) 0.38508 (17) 0.0580 (7)
H5 −0.3706 0.6599 0.3821 0.070*
C6 −0.1976 (4) 0.73955 (13) 0.31845 (15) 0.0487 (5)
H6 −0.3133 0.7357 0.2707 0.058*
C7 −0.0218 (4) 0.99486 (12) 0.27900 (14) 0.0416 (5)
C8 −0.1053 (4) 1.01478 (14) 0.35381 (15) 0.0499 (6)
C9 −0.0115 (6) 1.08314 (17) 0.39028 (19) 0.0747 (8)
H9 −0.0666 1.0982 0.4398 0.090*
C10 0.1617 (7) 1.12894 (18) 0.3544 (3) 0.0913 (11)
H10 0.2274 1.1736 0.3807 0.110*
C11 0.2372 (6) 1.10901 (16) 0.2804 (3) 0.0823 (10)
H11 0.3537 1.1407 0.2567 0.099*
C12 0.1440 (5) 1.04222 (13) 0.23938 (18) 0.0575 (7)
C13 −0.0937 (7) 0.6450 (2) 0.5270 (2) 0.0861 (10)
H13A −0.0207 0.6687 0.5773 0.103*
H13B −0.0054 0.5970 0.5198 0.103*
H13C −0.2768 0.6353 0.5289 0.103*
C14 −0.2972 (5) 0.96625 (16) 0.39423 (16) 0.0607 (7)
H14A −0.2435 0.9131 0.3945 0.073*
H14B −0.4683 0.9712 0.3644 0.073*
H14C −0.3021 0.9836 0.4495 0.073*
C15 0.2180 (6) 1.02526 (17) 0.1559 (2) 0.0785 (9)
H15A 0.0714 1.0027 0.1228 0.094*
H15B 0.3626 0.9898 0.1603 0.094*
H15C 0.2675 1.0724 0.1309 0.094*
N1 −0.1189 (3) 0.92553 (10) 0.23762 (11) 0.0406 (4)
H1N −0.281 (2) 0.9160 (14) 0.2363 (14) 0.049*
O1 0.3230 (3) 0.86960 (9) 0.24338 (10) 0.0492 (4)
O2 −0.0551 (3) 0.80389 (9) 0.16625 (10) 0.0554 (4)
S1 0.05387 (10) 0.84674 (3) 0.23607 (3) 0.03851 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0356 (11) 0.0335 (10) 0.0442 (11) 0.0020 (9) 0.0100 (8) −0.0017 (9)
C2 0.0488 (13) 0.0495 (13) 0.0513 (13) −0.0121 (11) 0.0052 (10) 0.0000 (11)
C3 0.0612 (15) 0.0641 (15) 0.0454 (13) −0.0033 (13) 0.0033 (11) 0.0023 (12)
C4 0.0602 (15) 0.0513 (14) 0.0529 (14) 0.0018 (12) 0.0212 (11) 0.0051 (11)
C5 0.0527 (14) 0.0510 (14) 0.0727 (17) −0.0149 (12) 0.0175 (12) 0.0064 (13)
C6 0.0434 (12) 0.0475 (12) 0.0550 (14) −0.0075 (11) 0.0049 (10) 0.0010 (11)
C7 0.0352 (11) 0.0332 (10) 0.0554 (13) 0.0062 (9) 0.0011 (9) 0.0055 (9)
C8 0.0462 (13) 0.0463 (13) 0.0551 (14) 0.0088 (11) −0.0037 (10) −0.0043 (11)
C9 0.081 (2) 0.0580 (16) 0.080 (2) 0.0120 (16) −0.0092 (16) −0.0198 (15)
C10 0.090 (2) 0.0443 (16) 0.132 (3) −0.0081 (16) −0.018 (2) −0.0160 (19)
C11 0.0689 (19) 0.0416 (15) 0.136 (3) −0.0097 (14) 0.0094 (19) 0.0171 (18)
C12 0.0478 (14) 0.0377 (12) 0.0872 (19) 0.0043 (11) 0.0088 (12) 0.0190 (12)
C13 0.103 (2) 0.090 (2) 0.0696 (19) −0.0100 (19) 0.0280 (17) 0.0248 (17)
C14 0.0623 (16) 0.0715 (17) 0.0504 (14) 0.0100 (13) 0.0157 (11) −0.0022 (13)
C15 0.082 (2) 0.0637 (17) 0.098 (2) 0.0144 (15) 0.0422 (17) 0.0360 (17)
N1 0.0308 (8) 0.0399 (9) 0.0509 (10) −0.0004 (8) 0.0039 (8) 0.0021 (8)
O1 0.0343 (8) 0.0494 (9) 0.0662 (10) 0.0025 (7) 0.0162 (7) 0.0091 (8)
O2 0.0681 (11) 0.0544 (10) 0.0442 (9) −0.0033 (8) 0.0087 (7) −0.0100 (8)
S1 0.0364 (3) 0.0375 (3) 0.0431 (3) 0.0002 (2) 0.0108 (2) −0.0002 (2)

Geometric parameters (Å, °)

C1—C6 1.374 (3) C10—C11 1.362 (5)
C1—C2 1.381 (3) C10—H10 0.9300
C1—S1 1.763 (2) C11—C12 1.395 (4)
C2—C3 1.382 (3) C11—H11 0.9300
C2—H2 0.9300 C12—C15 1.495 (4)
C3—C4 1.377 (3) C13—H13A 0.9600
C3—H3 0.9300 C13—H13B 0.9600
C4—C5 1.384 (4) C13—H13C 0.9600
C4—C13 1.503 (4) C14—H14A 0.9600
C5—C6 1.374 (3) C14—H14B 0.9600
C5—H5 0.9300 C14—H14C 0.9600
C6—H6 0.9300 C15—H15A 0.9600
C7—C8 1.391 (3) C15—H15B 0.9600
C7—C12 1.397 (3) C15—H15C 0.9600
C7—N1 1.440 (3) N1—S1 1.6294 (18)
C8—C9 1.387 (4) N1—H1N 0.848 (10)
C8—C14 1.507 (3) O1—S1 1.4308 (15)
C9—C10 1.375 (5) O2—S1 1.4251 (16)
C9—H9 0.9300
C6—C1—C2 120.4 (2) C12—C11—H11 119.2
C6—C1—S1 119.08 (17) C11—C12—C7 117.1 (3)
C2—C1—S1 120.50 (16) C11—C12—C15 119.8 (3)
C1—C2—C3 119.1 (2) C7—C12—C15 123.1 (2)
C1—C2—H2 120.5 C4—C13—H13A 109.5
C3—C2—H2 120.5 C4—C13—H13B 109.5
C4—C3—C2 121.6 (2) H13A—C13—H13B 109.5
C4—C3—H3 119.2 C4—C13—H13C 109.5
C2—C3—H3 119.2 H13A—C13—H13C 109.5
C3—C4—C5 117.9 (2) H13B—C13—H13C 109.5
C3—C4—C13 121.8 (3) C8—C14—H14A 109.5
C5—C4—C13 120.3 (2) C8—C14—H14B 109.5
C6—C5—C4 121.6 (2) H14A—C14—H14B 109.5
C6—C5—H5 119.2 C8—C14—H14C 109.5
C4—C5—H5 119.2 H14A—C14—H14C 109.5
C1—C6—C5 119.4 (2) H14B—C14—H14C 109.5
C1—C6—H6 120.3 C12—C15—H15A 109.5
C5—C6—H6 120.3 C12—C15—H15B 109.5
C8—C7—C12 122.2 (2) H15A—C15—H15B 109.5
C8—C7—N1 119.88 (19) C12—C15—H15C 109.5
C12—C7—N1 117.8 (2) H15A—C15—H15C 109.5
C9—C8—C7 117.8 (3) H15B—C15—H15C 109.5
C9—C8—C14 119.8 (2) C7—N1—S1 123.04 (13)
C7—C8—C14 122.4 (2) C7—N1—H1N 117.4 (16)
C10—C9—C8 121.1 (3) S1—N1—H1N 111.9 (17)
C10—C9—H9 119.5 O2—S1—O1 119.85 (10)
C8—C9—H9 119.5 O2—S1—N1 106.49 (10)
C11—C10—C9 120.1 (3) O1—S1—N1 106.91 (9)
C11—C10—H10 119.9 O2—S1—C1 106.76 (10)
C9—C10—H10 119.9 O1—S1—C1 107.68 (10)
C10—C11—C12 121.6 (3) N1—S1—C1 108.79 (9)
C10—C11—H11 119.2
C6—C1—C2—C3 0.5 (3) C10—C11—C12—C7 −2.6 (4)
S1—C1—C2—C3 −177.81 (18) C10—C11—C12—C15 176.0 (3)
C1—C2—C3—C4 0.3 (4) C8—C7—C12—C11 3.8 (3)
C2—C3—C4—C5 −1.3 (4) N1—C7—C12—C11 −179.8 (2)
C2—C3—C4—C13 177.5 (3) C8—C7—C12—C15 −174.7 (2)
C3—C4—C5—C6 1.5 (4) N1—C7—C12—C15 1.7 (3)
C13—C4—C5—C6 −177.3 (3) C8—C7—N1—S1 −103.9 (2)
C2—C1—C6—C5 −0.3 (3) C12—C7—N1—S1 79.6 (2)
S1—C1—C6—C5 178.06 (18) C7—N1—S1—O2 −157.30 (17)
C4—C5—C6—C1 −0.8 (4) C7—N1—S1—O1 −28.06 (19)
C12—C7—C8—C9 −2.0 (3) C7—N1—S1—C1 87.97 (18)
N1—C7—C8—C9 −178.4 (2) C6—C1—S1—O2 −26.8 (2)
C12—C7—C8—C14 176.2 (2) C2—C1—S1—O2 151.58 (18)
N1—C7—C8—C14 −0.2 (3) C6—C1—S1—O1 −156.66 (17)
C7—C8—C9—C10 −1.1 (4) C2—C1—S1—O1 21.7 (2)
C14—C8—C9—C10 −179.3 (3) C6—C1—S1—N1 87.81 (19)
C8—C9—C10—C11 2.3 (5) C2—C1—S1—N1 −93.86 (19)
C9—C10—C11—C12 −0.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.85 (1) 2.20 (1) 3.040 (2) 169 (2)

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2025).

References

  1. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  2. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1691. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o144. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  6. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014571/vm2025sup1.cif

e-66-o1168-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014571/vm2025Isup2.hkl

e-66-o1168-Isup2.hkl (126.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES