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Abstract
Stochastic accumulator models account for response time in perceptual decision-making tasks by
assuming that perceptual evidence accumulates to a threshold. The present investigation mapped the
firing rate of frontal eye field (FEF) visual neurons onto perceptual evidence and the firing rate of
FEF movement neurons onto evidence accumulation to test alternative models of how evidence is
combined in the accumulation process. The models were evaluated on their ability to predict both
response time distributions and movement neuron activity observed in monkeys performing a visual
search task. Models that assume gating of perceptual evidence to the accumulating units provide the
best account of both behavioral and neural data. These results identify discrete stages of processing
with anatomically distinct neural populations and rule out several alternative architectures. The
results also illustrate the use of neurophysiological data as a model selection tool and establish a
novel framework to bridge computational and neural levels of explanation.
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Mathematical psychology has converged on a general framework to explain the time course
of perceptual decisions. Models that assume perceptual information accumulates to a response
threshold provide excellent accounts of decision-making behavior (Bogacz, Brown, Moehlis,
Holmes, & Cohen, 2006; Nosofsky & Palmeri, 1997; Palmeri, 1997; Ratcliff & Rouder,
1998; Ratcliff & Smith, 2004; Smith & Van Zandt, 2000; Usher & McClelland, 2001). These
accumulator models entail at least two distinct processes: (a) A stimulus must be encoded with
respect to the current task to represent perceptual evidence, and (b) some mechanism must
accumulate that evidence to reach a decision. Models that assume very different decision-
making architectures can account for many of the same behavioral phenomena (S. Brown &
Heathcote, 2005;S. D. Brown & Heathcote, 2008; Ratcliff & Smith, 2004). Recently, the
observation that the pattern of activity of certain neurons resembles an accumulation to
threshold (Hanes & Schall, 1996) sparked a synthesis of mathematical psychology and
neurophysiology (Beck et al., 2008; Boucher, Palmeri, Logan, & Schall, 2007; Bundesen,
Habekost, & Kyllingsbaek, 2005; Carpenter, Reddi, & Anderson, 2009; Ditterich, 2006b;
Mazurek, Roitman, Ditterich, & Shadlen, 2003; Niwa & Ditterich, 2008; Ratcliff, Cherian, &
Segraves, 2003; Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves, 2007; Schall, 2004; Wang,
2002; Wong, Huk, Shadlen, & Wang, 2007; Wong & Wang, 2006). This synthesis is powerful
because neurophysiology can constrain key assumptions about the representation of perceptual
evidence, the mechanisms that accumulate evidence to threshold, and how the two interact.
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In this article, we describe a modeling approach that assumes a visual-to-motor cascade in
which perceptual evidence drives an accumulator that initiates a behavioral response. We make
the crucial assumption that the evidence representation and the accumulation of evidence can
be identified with the spike discharge rates of distinct populations of neurons. These neural
representations can be used to distinguish among alternative models of perceptual decision
making. We distinguished models by the quality of their fits to distributions of response times
(RTs) and their predictions of neuronal dynamics that accumulate to a threshold to produce a
response. A model in which the flow of information to a leaky integrator is gated between
perceptual processing and evidence accumulation provides the best account of both behavioral
and neural data, while feed-forward inhibition and lateral inhibition are less important
parameters.

Accumulator Models of Decision Processes
Evidence accumulation must be preceded by the perceptual encoding of stimuli according to
the current task and potential responses to produce the evidence that accumulates. Perceptual
encoding takes time, and this delays the start of the accumulation (see Figure 1). Perceptual
processing time has traditionally been estimated as a free parameter (e.g., Ratcliff & Smith,
2004). The product of perceptual processing is known as drift rate and is often estimated as a
free parameter that is allowed to vary between stimulus conditions and to vary between and
within trials (Ratcliff & Rouder, 1998; but see Ashby, 2000;Logan & Gordon, 2001;Nosofsky
& Palmeri, 1997;Palmeri, 1997;Palmeri & Tarr, 2008). Many models assume that drift rate is
constant over the course of a trial (Ashby, 2000;Nosofsky & Palmeri, 1997;Ratcliff & Rouder,
1998), but other models assume that it varies within a trial (Ditterich, 2006a,2006b;Heath,
1992;Lamberts, 2000;Smith, 1995,2000;Smith & Ratcliff, 2009;Smith & Van Zandt, 2000).
Systematic variability in RT across stimulus conditions is generally attributed to systematic
variability in drift rate. Many models also allow the starting point (baseline) of the accumulation
and the threshold to vary across stimulus conditions (S. Brown & Heathcote, 2005;Ratcliff &
Rouder, 1998) and propose different sources of intertrial and intratrial variability (e.g., Ratcliff
& Smith, 2004).

Alternative models propose different mechanisms for how evidence is combined and
accumulated to a threshold (reviewed by Bogacz et al., 2006; Smith & Ratcliff, 2004).
Independent race models and their discrete analogue independent counter models assume that
evidence for each response accumulates independently; the first accumulator to reach threshold
determines which response is made (Smith & Van Zandt, 2000; Vickers, 1970). Drift diffusion
models (Ratcliff, 1978; Ratcliff & Rouder, 1998) and their discrete analogue random walk
models (Laming, 1968; Link & Heath, 1975; Nosofsky & Palmeri, 1997; Palmeri, 1997)
assume that perceptual evidence in favor of one response simultaneously counts as evidence
against competing responses. Competing accumulator models (Usher & McClelland, 2001)
assume that accumulators’ support for alternative responses is mutually inhibitory; as evidence
in favor of one response grows, it inhibits alternative responses more strongly in a winner-take-
all fashion (Grossberg, 1976b). These alternative models can vary in other respects, such as
whether integration of evidence is perfect or leaky.

Different accumulator models make many different assumptions about the representation of
perceptual evidence and the mechanisms that use it. We asked whether the assumptions that
are necessary to account for behavioral data are consistent with neurophysiological data by
systematically evaluating major model assumptions within a modeling framework in which
both model inputs and outputs are neurally constrained. Our approach is valid if and only if
the data are from neurons that instantiate the perceptual processing and evidence accumulation
in question, that is, if the linking propositions (Schall, 2004; Teller, 1984) that map model
components to brain structures are valid. In the next section, we review support for the
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hypothesis that certain neurons in particular brain structures implement the perceptual
processing and evidence accumulation proposed by these models.

Neural Basis of Perceptual Decisions
The past 10 years have witnessed a new focus of research on the neurophysiological basis of
decisions about where and when to move the eyes (Glimcher, 2003; Gold & Shadlen, 2007;
Schall, 2003; Smith & Ratcliff, 2004). Three major structures have been studied most
extensively: the frontal eye field (FEF), the superior colliculus (SC), and the lateral intraparietal
area (LIP). These structures are densely interconnected and comprise a diversity of neuron
types. We focus on two major subpopulations of neurons, those with tonic responses to visual
stimuli and no saccade-related modulation, termed visual neurons, and those with a very weak
modulation after stimulus presentation but pronounced growth of discharge rate preceding
saccade production, termed movement neurons (also referred to as buildup neurons). Tonic
visual neurons are found in FEF, SC, and LIP, while movement neurons are found in FEF and
SC, but much less frequently in LIP.

FEF and SC receive converging projections from numerous visual cortical areas (see Figure
2; Schall, Morel, King, & Bullier, 1995;Sparks, 1986). FEF and SC movement neurons issue
commands to brainstem nuclei to execute saccadic eye movements (Scudder, Kaneko, & Fuchs,
2002;Sparks, 2002). FEF and SC are also connected with brain regions implicated in cognitive
control, including medial frontal and dorsolateral prefrontal cortex (Schall & Boucher,
2007;Schall, Morel, et al., 1995;Stanton, Bruce, & Goldberg, 1995) and the basal ganglia
(Goldman-Rakic & Porrino, 1985;Hikosaka & Wurtz, 1983). Thus, these areas lie at the
junction between perceptual and motor processing and are anatomically situated to influence
the decision to move the eyes (Munoz & Schall, 2003).

In monkeys performing visual search, tonic visual neurons modulate their activity to select the
target (see Figure 3B); this has been observed in FEF (Schall & Hanes, 1993), SC (Basso &
Wurtz, 1997; McPeek & Keller, 2002), and LIP (Ipata, Gee, Goldberg, & Bisley, 2006; Thomas
& Paré, 2007). The selection process is independent of movement production (Juan, Shorter-
Jacobi, & Schall, 2004; Murthy, Ray, Shorter, Schall, & Thompson, 2009; Murthy, Thompson,
& Schall, 2001; Sato & Schall, 2003; Schall, Hanes, Thompson, & King, 1995; Thompson,
2005; Thompson, Bichot, & Schall, 1997; Thompson, Hanes, Bichot, & Schall, 1996). Tonic
visual neurons in FEF, SC, and LIP are hypothesized to represent the behavioral relevance of
an object in their receptive field (Findlay & Gilchrist, 1998; Goldberg, Bisley, Powell, &
Gottlieb, 2006; Thompson & Bichot, 2005). The findings supporting this hypothesis include
the observation that the time course and magnitude of selection (the difference in activity when
a target vs. a distractor is in a visual neuron’s receptive field) depend on target–distractor
similarity (Bichot & Schall, 1999; Sato, Murthy, Thompson, & Schall, 2001; Sato, Watanabe,
Thompson, & Schall, 2003), set size (Basso & Wurtz, 1997; Cohen, Heitz, Woodman, & Schall,
2009b), and task contingencies (Sato & Schall, 2003; Thompson, Bichot, & Sato, 2005; Zhou
& Thompson, 2009).

Movement neurons in FEF and SC initiate a saccade when their spike rate reaches a threshold
(see Figure 3C;J. W. Brown, Hanes, Schall, & Stuphorn, 2008; Dorris, Paré, & Munoz,
1997; Everling & Munoz, 2000; Fecteau & Munoz, 2003; Hanes, Patterson, & Schall, 1998;
Hanes & Schall, 1996; Murthy et al., 2009; Paré & Hanes, 2003; Ratcliff et al., 2003, 2007;
Sparks & Pollack, 1977; Woodman, Kang, Thompson, & Schall, 2008). The time when
movement neuron activity begins increasing and the rate at which it grows to threshold account
for random variability in RT (Hanes & Schall, 1996; Thompson & Schall, 2000; Woodman et
al., 2008). The time when movement neuron activity begins increasing accounts for changes
in RT when the difficulty of a perceptual decision is manipulated (Woodman et al., 2008). This
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activity has been associated with the dynamics of accumulator models (Boucher et al., 2007;
Carpenter, 1999; Carpenter et al., 2009; Carpenter & Williams, 1995; Ratcliff et al., 2003,
2007). However, the neural source of the variability in accumulation time is not identified (but
see Bundesen et al., 2005). Visual neurons are often assumed to represent a source of input
that drives movement neurons to threshold (Bruce & Goldberg, 1985; Carpenter, Reddi, &
Anderson, 2009; Hamker, 2005b; Heinzle, Hepp, & Martin, 2007; Schiller & Koerner, 1971),
but this assumption has not been rigorously evaluated.

Another line of research has identified a representation of perceptual evidence for a motion
direction discrimination task with the activity of neurons in visual area MT (middle temporal;
Ditterich, Mazurek, & Shadlen, 2003; Shadlen, Britten, Newsome, & Movshon, 1996) and the
evidence accumulation process with the growth of activity in LIP (Roitman & Shadlen,
2002; reviewed by Gold & Shadlen, 2007). The findings that support this claim include the
stimulus-dependent growth of activity of LIP neurons (A. K. Churchland, Kiani, & Shadlen,
2008; Roitman & Shadlen, 2002), the effects of MT and LIP microstimulation on performance
(Ditterich et al., 2003; Hanks, Ditterich, & Shadlen, 2006; Salzman, Britten, & Newsome,
1990; Salzman, Murasugi, Britten, & Newsome, 1992), and the effects of motion pulse stimuli
on behavior and LIP activity (Huk & Shadlen, 2005). Models based on these linking
propositions provide a reasonably clear account of performance in terms of neural processes
and statistical principles (Beck et al., 2008; Ditterich, 2006b; Lo & Wang, 2006; Mazurek et
al., 2003; Wang, 2002). However, the activity of neurons in MT and other early visual areas
is more dependent on stimulus features than task performance (Law & Gold, 2008). Also, LIP
does not initiate saccades (Paré & Wurtz, 2001; Wurtz, Sommer, Paré, & Ferraina, 2001). Some
additional processing is necessary to initiate the final choice to act. For saccade generation,
FEF and SC movement neurons are the most likely candidates. Thus, we propose that a different
set of linking propositions is necessary to explain the full duration of the decision process.

We explored a range of accumulator models based on two linking propositions: (a) Perceptual
evidence is associated with the activity of visual neurons in FEF, and (b) the accumulation of
that evidence is associated with the growth of activity to a threshold by movement neurons in
FEF. While this model is based on data obtained from FEF, we believe that the signals produced
by FEF visual neurons correspond to counterparts in LIP and SC. Other investigators have
described the tonic visual neurons in LIP as integrating sensory signals from extrastriate cortex
(Gold & Shadlen, 2007). In this study, we focused on the accumulation process occurring in
FEF movement neurons that lead to the initiation of the response, and therefore, we consider
the visual neurons as the source of perceptual evidence. Similarly, we believe that the signals
produced by FEF movement neurons correspond to counterparts in SC.

Overview
At the heart of our theory are the linking propositions that perceptual evidence is reflected in
the firing rates of FEF visual neurons and the accumulation of evidence is reflected in the firing
rates of FEF movement neurons. We used a novel modeling approach to test the validity of
these assumptions. Rather than modeling neural inputs to an accumulator, we used observed
visual neuron firing rates as the evidence that was accumulated over time. Figures 4 and 5
illustrate the approach. Visual neuron activity was recorded from the FEF of monkeys
performing a visual search task. Neurons with the target in their receptive field drove an
accumulator representing a saccade to the target, and neurons with a distractor in their receptive
field drove a response to a distractor. The models predicted a saccadic response when an
accumulator unit activity reached a fixed threshold. Saccadic RT was the time to reach the
threshold plus the brief oculomotor ballistic time. If visual neuron activity is the perceptual
evidence, then the model should correctly predict the observed RT distributions. If movement
neuron activity is the accumulation of evidence, then the accumulator model dynamics should
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predict the movement neuron dynamics observed in neurophysiological recordings (e.g.,
Boucher et al., 2007; Ditterich, 2006b; Ratcliff et al., 2003, 2007).

In the next section, we give the details of the experimental and modeling methodology and
present the behavioral and neural data to be predicted. Following the methods, we ask whether
visual neuron activity is sufficient to predict behavior and, if so, what architectural assumptions
for signal transformation are required. Several models provide a good fit, while others can be
ruled out because they fail to predict behavior. We then ask whether the same models can
predict the dynamics of movement neurons using the same parameters that fit the behavior.
The models with conventional parameters of leakage, feed-forward inhibition, and lateral
inhibition fail. However, models in which the flow of information from visual neurons to
movement neurons is gated provide the best account of behavior and neural data; feed-forward
and lateral inhibition are not necessary. We conclude by discussing the implications of these
results for theories of decision making and neural function.

Behavioral and Neurophysiological Methods and Results
We analyzed behavioral and neurophysiological data from awake behaving monkeys that have
been the basis of previous publications (Bichot, Thompson, Rao, & Schall, 2001; Cohen, Heitz,
et al., 2009b; Cohen et al., 2007; Sato et al., 2001; Schall, Sato, Thompson, Vaughn, & Juan,
2004; Thompson et al., 2005; Woodman et al., 2008). In this section, we describe how the
behavioral and neural data were collected and analyzed and summarize the primary
observations. Then, we turn to a detailed discussion of the modeling methods and results that
are the focus of our new efforts.

Behavioral Training and Testing Methods
Five macaque monkeys (Macaca radiata, Macaca mulatta) were trained to perform a visual
search task in which reward was contingent upon a single saccade from fixation to a singleton
target among a set of distractors. Animals were required to maintain focus on a central fixation
point at the start of each trial. After a variable delay (~600 ms), the fixation point vanished,
and the search array appeared. Monkeys were rewarded if their first saccade was directed to
the target. The array consisted of one target and seven distractors randomly located at eight
isoeccentric locations equally spaced around the fixation point. During testing, the eccentricity
of the array was adjusted depending on the receptive field properties of isolated neurons. The
animal had one opportunity to make a saccade to and maintain fixation on the target for reward.

Figure 3A illustrates the search arrays. Three sets of stimuli were used: a set in which the target
was defined by color (Sato et al., 2001), a set in which the target was defined by direction of
motion within a circular aperture of moving dots (Sato et al., 2001), and a set in which the
target differed from distractors in shape (Cohen, Heitz, et al., 2009b). The color and motion
search tasks included easy and hard conditions determined by target–distractor similarity. For
the color search task, the easy condition required a saccade to a green target among red
distractors, while the hard condition required a saccade to a green target among yellow-green
distractors; on other sessions, monkeys searched for red among green or red among yellow-
red distractors. For the motion search task, the easy condition required a saccade to a target in
which 100% of the dots moved to the right among distractors in which 100% of the dots moved
to the left. The hard condition required a saccade to a target with only 50%– 60% of the dots
moving in a particular direction; on other sessions, the opposite set of dot motion directions
for targets and distractors was used. Easy and hard conditions were randomly interleaved within
each session. For the form search task, the target was a T among rotated distractor Ls; on other
sessions, an opposite set of targets and distractors was used. No target– distractor similarity
manipulation was included in the form search for Monkey Q, although it also took place in the
context of other manipulations not analyzed here. The difficulty of this task has been
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established in humans (Duncan & Humphreys, 1989), and animal performance corresponded
to performance in the hard condition of the color and motion search tasks (Cohen, Heitz, et al.,
2009b), therefore we label these data as another kind of hard search in all figures and tables.
Monkey F performed the color search task. Monkeys L and O performed the motion search
task. Monkey M performed both color (Mc) and motion (Mm) search during separate recording
sessions that are distinguished in the model fits described below. Monkey Q performed form
search. Only movement neurons, no visual neurons, were recorded from Monkey O.

Behavioral Results
We were primarily interested in the distribution of saccadic RTs for the various search
conditions. Each data set was fitted individually; Table 1 summarizes the observed behavior
by monkey and task. In addition, we fitted a pooled data set that combined across Data Sets F,
L, Mc, and Mm; observed RT quantiles for the individual data sets were averaged using a
standard Vincentizing procedure (Ratcliff, 1979). Figure 6 displays the cumulative RT
distributions for each animal and for the pooled RT distribution. Analyses of individual
monkeys and the pooled data revealed a significant difference in mean RT for easy versus hard
search, all paired t(22) > 7.79, p < .05.

Neurophysiological Methods and Analyses
Single-unit neurophysiological recordings in the FEF of behaving monkeys were made using
procedures that have been described in detail elsewhere (Schall, Hanes, et al., 1995; Thompson
et al., 1996). Before being tested on the visual search task, animals performed a memory-guided
saccade task to characterize the response properties of the isolated neuron and define it as a
visual neuron, movement neuron, or other neuron (Bruce & Goldberg, 1985). Animals were
trained to fixate a central point while a peripheral target was flashed in the receptive field for
80 ms. The task required animals to maintain fixation for 400–1,000 ms after the fixation spot
disappeared. For reward, the animal made a saccade to the remembered location of the target
after the fixation spot disappeared.

Neural activity during a memory-guided saccade task was used to classify neurons. Neurons
were classified as visual neurons if their firing rate rapidly increased in response to the
presentation of the visual stimulus in their receptive field but showed no increase in activation
prior to a saccade. Neurons were classified as movement neurons if their activity remained at
baseline in response to the presentation of the visual stimulus but showed an increase in
activation prior to a saccade within their movement field, the area of the visual field to which
a saccade is executed when activity reaches threshold.

FEF neurons have heterogeneous response properties (Bruce & Goldberg, 1985), and two
groups of visually responsive neurons were excluded from our analyses. First, FEF
visuomovement neurons that show both visual and movement-related activity were excluded.
There is neurophysiological (Murthy et al., 2009; Ray, Pouget, & Schall, 2009) and biophysical
(Cohen, Pouget, Heitz, Woodman, & Schall, 2009) evidence that visuomovement neurons are
a distinct class of neurons apart from pure visual and movement neurons. The simulations
presented in this article are limited to pure visual and pure movement neurons because the
distinction between these populations is well established both functionally (Murthy et al.,
2009; Thompson, 2005; Thompson et al., 1997) and anatomically (Pouget et al., 2009;
Segraves, 1992). We also conducted simulations in which visuomovement neurons were
included, and the key model predictions were unchanged. Nevertheless, there is evidence that
visuomovement neurons may reflect a corollary discharge to update visual processing (Ray et
al., 2009), and so it remains an open question to what degree visuomovement neurons can be
functionally grouped with either pure visual or pure movement neurons. Second, FEF phasic
visual neurons that show a brief visual response to a stimulus that does not select the location
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of the target were excluded from our analyses (Bruce & Goldberg, 1985; Thompson et al.,
1996). This assumes that the neurons that signal relevant stimuli are the neurons that contribute
most strongly to preparation of a response (e.g., Bichot, Thompson, et al., 2001; Ghose &
Harrison, 2009; Purushothaman & Bradley, 2005; but see Shadlen et al., 1996). A visual neuron
was said to select the target if the area under the receiver-operating characteristic (ROC) curve
calculated from trials in which a target was in the neuron’s receptive field and trials in which
a distractor was in the neuron’s receptive field reached 0.70 prior to the mean saccade RT in
either difficulty condition (Thompson et al., 1996). We also explored simulations that included
neurons that did not reach 0.70 in ROC area. Larger samples of trials were necessary to signal
the location of the target, but major conclusions were unaffected.

Inclusion criteria for movement neurons were as follows: All neurons that showed a sharp
increase in activity immediately preceding the saccade during the memory-guided search task
were included in the movement neuron analyses. We also included a small number of
movement neurons that showed a minimal visual response but predominately responded
immediately prior to saccade. Movement neurons recorded with less than 30 correct behavioral
trials were not included.

We also adopted several trial-specific inclusion criteria: (a) Only trials in which a saccade was
correctly made to the target were included1; (b) trials in which the animal broke fixation early,
failed to maintain fixation on the target, or shifted gaze away from the search array entirely
were not included in these simulations (<0.7% total trials); (c) trials in which the animal
anticipated the target location (RT < 100 ms) or the animal did not respond within a time
window (RT > 2,000 ms) were excluded from analysis (<0.03% of total trials); and (d) trials
in which a distractor fell within the neuron’s receptive field but the target appeared in an
adjacent location were excluded for two reasons: First, FEF receptive fields are irregularly
shaped, and it is difficult to guarantee that the target is completely outside the neuron’s
receptive field. Second, a subset of visual neurons exhibits enhanced suppression of stimuli at
the border of the receptive field, and the effect of this inhibition will be inconsistent across
different neurons (Schall & Hanes, 1993;Schall, Hanes, et al., 1995;Schall et al., 2004).

Neurophysiological Results
A total of 64 visual neurons met the inclusion criteria outlined above (11 neurons from F, three
from L, six from Mm, four from Mc, and 40 from Q).2 Figure 3B shows the response of a
representative visual neuron during easy and hard visual search. Visual neurons typically show
an initial indiscriminate response to both target and distractor in their receptive field after a
search array appears. However, over time, visual neuron activity evolves to signal the location
of the target before a saccade is generated. Across neurons, target selection is achieved by a
decrease of the response evoked by distractors and the maintenance or enhancement of the
response evoked by a target. Divergence between target and distractor activity is delayed, and

1The task is relatively simple, and there were very few error trials, particularly in the easy condition. To evaluate the model’s predictions
of errors, populations of trials would need to be split into the following two populations: (a) trials in which the target appeared in the
neuron’s receptive field but a saccade was made to another distractor and (b) trials in which a distractor appeared in a neuron’s receptive
field and a saccade was made to that location. The number of error trials that met these criteria was very low in most of these data sets,
making simulations where visual neuron activity drives accumulator models impossible. We should note that FEF visual neurons do
select the location of the distractor to which an erroneous saccade is made during saccade search tasks (Cohen, Heitz, Woodman, &
Schall, 2009a; Thompson et al., 2005; but see Trageser, Monosov, Zhou, & Thompson, 2008). This is in agreement with the predictions
of our framework.
2Our simulations randomly sampled trials of activity with replacement. Each data set provided a sufficiently large number of trials from
which to sample when the target was in the neuron’s receptive field (easy: F, 883; L, 267; Mm, 432; Mc, 177; pooled, 1,759; hard: F,
635; L, 271; Mm, 451; Mc, 195; Q, 5,696; pooled, 1,552) and when a distractor was in the neuron’s receptive field (easy: F, 2,202; L,
501; Mm, 730; Mc, 746; pooled, 4,179; hard: F, 1,586; L, 517; Mm, 778; Mc, 689; Q, 11,724; pooled, 3,570). The complete data sets
for L and M were not large, L: 11 neurons total (five visual), Mm: 18 neurons total (seven visual), Mc: 11 neurons total (six visual), but
there were no consistent differences between these data sets and other data sets that used a larger population of neurons (F, Q, pooled).
One data set, Mc, consistently fit the data worse than other data sets. This may have been due to lower trial numbers.
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the difference is slower to evolve for hard search than for easy search (Bichot & Schall,
1999;Cohen, Heitz, et al., 2009b;Sato et al., 2001). Activity patterns were similar during color,
motion, and form search. Of primary interest is whether visual neuron activity is sufficient to
be the representation of perceptual evidence that is accumulated by movement neurons.

Sixty-one movement neurons met the inclusion criteria described above (34 neurons from F,
five from L, five from Mm, four from Mc, three from O, and 10 from Q). Figure 3C shows the
activity of a representative movement neuron during the easy and hard conditions of the visual
search task when a saccade was made to the target. The figure illustrates the characteristic
buildup of movement neuron activity prior to a saccade to a target. There is often little activity
of movement neurons that would signal a saccade to a distractor, although this varies across
neurons. When trials are aligned on the time of saccade initiation, activity rises to a constant
threshold level immediately prior to the eye movement. This pattern holds across difficulty
conditions. Further quantitative analyses of both movement neurons and simulated model
accumulators are reported later in this article.

Modeling Methodology
A fundamental innovation of our approach was to use the actual spike rate of recorded neurons
as the input to alternative accumulator models. For each monkey, visual neuron activity
recorded during individual trials of the visual search tasks was divided into two populations
(see Figure 4). The first population consisted of trials that were recorded when the target fell
in the neuron’s receptive field. The second population consisted of trials that were recorded
when a distractor fell in the neuron’s receptive field. For each simulated trial, we randomly
sampled, with replacement, N spike trains from the population of trials in which the target fell
in a neuron’s receptive field—the input to the accumulator for a decision to saccade to the
target location—and N trials from the population of trials in which a distractor fell in a neuron’s
receptive field—the input to the accumulator for a decision to saccade to the distractor location.
3 The number of trials sampled from each population was varied systematically from N = 1 to
24. Fits were not improved by increasing N above this range, which reflects our choice to only
sample from visual neurons that select the location of the target (e.g., Bichot, Thompson, et
al., 2001).4

We generated an average activation function (spike density function) from the collection of
spike train trials by convolving the spikes with a kernel resembling a postsynaptic potential
(Thompson et al., 1996). This visual neuron activation function was the input to each
accumulator on a simulated trial. Trials from multiple neurons were combined into a single
average activation function. The tonic firing rates of FEF neurons are highly variable, therefore
we weighted the input from each neuron by the reciprocal of its maximum firing rate. The
result was a normalized activation function for visual neuron input for target and distractor
with a maximum of 1 and minimum of 0. This computation was necessary so that contributions

3In our simulations, we used two accumulators (target vs. distractor) rather than eight (one for each stimulus in the array) or far more
than eight (total number of accumulating neurons thought to reside in FEF). Essentially, we have assumed that input driven by each
distractor (nonadjacent to the neuron’s receptive field) is pooled into a single unit that races against the target-driven activity. This
assumption was necessary for these data sets because increasing the number of accumulators would decrease the populations of trials
from which model input could be sampled, and the number of neurons and trials from these previously recorded physiology sessions was
already rather limited. In other words, for most of the individual data sets, there were not sufficient trials to simulate a model in this way.
The data sets we used all included a fixed set of eight stimuli and always contained a target, so models did not need to predict changes
in RT or neural activity with set size. Because the neuron shows maximal activation when the target is in its receptive field, it is unlikely
that model predictions would qualitatively change by including multiple competitors. In addition, the vast majority of accumulator model
applications have been in the context of two-alternative forced-choice tasks, so this framework also allows us to relate more directly to
that broader family of models. To ensure that our conclusions do not depend critically on modeling only two locations, we simulated
preliminary versions of the models using an accumulator for multiple locations using the data set, Q, that contained enough trials to
sample activity for multiple distractors. The behavioral and neural predictions of the model were qualitatively similar when multiple
accumulators were used.
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were not overly weighted by neurons that discharged, on average, at a much higher rate. It is
plausible that the brain implements a similar normalization operation (Grossberg, 1976a;
Heeger, 1992).

Visual neuron activity was recorded throughout the duration of the visual search task. Each
simulated trial began 300 ms before the presentation of the visual search array while the animal
fixated the center of the screen. The models were active from this point until the saccade
decision was made; in other words, input flowed continuously throughout the simulation.
Starting simulations at a constant time prior to the appearance of the search array eliminated
the need for free parameters that would determine the initial value of the accumulator (the
starting point, or baseline), the duration of perceptual processing (predecision time, or the time
when the accumulation begins), and any parameters that would govern how those values vary
across trials and conditions. Instead, intratrial changes depended entirely on the nonstationary
input function derived from the recorded visual neuron activity (see Figures 3B and 4). This
also allowed us to explore predicted model dynamics from before the search array onset until
the saccade was made, which had important implications for model selection.

Visual neurons were classified according to the object in their receptive field, but this
classification is meaningful only up until a saccade is made and gaze shifts. This raises the
question, What should be done with the firing rates for neurons on trials in which a saccade
occurred before the model reached threshold? Simply dropping postsaccade activity inflated
variability in the visual signals and caused simulations to terminate without any response,
which causes problems for the fit routine where initial parameters may predict very long RTs.
Our solution was to extrapolate visual neuron activity beyond the time when a saccade was
made when that particular neuron was recorded on a particular trial with a longer RT. The
distribution of interspike intervals for cortical neurons is approximately Poisson (Rodieck,
Kiang, & Gerstein, 1962), so we generated spike trains according to a homogeneous Poisson
process with a rate parameter equal to the mean spike rate in the interval 20 ms to 10 ms prior
to a saccade. Essentially, this extended the neuronal spike train at a constant rate. Importantly,
for well-fitting models that predicted the observed range of RTs, these extrapolated portions
of visual neuron input contributed little to the predicted model activation.

On each simulated trial, the model input consisted of two visual activations: vT (t), activation
from visual neurons with the targets in their receptive field, and vD(t), activation from visual
neurons with distractors in their receptive field. The visual neuron inputs varied across time
and across trials because of the random sampling from recorded neurophysiological trials. Each
model consisted of two movement units: mT (t), activation of a movement neuron representing
a saccade to the target, and mD(t), activation a model movement neuron representing a saccade
to a distractor. RT was given by the first movement unit to reach a threshold, θ. Simulating

4How many neurons contribute to a perceptual decision is an open question. The range of the sampled trials used in our simulations is
consistent with the findings of other studies examining reliability of neural coding (e.g., Bichot, Thompson, et al., 2001; Ghose & Harrison,
2009). One possible explanation for the small number of sampled neurons is that decisions may be preferentially based on neurons that
most reliably signal the relevance of a stimulus (Purushothaman & Bradley, 2005). Even so, these estimates may seem very low relative
to the total number of neurons in a given brain region. This may be explained in two ways: First, phasic visual neurons that do not select
the target may contribute to the pooled response that ultimately drives movement neurons. We tested models that included sampling from
both selective visual neurons and nonselective visual neurons that do not reach 0.70 in ROC area. Not surprisingly, larger samples were
needed for the model to reliably select the correct location of the target. Second, the benefits of pooling across many neurons may be
limited by correlated noise between neurons (Shadlen et al., 1996). This would put an upper limit on the signal-to-noise ratio of the pooled
visual neuron signal, which would be reflected in a relatively low number of sampled trials required in the simulations. While noise
correlations between individual FEF visual neurons are relatively weak (~0.1; Bichot, Thompson, et al., 2001; Cohen et al., 2010), even
small correlations can have profound effects on pooled activity across a large number of neurons (Cohen et al., 2010; Shadlen et al.,
1996). Note that for our simulations, the pooled visual activity across our trials was necessarily independent because the neurons were
not recorded simultaneously; therefore, we refrain from drawing strong conclusions about the size of the actual neuronal pool based on
the present analyses. Future simulations using simultaneously recorded pairs of neurons or simulating spike trains with correlated noise
could shed light on this issue.
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thousands of trials with different samples of vT (t) and vD(t) led to different trajectories for
mT and mD that predicted a distribution of saccade RTs.

Several basic assumptions were shared by all models. All parameters were fixed across
conditions because easy and hard search arrays were interleaved. All between-condition
variability was due solely to observed changes in the visual neuron inputs. Movement unit
activation was rectified to be greater than zero because we identified movement unit activity
with neuronal firing rate, which cannot be negative. All models compared movement unit
activity to a threshold, θ, whose value was optimized to fit behavior. In the following section,
we discuss different models that include additional parameters that determine movement
neuron computations. The first movement unit to reach threshold determined whether a saccade
was made to the target or distractor. The time when threshold was reached plus a brief ballistic
time was the RT. We did not explicitly model activity that followed threshold crossings, but
the latency between movement neurons reaching threshold and the generation of a saccade is
~15 ms in primates (Scudder et al., 2002). This represents the time necessary for the brainstem
mechanisms to initiate a saccadic eye movement. Therefore, the RT predicted for each
simulated trial was defined as the time from target onset to the time when threshold was crossed
plus a constant ballistic time, tballistic, which was constrained to fall within an interval of 10–
20 ms.

We adopted standard model fitting techniques to find values of parameters that provided the
best fit to the behavioral data. For a given set of parameter values, we generated 5,000 simulated
trials to produce predicted RT distributions for both difficulty conditions. All models were fit
to behavioral data using the Simplex routine (Nelder & Mead, 1965) implemented in MATLAB
(The MathWorks). We used a Pearson chi-square statistic to quantify the discrepancies between
the observed and predicted cumulative correct RT distributions (Ratcliff & Tuerlinckx, 2002;
Van Zandt, 2000):

(1)

The summation over i indexes RT bins defined by the quantiles of the observed RT distribution
corresponding to the cumulative probabilities of 0.1, 0.3, 0.5, 0.7, and 0.9. Oi are the observed
proportion of RTs, Pi are the predicted proportion of RTs within the bins, and N is the total
number of data points in the observed RT distribution. With these quantiles, the six Oi are 0.1,
0.2, 0.2, 0.2, 0.2, and 0.1. Pi are the predicted proportion of RTs falling within each bin, which
varies with the values of the various parameters. The probabilities are converted to frequencies
by multiplying by the observed number of data points, N. The chi-square increases with the
difference between the predicted RT distribution and the observed RT distribution. We counted
the number of predicted responses falling within the correct RT distribution (Van Zandt,
2000); therefore, the fit routine maximized the proportion of correct responses in addition to
matching the distribution of observed RTs.

Simplex finds values of free parameters that minimize the chi-square. Five data sets from
individual monkeys were fitted separately (F, L, Mc, Mm, and Q), and a pooled data set that
combined across monkeys and stimulus sets was also fitted (F, L, Mm, and Mc). For data sets
with an easy and hard condition, both difficulty conditions were fitted simultaneously by
summing the individual chi-square statistics for the two conditions. For each model and data
set, we ran the Simplex routine using ~40 different starting points that were distributed across
a reasonable range of parameter space to mitigate the problem of finding local minima during
the parameter search. This was done in parallel on the high-performance computing cluster
supported by the Vanderbilt Advanced Center for Computing for Research and Education.
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With only two RT distributions, one for easy search and one for hard search, it did not seem
sensible to engage in extensive quantitative tests of model fits. Our goal was instead to find
models that provided an acceptable fit to behavior that would later be compared to neural data.
To quantify an acceptable fit, we computed a standard R2 fit statistic from the observed and
predicted RT percentiles: R2 = 1 − (SSerror/SStotal). SSerror was given by squaring the deviation
between the observed and predicted percentiles. SStotal was given by squaring the deviations
between the observed percentiles and the mean across difficulty conditions. We used a simple
heuristic of R2 ≥ 90% as an acceptable account of behavior. We also included a fit statistic,
X2, in which observed proportions were multiplied by 100 rather than the number of
observations, thus they were not true frequencies (Ratcliff & Smith, 2004). This statistic
facilitated comparisons of fit across data sets because the number of observations varied across
individuals.

Although we emphasize the use of neural data for model selection, we also compared models
on their account of behavior. Standard hierarchical model testing proved problematic for
several reasons when running these simulations,5 so we developed an alternative benchmark
for when a difference in X2 values was deemed to be too large. To do this, we used the best
fitting parameters for a given model to simulate 5,000 RT distributions (each containing 5,000
simulated RTs) that only differed in the initial random number seed. An X2 statistic was
computed for each simulation. We then calculated a distribution of differences in X2 values
between runs differing only in the randomly sampled inputs. We compared the difference in
fit between two tested models ( ) to these distributions to compute a p
value, and the 95th percentile of the distribution was used as an adjusted critical chi-square
( ); calculations using the true chi-square were qualitatively identical. This gave us a
conservative X2 difference that we might expect from chance if the data were produced by the
same model that differed only in random factors. Clearly, this approach does not have the
statistical rigor of something like parametric bootstrapping, which would require competing
models to be fitted 5,000 times. However, that approach was intractable with our current
hardware.

Accounting for Response Times
Given the tight constraints imposed on the models, the first question to answer is whether RT
distributions can be predicted from the responses of FEF visual neurons. If so, then what
computations are necessary and sufficient? To address these questions, we fit several stochastic
models to the RT distributions observed during the saccade visual search task. We selected
models to evaluate assumptions about the mechanisms thought necessary to predict behavior.

Nonintegrated Models
The most fundamental assumption of the accumulator model framework is that evidence must
be integrated over time. The first models we evaluated assume that moment-to-moment
fluctuations in current perceptual evidence are sufficient to trigger the response threshold
without any integration over time. Thus, we tested whether a simple nonintegrated race
model was sufficient to account for observed behavior:

5First, these tests are limited to nested models, yet many of the model comparisons we wished to make are between models that are not
nested and that have the same number of free parameters. Second, the power of these tests increases with sample size, so one may attain
significance simply by running a large number of simulated trials (Busemeyer & Diederich, 2010). Finally, even with 5,000 simulated
trials per condition, the difference between two runs of a model using the exact same parameter values but differing in the random number
seed at the start of a run produces chi-square differences that can well exceeded the critical chi-square value for nested models differing
in one parameter. We considered both parametric bootstrapping (Wagenmakers, Ratcliff, Gomez, & Iverson, 2004) and increasing the
number of simulated trials in each model by an order of magnitude. However, these approaches were not feasible given the computational
demands of Monte Carlo simulations. Ultimately, our emphasis is on neural predictions made by models with an acceptable behavioral
fit, not on detailed quantitative contrasts of the behavioral fits themselves.
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(2)

(3)

Here, movement unit activation is just the current input from the visual neurons. The time at
which m(t) reaches threshold varies because the trial-to-trial input v(t) varies. Effectively,
activation at time t integrates across relevant visual neurons, but the movement neurons do not
integrate across time. One interpretation of this model is that movement neurons simply pool
the input from visual neurons at a given point in time and determine when that pooled activity
reaches a threshold.

We also tested a model that assumes competition between visual neuron inputs but no
integration performed by movement neurons. The activity of visual neurons in FEF showed a
distinct pattern in which the difference in activity between neurons representing the target and
distractors increased gradually over time, as expected for a decision variable (see Figure 3B).
The nonintegrated difference model assumes that the difference in visual unit activation
between target and distractor is directly compared to a response threshold:

(4)

(5)

Thus, the movement neurons represent the relative support for one response above and beyond
the competing response. This is a basic assumption made by some models of LIP (Ditterich,
2006b; Gold & Shadlen, 2007; Mazurek et al., 2003), but in those cases, the difference must
be accumulated for a threshold to be crossed when input is stationary. Here, this is not the case.

We evaluated how well both nonintegrated models fit the individual and pooled behavioral
data. Fits to behavioral data are illustrated in two ways (see Figure 7): First, we presented the
predicted cumulative RT distributions for each condition using the pooled data set along with
the observed RT quantiles. A model that fits this data set well will predict a cumulative RT
distribution that intersects the observed RT quantiles that were fit. Second, we presented a
scatterplot of the observed versus predicted quantiles for the data sets from individual monkeys.
A model that fits all data sets well will produce a scatterplot distributed near the diagonal. The
fit statistics for every data set and model are summarized in Table 2.

Figure 7A illustrates the fits of the nonintegrated race model. The predicted cumulative RT
distribution indicates a very poor fit to the pooled data set (R2 < 0). Recall that our null model
(SStotal) was given by the mean across conditions, so a negative R2 indicates that these models
actually fit worse than a model that simply predicts the mean across conditions. This is due to
extreme misses in the upper tails. The fit is similarly poor across individual data sets. The
model cannot account for more than 90% of the variance for a single data set (all R2 < 0.90).
Thus, the nonintegrated race model cannot fit the data.

The overall fit of the nonintegrated difference model to the pooled data set is also very poor
(see Figure 7B; R2 < 0). The models generally predicted the correct ordering of the difficulty
conditions, but the model severely overpredicted the upper tail of the distribution for most data
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sets. The quality of fit varied for individual data sets but was generally poor. Although the
model provided an adequate fit to two data sets (F and Q: R2 > 0.90), it failed to fit the remaining
individual data sets (L, Mm, and Mc: R2 < 0.86). We conclude that the nonintegrated difference
model cannot fit the behavioral data.

Discussion
Visual neurons in FEF are hypothesized to combine feature information from early visual areas
to represent the visual salience of objects (e.g., Carpenter et al., 2009; Hamker, 2005a;
Thompson & Bichot, 2005); therefore, it was possible that temporal integration is unnecessary.
The nonintegrated models assume that a response is initiated when the perceptual evidence
given by FEF visual neuron activity crosses some threshold. In other words, this hypothesizes
that movement neurons simply pool visual neuron inputs and compare that pooled activity
level directly to a response threshold but do not integrate that activity over time. However,
these models failed to account for behavior regardless of whether the absolute level of activity
or a difference in activity was compared to threshold. Some additional mechanism is required
to account for behavior. Previous modeling studies strongly suggest temporal integration.

Perfect Integrator Models
We next evaluated three models that assume perfect integration of visual neuron inputs.
Formally, we characterized each of these perfect integrator models with specific
parameterizations of the following equations,

(6)

(7)

that specify the change in activation of the movement unit representing a decision to move the
eyes to a target (mT) or a distractor (mD) at each time step, dt (dt/τ was set to 1 ms in all
simulations). Movement units perfectly integrated visual activity (vT and vD) with respect to
time and initiated a saccade when activation reached the threshold, θ, after the ballistic time,
tballistic.

Inhibitory interactions among response alternatives could be implemented at two levels: (a)
Competition between visual neuron inputs that were determined by the parameter u correspond
to feed-forward inhibition (e.g., Hamker, 2005b) or (b) competition between movement units
that were determined by a parameter β correspond to lateral inhibition (e.g., Usher &
McClelland, 2001). We evaluated a perfect race model (u = β = 0), in which each unit
independently accumulates the activity of a visual neuron representing the object in its
receptive field; this corresponds to previous models of two-alternative forced-choice tasks
(Smith & Van Zandt, 2000; Vickers, 1970). We evaluated a perfect diffusion model (u = 1, β
= 0), in which evidence for one response is simultaneously counted as evidence against the
competing response; this is a neurally plausible implementation of a one-dimensional diffusion
process. As a result, movement units integrate the difference between visual neuron inputs
(similar to the difference operation proposed by Ditterich, 2006a; Mazurek et al., 2003).
Finally, we evaluated a perfect competitive model (u = 0, β free to vary), in which lateral
inhibition between response units at a given time point depends on the current activation of
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that unit weighted by β; this corresponds to models that implement winner-take-all dynamics
through mutually inhibitory units (similar to Usher & McClelland, 2001; see also Wang,
2002, for a detailed neurophysiological implementation).

We included a Gaussian noise term, ξ, for both accumulating units with a mean of zero and a
standard deviation of σ. In most implementations of stochastic accumulator models, the only
intra-trial variability comes from this noise term. However, in our case, there was substantial
noise inherent in the input, vT and vD, because input was derived directly from spike trains that
are inherently noisy. Thus, we parsed noise into two components: exogenous noise that is
inherent in the visual neuron input and endogenous noise that is intrinsic to the movement units
given by ξ. We explored versions of these models with various levels of endogenous noise,
but adding noise did not strongly affect most predictions. Therefore, for these models, we
assumed that all noise was due to the visual neuron input by fixing ξ = 0 in all cases. We explore
models with endogenous noise later in this article.

The fits of the perfect integrator models to the RT distributions are shown in the left panels of
Figure 8, and details are given in Table 2. By our criterion, the overall fit was very poor for
the race and competitive models (race R2 = 0.69, competitive R2 = 0.78) because they severely
underestimated between-condition variability. The diffusion model provided a slightly better
account of the pooled data set than the race and competitive models (R2 = 0.87) but still
underestimated between-condition variability and missed the upper tail of the hard RT
distribution. All models failed to meet our benchmark of accounting for 90% of the variance.
The fits to the individual data sets were also poor for each of the perfect integrator models (see
Figure 9, left panels). The poor fit can be summarized in the low average R2 (R̄2) across data
sets (race R̄2 = 0.69, diffusion R̄2 = 0.71, competitive R̄2 = 0.76). In general, the model fits the
data sets of individual monkeys poorly, although there is some variability across data sets.

Discussion
Integration appears to be necessary, but models assuming perfect integration could not predict
the observed behavior. Why did these models fail when similar models have been successful
in accounting for richer sets of data? The models failed because, in our approach, visual neuron
activity is input to accumulator units continuously over time. There is no mechanism to limit
the rate of accumulation prior to the onset of the stimulus array. Visual neurons do not
discriminate the target until late in the trial, which means that units accumulate noise for the
majority of the trial. Stimulus-dependent differences in the model inputs have little time to
impact the accumulation. Some mechanism is necessary to limit the rate of accumulation until
a decision is made.

Several plausible mechanisms could be implemented to limit the rate of input to the
accumulator units. Many accumulator models circumvent this problem by assuming that the
start of the accumulation is delayed relative to the onset of the stimulus. It is plausible that
some external signal initiates the accumulation sometime after the stimulus onset. However, a
more complete and parsimonious explanation is that some mechanism limits the rate of flow
from visual to movement neuron activity until a relevant signal is present. In the following
sections, we evaluate two simple mechanisms that perform that function.

Leaky Accumulator Models
We first asked whether leaky integration could improve model performance. Leakage in these
models is implemented as self-inhibition of a unit that scales with the activation of the unit at
a given point in time. We considered leaky versions of the race model, diffusion model, and
competitive model as follows:
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(8)

(9)

Here, k is the leakage constant, and all other variable are as described earlier. Leakage is
inherently inhibitory, so k is constrained to be greater than zero. As with the perfect integrator
models, we evaluated a leaky race model (u = β = 0), a leaky diffusion model (u = 1, β = 0),
and a leaky competitive model (u = 0, β free to vary). We report values where leakage was
optimized to fit behavior, and we also explored the effect of varying the value of the leakage
constant incrementally while finding best fitting values of the other parameters. As before, we
found that adding small amounts of endogenous noise did not affect model predictions, so it
was fixed to zero (ξ = 0).

The fits of the leaky models to the pooled data set are shown in Figure 8 (center panels). In
contrast to the perfect integrator models, all leaky integrator models provided a good account
of the pooled data set (all R2 > 0.90). This improvement in fit, relative to perfect integrator
counterparts, was significant for all three models (all , all p < .05). The leaky models
also fit nearly all individual data sets very well (see Figure 9; all R2 > 0.90, except Mc). In
general, the fit of the leaky integrator model was significantly better than that of the perfect
integrator models. For the race model, the improvement in fit was significant for all data sets
(all , all p < .05); for the diffusion model, the improvement was significant for most
(four out of five) individual data sets (all , all p < .05, except L, , p = .72);
and for the competitive model, this improvement was significant for most (four out of five)
individual data sets (all , all p < .05, except L, , p = .88). Across models,
only the Mc data set was fit poorly, which we attribute to low trial numbers. To summarize,
the leaky integrator models fit the pooled data and nearly all data sets very well, and the
improvement over the perfect integrator models was nearly always significant.

We also compared behavioral fits between the leaky race, leaky diffusion, and leaky
competitive models, but differences in fit across these models were not consistent enough to
draw strong conclusions about the nature of interactions among response units. Leaky
integrator models that assume different forms of competition seem able to predict behavior
equally well, at least for the behavioral data set we tested.

Discussion
Unlike perfect integrators, models that assume leaky integration predicted the observed
behavior. Here, leakage is advantageous because it asymptotically limits the accumulation of
perceptual evidence prior to a decision. Visual neuron inputs are approximately constant in the
absence of a stimulus, so accumulator activity reaches a lower asymptote when the rate of
decay is approximately equal to the input. Following the presentation of the search array, visual
neuron inputs increase, so the accumulators begin to increase again until an upper asymptote
is reached. If the threshold is placed between the lower and upper asymptotes, then the model
will predict a baseline firing rate that increases to threshold when the visual neuron inputs
increase. In other words, the leak is constant throughout the trial, but it is the level of input that
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changes. Thus, leakage provides one way to limit the rate of accumulation in the presence of
dynamic neural inputs.

Leakage limits the rate at which evidence is accumulated, but evidence still flows continuously
to accumulator units. These models assume that visual neurons represent relevant perceptual
evidence while movement neurons simultaneously accumulate that evidence over time.
Alternatively, a pure discrete stage model would assume that the accumulation of evidence
does not begin until perceptual processing is complete, when a representation of perceptual
evidence is achieved. This assumption is made by models in which the drift rate is constant
and the accumulation begins some delay following the presentation of the stimulus. However,
this assumption seems at odds with our neurally constrained framework in which perceptual
evidence is defined by a neural representation that evolves continuously over time. In the
following section, we evaluate a new set of models assuming that the start of the accumulation
is not determined by a fixed delay from the stimulus onset but, like leakage, depends on the
level of visual input flowing into the accumulator. In contrast to leakage, input is gated prior
to reaching the accumulator until it exceeds a particular level. In this way, these simple models
represent a neurally plausible implementation of discrete stages.

Gated Accumulator Models
We tested gated models of perceptual decision making that assume dynamic visual neuron
input exactly like the continuous flow models described so far but where a gate parameter
controls the minimum level of visual neuron input needed to modulate activity of the movement
units. Formally, the following equations defined the gated models:

(10)

(11)

The gate parameter, g, is a constant inhibition applied to the visual neuron input that drives the
accumulators. Mathematically, this is equivalent to constraining the total input to be greater
than g for accumulation to begin. Once g is exceeded, it continues to be subtracted from the
visual inputs but does not scale with the level of the accumulation. The term (vT (t) − u · vD(t) −
g) is constrained to be ≥ 0 because the gate is applied to the input, not the movement units
themselves. In all fits, g was a free parameter that was constrained to be greater than zero. We
evaluated a gated race model (u = β = 0), a gated diffusion model (u = 1, β = 0), and a gated
competitive model (u = 0, β free to vary).6

Like the earlier models, we have a term for intrinsic Gaussian noise with a mean of zero and
standard deviation, σ. As before, we found that including noise did not impact behavioral
predictions. However, if m(t) starts at zero and g is high enough to suppress input to zero, then
there is nothing to accumulate, so the models predicted little to no baseline activation. Most
FEF movement neurons have a small tonic baseline firing rate (Bruce & Goldberg, 1985;
Schall, 1991; Segraves & Goldberg, 1987); therefore, we included an endogenous noise term
to represent stochastic elements in movement neuron activity or the neural circuit. Low levels

6Working simulations of the accumulator models described in this article can be downloaded from
http://catlab.psy.vanderbilt.edu/wp-content/uploads/PurcellHeitzCohenLoganSchallPalmeri_PublicCode.zip
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of intrinsic noise (ξ = 0.2) accumulate in movement units, and low levels of leakage cause
activation to asymptote at a relatively invariable baseline that is well below threshold. This
means that the baseline level of activity is primarily due to intrinsic noise but that the rise of
activation to threshold is primarily due to modulations in the visual neuron inputs.

The fits of the gated models to the pooled behavioral data are shown in Figure 8. All three
gated models provided an excellent account of the pooled data set (race R2 = 0.99, diffusion
R2 = 0.99, competitive R2 = 0.98). Compared to their leaky counterparts, only the gated race
model fit significantly better than its leaky counterpart (race , p < .05), whereas the
fit was not significantly different for the other models (diffusion , p = .96; competitive

, p = .16). On average, all three gated models accounted for the individual data sets
very well (see Figure 9; race R̄2 = 0.92, diffusion R̄2 = 0.95, competitive R̄2 = 0.90), with the
exception of Mc. The change in fit between the leaky race and gated race models was not
significant for most (four out of five) individual data sets ( , p ≥ .09), except Mm

for which the leaky models fit slightly, but significantly, better ( , p = .02). The change
in fit between the leaky diffusion and gated diffusion models was not significant for most (four
out of five) individual data sets ( , p ≥ .25), except Mm for which the leaky models
fit significantly better ( , p = .001). The leaky competitive models fit significantly
better than the gated models for most (three out of five) individual data sets ( , p < .
05), but two data sets were not significantly different (F and Mm, both , p ≥ .50).
In general, the gated and leaky models fit the data equally well. As with the leaky models, we
also compared the models against one another but found little evidence to support one form of
competition over another.

For all of the models tested so far, the fits to the Monkey M color search data set (Mc) were
poor relative to the other data sets (see Figure 9 [x symbols] and Table 2). In particular, models
often underestimated the RT difference between easy and hard conditions. This is most likely
because the Mc data set included fewer trials than the other data sets, and therefore, the
population of spike trains from which inputs were sampled was not variable enough to predict
observed variability in behavior. We also explored some potential process-oriented
explanations. One possibility is that the monkey was able to rapidly adapt its criterion
depending on the difficulty of the search task. Indeed, fits were improved for all models if we
allowed the threshold to increase for the hard relative to the easy condition (see Table 2, ).
Another possibility is that the gate parameter could be strategically adjusted for the easy and
hard conditions. Fits of this elaborated model were also substantially improved (see Table 2,

). This may indicate that the gate constant can be selectively modified to adapt behavior,
but data in which animals are able to modify their performance across blocks will be necessary
to evaluate more rigorously this hypothesis.

Discussion
A primary goal of these simulations was to determine whether visual neuron dynamics could
serve as a neural representation of perceptual evidence. Models that assume leaky or gated
integration provide an excellent account of the distributions of saccade RTs. It may be seen as
quite surprising that any of the models successfully accounted for observed RT distributions.
From a modeling standpoint, the use of raw neural inputs dramatically reduces the number of
free parameters that would typically be optimized to fit behavior. Indeed, the impact of these
neural constraints is illustrated by the models that could not adequately fit behavior.
Furthermore, from a neurophysiological standpoint, the full neural circuitry required for
saccade control is complex and incompletely understood. Yet, by assuming a simple connection
between visual and movement neurons, these models capture essential characteristics of
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behavior. Visual neuron activity during search is sufficient to serve as input to the accumulation
decision process thought to be instantiated in movement neurons.

Another goal of these simulations was to determine the mechanisms that are necessary to
predict behavior from the neural representation of evidence in FEF visual neurons. The perfect
and leaky integrator models assume a continuous flow of information from visual processing
to evidence accumulation. In contrast, the gated models assume that gating inhibition prevents
the integration of evidence early in the trial when no information is present in the signal (i.e.,
when the visual neurons have not yet selected the location of the target). In other words, the
gate acts as a threshold on the evidence that must be reached before the accumulation process
can begin. Despite the important theoretical distinction, there was little evidence to distinguish
the gated and leaky models based on behavioral fits alone. We turned to the neurophysiology
to resolve this mimicry.

Thus far, we used neurophysiological recordings from visual neurons to constrain the
perceptual evidence driving models of decision making and contrasted models on their ability
to account for observed behavior. If the link between movement neurons and the accumulation
of evidence is valid, then accumulator units should predict the observed neural dynamics. In
the next section, we quantify and compare the dynamics of movement neurons recorded in FEF
with dynamics of predicted model accumulator activity. Models that predict both neural and
behavioral data should be selected in favor of models that predict only behavior.

Accounting for Movement Neuron Dynamics
The goal of the following analyses was to compare quantitatively the dynamics of the model
accumulator units with movement neuron activity. Note that the movement neuron activity is
a prediction of the model, not a fit to data. The parameters that optimized fits to the behavior
were used to generate predicted activity trajectories. These trajectories were then analyzed
using the same algorithms applied to the FEF movement neurons.

Analysis of Movement Neuron Dynamics
Woodman et al. (2008) analyzed how movement neuron activity varied with RT in monkeys
performing visual search with stimuli supporting more or less efficient search. Following their
methodology, trials in which a saccade was made correctly to a target in the neuron’s movement
field were sorted by RT and grouped into bins of 10 trials. A spike density function was
generated for each bin of 10 trials (see Figure 10A). We calculated four characteristics of each
spike density function: (a) time of onset of activity, (b) growth rate, (c) baseline discharge rate,
and (d) threshold discharge rate (see Figure 10B). The onset, growth rate, and baseline were
calculated from spike density functions generated from trials of spike trains that were aligned
on the time of the presentation of the search array. To calculate the onset of activation, we used
a sliding-window algorithm (−20 ms to 20 ms) that moved backward in 1-ms increments from
15 ms before the time of saccade initiation. The onset of activation was given when the
following three criteria were met: (a) Activity no longer increased according to a Spearman
correlation (α = .05) within the window around the current time, (b) activity at that time was
less than activity during the 20 ms preceding saccade onset, and (c) as the window was moved
backward in time, the correlation remained nonsignificant for 20 ms. The growth rate was
calculated by dividing the difference between the threshold activity level and the activity level
at the time of onset by the difference between the time of saccade and the time of activity onset.
Baseline activity was calculated as the average activity in the 200 ms prior to the appearance
of the search array. Threshold was measured using a spike density function that was generated
by aligning trials on the time of saccade for each RT group. The threshold activity was
computed as the average activity level of a neuron in the interval −20 to −10 ms relative to
saccade (J. W. Brown, Hanes, et al., 2008; Hanes & Schall, 1996).
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Figure 10B shows scatterplots of each neural activity measurement versus RT for each bin for
one characteristic neuron. We computed the correlation (r) between each measure of neural
activity for the trials in each bin and the mean RT for each bin. This neuron shows a strong
correlation between the onset of activity and RT for both difficulty conditions (reasy = 0.91,
rhard = 0.94, p < .05). However, the correlation with RT was not significant for growth rate
(reasy = −0.35, rhard = 0.26, both p > .29), baseline (reasy = −0.12, rhard = −0.23, both p > .59),
and threshold (reasy = 0.12, rhard = 0.12, both p > .72). Figure 10C summarizes the results for
the entire population of movement neurons that were analyzed. Since there were no major
qualitative differences, results were combined across individual monkeys and tasks. Table 3
summarizes the mean correlation and percentage of significant correlations (α = .05) for the
entire set of neurons. Most notably, a high percentage of neurons showed a significant positive
correlation between the time of onset of activity and RT in both difficulty conditions (r ̄easy =
0.53 [54.9%], p < .05; r ̄hard = 0.72 [68.9%], p < .05). However, there was little or no correlation
between baseline (r ̄easy = −0.11 [3.9%], p < .05; r ̄hard = −0.05 [1.6%], p < .05), and threshold
(r ̄easy = 0.12 [9.8%], p < .05; r ̄hard = 0.06 [13.1%], p < .05) for the vast majority of neurons.
Some neurons did show a significant correlation between growth rate and RT (r ̄easy = −0.22
[3.9%], p < .05; r ̄hard = −0.14 [6.6%], p < .05), but the relationship was far weaker than that
observed between the onset and RT. These observations are in agreement with previous reports
that when stimuli vary in discrimination difficulty, RT correlates most strongly with the onset
of neural activity (Thompson & Schall, 2000; Woodman et al., 2008), correlates less strongly
with the growth rate of neural activity (Hanes & Schall, 1996), and does not vary with the
baseline or threshold in this task.

We also measured activity of movement neurons when a distractor was in their movement field
and a saccade was made to another location. We compared this activity with the activity of the
same neuron when a target was in its movement field. We averaged activity in the time interval
when threshold on movement neuron activity would be reached (−20 to −10 ms prior to
saccade). We calculated a distractor/target (D/T) ratio:

(12)

Tin is the activity of the movement neuron when the target was in its movement field prior to
the saccade, Din is the activity when the distractor was in its movement field, and B is the
baseline activity of the neuron (see Figure 10D). We only included movement neuron activity
responding to distractors that were not adjacent to the target to ensure distractors and targets
were in different receptive and movement fields and to avoid local suppressive zones
surrounding the receptive and movement fields of neurons in FEF (Schall, Hanes, et al.,
1995; Schall et al., 2004). Thus, the D/T ratio represents activity when a saccade was made to
a distant location in the visual field.

The D/T ratio was interpreted as the level of evidence accumulated for a saccade to the
distractor relative to the threshold at the time a decision was made (i.e., the threshold was
crossed). A positive value indicated that accumulated evidence supporting a distractor was still
present although the response was made to the target. A negative value indicated that
accumulated evidence supporting a distractor response was suppressed or decayed below
baseline at the time a decision was made, which was present in a small number of neurons. A
ratio near zero indicated that accumulated evidence supporting the distractor either remained
at baseline for the duration of the trial or increased but then decayed to baseline level by the
time the decision was made.
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On average, movement neurons showed slightly elevated activity when a response was made
to a target opposite their receptive field. Figure 10D shows 95% confidence intervals around
the mean observed D/T ratio across the neurons (Measy = 0.15, Mhard = 0.18). For both easy
and hard, this ratio was significantly greater than zero, teasy(50) = 2.90, thard(60) = 3.31, both
p < .05, and significantly less than 1.0, teasy(50) = −16.42, thard(60)= −18.36, both p < .05.
There was no significant difference between easy and hard conditions in this ratio, paired t
(50) = 1.68, p > .05 (excluding Data Set Q, which had no easy condition). Table 4 (right column)
summarizes these results.

Analysis of Model Dynamics
We conducted the same analyses on the movement unit trajectories predicted by each model,
calculating onset, baseline, growth rate, threshold, and D/T ratio. The results in the previous
section established five benchmark criteria that the models must satisfy to predict movement
neuron activity. For targets in the movement field, they should predict (a) a strong positive
correlation between the onset of activation and RT, (b) a weak inverse correlation between
growth rate and RT, and zero correlation between RT and the (c) baseline or (d) threshold.
Finally, for distractors in the movement field, they should predict (e) a D/T ratio that is close
to zero. Later, we quantify additional characteristics of the trajectories, but these five criteria
proved most useful for model selection purposes.

Model unit accumulation was defined in terms of spike rate (normalized to arbitrary
measurement units). Our simulation methods allowed us to generate thousands of simulated
trials (each with a predicted RT and activation pattern), whereas only ~120 trials of spike
activity were analyzed from each neuron from trials in which the target was in the neuron’s
movement field. To have commensurate statistical comparisons of models and
neurophysiology, our analyses of model dynamics were performed in the following way: (a)
We generated 120 simulated trials to approximate the average number of trials of observed
movement neuron activity, (b) we normalized and rescaled the model trajectories from those
trials by the approximate average observed threshold across neurons, (c) we generated one
spike train for each trial according to a time-inhomogeneous Poisson process with the rate
given by the model activation trajectory for that trial, (d) we binned the simulated spike trains
into groups of 10 trials according to the predicted RT, and (e) we generated an activation
function (in spikes per second [sp/s]) from the predicted spikes exactly as was done for the
actual spikes. These steps were repeated 500 times to obtain a distribution of predictions.
Essentially, this transformed a model prediction in terms of sp/s into a single predicted spike
train. The model spike trains were then analyzed by correlating RT with onset, growth rate,
baseline, and threshold and calculating the D/T ratio in exactly the same way we analyzed the
observed spike trains. We then computed a mean correlation and percentage of significant
correlations for each activity measurement comparable to those reported for observed neurons.
All of this being said, our conclusions do not depend on whether our analyses were performed
directly on model activation in terms of spike rate or on model Poisson spikes trains; our
motivation for generating spike trains was to ensure that the model and neurophysiological
analyses had comparable statistical power. For example, differences in the variability of the
model and neural signals could lead to differences in the measured onset time.

Perfect Accumulators
Figure 11 summarizes the results from the analyses of the perfect accumulator model
trajectories (see also Table 3). Although these models inadequately accounted for behavior, a
quantitative analysis of their predicted trajectories can indicate why. First, notice that all models
predicted a consistent positive correlation between the measured onset of activation and
predicted RT. This may seem counterintuitive because all simulations began at the same time.
However, when the onset must be measured as it is with neurophysiological data, the onset of
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activity (the time when it increases above the starting point/baseline) and the start of the
accumulation are not necessarily the same time. It has been shown that a correlation between
the time when accumulator model activity begins increasing and the time when threshold is
crossed is a common property of stochastic accumulator models (Purcell, Schall, & Palmeri,
2009; Ratcliff, 1988; Ratcliff et al., 2003). This is due to noise in the process. Trials in which
activity took longer to reach threshold are generally trials in which activity, by chance,
remained near baseline for a longer time. This means that a correlation between the onset and
RT is not a useful criterion for discriminating among stochastic accumulator models. In
contrast, when the accumulation process is ballistic (e.g., S. Brown & Heathcote, 2005;
Carpenter & Williams, 1995), the time when activity begins increasing is necessarily defined
by the start of the accumulation.

The perfect integrator models made several incorrect predictions about the movement neuron
dynamics. All three models predicted a negative correlation between the baseline activation
and predicted RT that was not observed in movement neuron activity. In addition, all perfect
integrator models predicted a D/T ratio that was inconsistent with the observed values. Table
3 summarizes the mean correlation between RT and the onset, growth rate, baseline, and
threshold and the mean percentage of significant correlations across data sets for each model.

The models failed to predict the observed pattern of neural activity for the same reason they
failed to predict behavior: They lack a mechanism to limit the rate of accumulation. Prior to
the onset of the array, the models accumulated noise in the neural inputs. The baseline level
of activity correlated with RT because there was substantial variability in activity accumulated
prior to the array onset. If a unit had a high activation after accumulating noise over time, the
threshold was likely to be reached more quickly; if a unit had a low activation, the threshold
was likely to be reached more slowly. Similarly, the D/T ratio was too high for the race model
because nothing limited the accumulation of evidence for a saccade to the distractor. In contrast,
the diffusion model incorrectly predicted that feed-forward inhibition was strong enough to
suppress activity below zero, which is rarely observed. The D/T ratio predicted by the
competitive model will depend on the value of β, but using the best fit parameters to behavior
resulted in competition that was insufficiently strong to suppress competing activity for almost
all data sets. We can therefore reject these models on the basis of both poor behavioral fits and
poor neural predictions.

Leaky Accumulators
Figure 12 illustrates the results of the leaky accumulator models and the mean correlations and
percentage of significant correlations (see also Table 3). Although leakage improved
behavioral fits, it did not sufficiently improve neural predictions. For all three leaky models,
the inverse correlation with the baseline was reduced, but not eliminated, and the mean
predicted correlations generally fell outside the observed confidence interval. Furthermore, all
three models incorrectly predicted the magnitude of the D/T ratio. The race model predicted
that distractor-related activity would reach a much greater level than was observed. As before,
the diffusion model predicted that distractor-related activity was suppressed below baseline,
which was not observed. Finally, the predictions of the competitive model varied across data
sets, which reflects differences in the best fitting β parameter, but most predictions fell outside
the confidence interval around the mean observed D/T ratio.

We hypothesized that leakage would eliminate the negative correlation between the baseline
of activity and RT by causing model activation to reach a lower asymptote prior to stimulus
onset, but a consistent correlation was still observed. The threshold and leakage parameters
were constant across simulations, but variability in the neural inputs prior to stimulus onset led
to variability in the level at which activity reached the lower asymptote. If the distribution of
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baseline activity was sufficiently large relative to the threshold, then it was likely to correlate
with RT. This was the case for each of the leaky accumulator models.

It is possible that the best fitting parameters could be adjusted such that the neural predictions
were improved without compromising the fits to behavior. Variability in an accumulator was
inversely related to the magnitude of leakage, therefore increasing leakage could eliminate the
inverse correlation between baseline activity and RT. We tried fitting each leaky accumulator
model while systematically varying the leakage term in small increments and finding the best
fitting values of the threshold (θ) and tballistic parameters. However, even small changes in the
leakage constant away from its best fitting value resulted in extremely poor accounts of the
behavioral data. This is because increasing leakage decreased the upper asymptote on model
dynamics, which restricted the range at which the threshold could be placed and still capture
variability in RT. Thus, although the leaky models accounted well for the behavioral data, they
failed to predict the observed pattern of neural results.

Gated Accumulators
Figure 13 illustrates the gated accumulator models’ predictions of neural activity (see also
Table 3). In contrast to previous models, there was no significant correlation with baseline or
threshold. Furthermore, the gated models also predicted D/T ratios that generally fell within
the 95% confidence interval of the observed mean value. These observations aligned closely
with the observed neurophysiology.

The gated models predicted the neural data well because they assumed that integration did not
begin until the visual inputs exceeded the gate. For nearly all gated models, the value of the
gate parameter that optimized behavioral fits was sufficiently high that the start of the
accumulation was delayed until visual neuron inputs elevated in response to the stimulus.
Across all data sets and gated models, only three data sets (Q, race; Mm, diffusion; Q,
competitive) initially predicted a gating value that was too low to suppress the early
accumulation of evidence, but unlike leakage, this value could be increased without a major
impact on behavioral predictions because the upper asymptote of the accumulation will not be
affected. Thus, all variability in the baseline activity was due solely to the minimal Gaussian
noise added to our model, which was too low to predict a significant correlation with RT. Thus,
although the gated and leaky models predicted indistinguishable accounts of the behavioral
data, the gated models provided a superior account of the observed pattern of movement neuron
activity.

The gated model met our benchmark criteria for both the behavioral and neural activity. We
followed these results with a series of additional analyses of the movement neuron and gated
model dynamics. Thus far, we have shown that the models predicted the relationship between
measurements of activity and random (within-condition) variability in RT. Next, we asked
whether the models could accurately predict how activity varied across difficulty conditions.
We computed the average onset, growth rate, baseline, and threshold within each difficulty
condition across all neurons (see Table 4, top). Only the onset was significantly different
between the easy and hard conditions (paired t = 7.58, p < .001; this observation was previously
reported in Woodman et al., 2008). The difference in onset between easy and hard conditions
was correlated with the difference in mean RT between easy and hard (r = .53, p < .001). By
contrast, growth rate, threshold, and baseline did not significantly vary across conditions (all
t ≤ 1.02, all p > .31), and the difference in those measures did not correlate with the difference
in RT (all r ≤ 0.11, all p > .44).

All three gated models successfully predicted the magnitude of the difference in onset of
activation between conditions without predicting other differences (see Figure 14 and Table
4). The average difference between conditions across data sets for all measurements (onset,
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growth rate, baseline, threshold, and D/T ratio) was not significantly different than the average
difference for the movement neurons (race, diffusion, competitive; all t < 1.91, all p > .06).
Importantly, the predicted timing of the onset closely corresponded to the observed ranges.
The models slightly overpredicted the absolute values of the onset and growth rate, but the
match was still very good considering that these were not fitted values.

It is possible that the gated integrators were flexible enough to predict the basic pattern of
behavioral and neural data regardless of the specific computational architecture. We tested one
additional model that implemented competition between visual neuron inputs using a
normalization operation rather than a subtraction. This normalized model divided the input to
each accumulator by the sum of the input to both accumulators at each given time step. This
is a common assumption of stochastic accumulator models that reduces the number of free
parameters (Bogacz et al., 2006; Ratcliff et al., 2007; Usher & McClelland, 2001). As evidence
for one alternative grows larger, evidence for the second unit must necessarily be reduced. We
evaluated two normalized models using the pooled data set, a normalized race without
competition (β = 0), and a normalized competitive model (β free to vary). In stark contrast to
the other accumulator models, all versions of the normalized model (perfect, leaky, and gated)
failed to account for the behavioral data (all R2 < 0.40). The models failed because the
normalization constrained the total input for both units to sum to a constant (1.0) at all times,
thus if the input to one accumulator was low, the other was necessarily high. This was true
both before the onset of the search array and at the time the threshold was crossed. Therefore,
any value of leakage or gate that was strong enough to limit the accumulation prior to the array
onset was also too strong during the decision. We can rule out this architecture when taking
prestimulus activation levels into account.

General Discussion
Stochastic accumulator models explain how perceptual evidence is used to make a decision
but do not explain the mechanisms that give rise to that perceptual evidence. This has begun
to change, with models that explain the mechanisms that cause the drift rate (Ashby, 2000;S.
D. Brown, Marley, Donkin, & Heathcote, 2008; Bundesen et al., 2005; Lamberts, 2000; Logan,
2002; Nosofsky & Palmeri, 1997; Palmeri, 1997). More elaborate models have been developed
based on psychophysical and neurophysiological principles that utilize changes in drift over
time (Smith, 1995; Smith & Ratcliff, 2009). Here, we took a different approach. We assumed
that the firing rate of a specific neuronal population was the input to an accumulator network.
Our simulations produced three key results. First, most fundamentally, we showed that
accumulator models that use visual neuron activity as input were sufficient to account for
observed variability in behavior during a saccade visual search task. Second, we showed that
although models may make indistinguishable predictions of behavior, they make different
predictions about the characteristics of neural activity. Finally, we showed that to account for
both behavioral and neural data, models must assume that the flow of perceptual evidence to
the accumulator is gated. These results have broad implications for cognitive modeling
techniques, theories of perceptual decision making, and mechanisms of neural function.

Decision-Making Mechanisms
A primary goal was to use the constraints imposed by neural data to determine the mechanisms
underlying perceptual decisions. A basic assumption of accumulator models is that evidence
is integrated over time to make decisions (e.g., Ratcliff & Smith, 2004). Several arguments
have been put forth for the necessity of integration in perceptual decision making. Integration
is necessary for statistically optimal decisions (Bogacz et al., 2006;E. Brown et al., 2005), but
monkeys and humans may not always perform optimally. We tested two models that did not
assume integration and found that neither model predicted observed RT variability. These
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results add converging support for temporal integration of evidence. In addition, the failure of
models without integration implies that some additional stage during which integration takes
place is necessary to produce a response. Neurophysiological evidence for distinct stages of
processing instantiated by different populations of neurons in FEF has also been demonstrated
in monkeys performing stop signal and target step tasks (J. W. Brown, Hanes, et al., 2008;
Hanes et al., 1998; Murthy et al., 2009).

Models assuming perfect integration failed to predict behavior. They failed because the neural
firing rates provide a continuous representation of evidence starting before the onset of the
search array. Visual neurons discriminate the target ~110 ms after the stimulus onset, so the
model units accumulate only noise for the majority of the trial. In this framework, a continuous
representation of the perceptual evidence signal requires some mechanism to limit the flow of
perceptual evidence until a signal is present in the neural inputs. We showed that leakage and
gating are effective. Other mechanisms that explicitly start the accumulation (e.g., Wong et
al., 2007; Larsen & Bogacz, 2010) and that reset the accumulation after threshold is crossed
(e.g., Logan & Gordon, 2001) may also work.

Unlike perfect integrators, models assuming leaky integration accounted well for observed
behavior. In previous comparisons between perfect and leaky integrators, the best fits to
behavior were found when leakage was near zero (Boucher et al., 2007; Ratcliff & Smith,
2004). In other cases, leakage has been included to explain limited accuracy despite extended
decision time (Busemeyer & Townsend, 1993; Smith & Vickers, 1989; Usher & McClelland,
2001), that is, the upper asymptote of the activation function after stimulus presentation. In our
case, leakage was critical to limit the accumulation of perceptual evidence prior to a decision,
that is, the lower asymptote or baseline prior to stimulus presentation. As expected, leakage
limited the rate of accumulation until visual neuron activity increased, and behavioral fits
improved significantly. Surprisingly, however, leaky models predicted a correlation between
the movement neuron baseline activity and RTs that was not observed in the data and could
not be eliminated by manipulating the leakage parameter. Thus, models assuming only leaky
integration cannot account for the pattern of neural data.

Gated models include a constant inhibition that prevents the flow of evidence until it exceeds
a critical level. The leaky and gated models accounted for behavior equally well, but only the
gated accumulator models accounted for both behavior and neural activity. These models
support a theory of perceptual decision making in which evidence is continuously represented
in one neural population but the decision process is carried out by a distinct population of
neurons after there is sufficient support for a particular response.

Neural and Mental Chronometry
Classes of neurons can be distinguished anatomically, morphologically, and
neurophysiologically, and the activity of these populations can be mapped onto distinct stages
of mental processing (Schall, 2004; Shallice, 1988). Our union of neurophysiology and
cognitive computational modeling can shed light on the stages of processing that comprise RT
during simple perceptual tasks. A pure discrete model assumes that perceptual processing has
completed before transmitting the output and that the accumulation does not begin processing
that output until perceptual processing of evidence is complete (Sternberg, 1969, 2001).
Alternatively, a pure continuous model would assume that both stages operate in parallel and
that information is transmitted continuously from one stage to the next (Eriksen & Schultz,
1979; McClelland, 1979). Most accumulator models assume that the encoding and
categorization of perceptual evidence and the accumulation of that evidence take place during
discrete stages whose durations sum.
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By assuming that evidence about target location is represented in the firing rates of visual
neurons in FEF, we make an explicit commitment to a continuous representation of
information, that is, a small grain size of evidence (Miller, 1982, 1988). This allows for the
possibility of continuous transmission to subsequent stages but does not require it. Our perfect
and leaky accumulator models assume pure continuous transmission of evidence to movement
neurons, but a gating mechanism is necessary to account for the neural data. When optimized
to fit behavior, the gate parameter prevents the accumulation until a signal is present in the
perceptual input. This essentially decomposes RT into two stages: an initial stage in which the
perceptual evidence representation is still emerging and no accumulation takes place, and a
later stage in which the accumulation begins and a decision is made. This is similar to the two-
stage model of Carpenter et al. (2009), which proposes an initial diffusion process that detects
stimulus features, followed by a ballistic rise to threshold that initiates the response. Here,
visual neuron activity is represented continuously over time, but it can only influence the
subsequent decision stage when it exceeds the level of gate. Therefore, the gated models
instantiate the basic assumptions of the accumulator model framework, discrete perceptual
processing followed by an accumulation of evidence, in a simple neurally plausible network.

Previous work has used single-unit activity from FEF, SC, and LIP neurons to divide RT into
processing stages. The time required for these visual neurons to select the target has been
identified with the time required to perceptually process a stimulus. When search is easy, this
time is relatively short and has less variability (Thompson et al., 1996). When search is more
difficult, this time is longer and accounts for a larger portion, but not all, of RT variability
(Bichot, Rao, & Schall, 2001; Cohen, Heitz, et al., 2009b; Ipata et al., 2006; McPeek & Keller,
2002; Sato et al., 2001; Thomas & Paré, 2007). Movement neuron activity is also associated
with a distinct stage of motor preparation (J. W. Brown, Hanes, et al., 2008; Bruce & Goldberg,
1985; Carpenter et al., 2009; Dorris et al., 1997; Hanes et al., 1998; Hanes & Schall, 1996;
Murthy et al., 2009). However, it has been difficult to determine how these processes interact.
We have shown that the stages of processing instantiated in visual and movement neuron
activity can be interpreted in the context of the accumulator model framework as a simple feed-
forward visual-to-motor network.

Movement neurons have previously been used to explore the discrete versus continuous flow
of information, but results have been contradictory. In one study, the onset of activity increased
with target–distractor similarity; this was interpreted as discrete information flow (Woodman
et al., 2008; see also Mouret & Hasbroucq, 2000). In another study, the activity of accumulator
units representing the distractor was elevated when it was more similar to the target; this was
interpreted as continuous information flow (Bichot, Rao, & Schall, 2001; see also Miller,
Riehle, & Requin, 1992; Riehle, Kornblum, & Requin, 1994). Studies of the lateralized
readiness potential, the voltage difference between event-related potentials over motor cortex
contralateral and ipsilateral to the effector, also suggest partial activation in the movement
preparation stage (Gratton, Coles, Sirevaag, Eriksen, & Donchin, 1988; Osman, Bashore,
Coles, Donchin, & Meyer, 1992). The gated accumulator model can potentially reconcile these
results. The onset increases with RT because activity takes longer to reach the gate. However,
partial transfer of information occurs if activity temporarily exceeds the gate but may decay
before the response threshold is crossed.

Studies of movement-related scalp potentials and single-unit activity suggest that subjects may
adjust their behavior by changing the amount of partial information transferred between stages
when speed or accuracy is emphasized (Bichot, Rao, & Schall, 2001; Coles, Henderikus, Smid,
Scheffers, & Otten, 1996; Gratton, Coles, & Donchin, 1992; Low & Miller, 2001).
Accumulator models traditionally assume that organisms adapt their response threshold to trade
off speed and accuracy (e.g., Simen, Cohen, & Holmes, 2006), but there is currently no
evidence for threshold changes in single-neuron recordings from movement-related neurons.
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We speculate that the gate parameter could be adjusted to determine whether partial
information is used, which would provide a way to strategically adapt RT (Pouget et al.,
2010). A potential source of cognitive control is the basal ganglia, which are proposed to play
a role in gating the initiation of saccades (J. W. Brown, Bullock, & Grossberg, 2004; Hikosaka,
Takikawa, & Kawagoe, 2000). The gating can be adapted to modify performance (Frank,
2006). In our model, if a task emphasizes accuracy, the gate parameter can be raised so that
the onset of movement neuron activity is delayed until the magnitude of visual selection is
large. If the task emphasizes speed, then the gate parameter can be lowered, and perceptual
evidence will be continuously accumulated. Therefore, manipulations of speed and accuracy
could be evident in the baseline and onset of activity instead of in the threshold. Recent evidence
from fMRI studies suggests that manipulations of speed and accuracy cause changes in the
baseline activity of areas related to response preparation (Forstmann et al., 2008; Ivanoff,
Branning, & Marois, 2008; van Veen, Krug, & Carter, 2008), but it is not yet known how these
manipulations affect the activity of FEF neurons.

The nature of single-unit data limits strong assertions about pure discrete versus continuous
transmission. One interpretation of these results is that the entire population of visual neurons
representing an object must exceed the level of the gate for any movement neurons to begin
accumulating evidence for a saccade to that object. This global gating of visual inputs would
represent a pure discrete model (e.g., Sternberg, 1969, 2001). Alternatively, individual
movement neurons may begin accumulating only after the particular visual neuron inputs to
that neuron first exceed the gate. This local gating of visual inputs would represent a continuous,
or at least discrete, asynchronous model (Miller, 1982). This could be ultimately resolved
empirically by simultaneously recording movement neurons that represent the same saccade
vector and comparing the timing of their onset. This issue could also be addressed theoretically
using spiking network models (e.g. Furman & Wang, 2008; Wang, 2002; Wong et al., 2007;
Wong & Wang, 2006), in which the connections between individual neurons can be
manipulated. However, this requires data and a level of modeling beyond the scope of the
present report.

Relation to Other Models
Previous modeling work has incorporated neurophysiology into the accumulator model
framework, but our approach is novel in three ways. First, neural data constrained both model
inputs and outputs. Previous investigations fitted accumulator models to behavior and then
compared the predicted trajectories with neural activity (Boucher et al., 2007; Ratcliff et al.,
2003, 2007), but model input (drift rate) was defined by free parameters. Other investigations
used accumulated spike rates to predict RT but did not compare model and neural output (e.g.,
Bundesen et al., 2005; Cook & Maunsell, 2002; Oram, 2005). Our models integrate neural data
to make predictions, and we compare those predictions with neural data. Second, we went
beyond a qualitative account of the movement neuron activity and quantified several ways in
which model activation and neuron activity varied within and across stimulus conditions (see
also Boucher et al., 2007). Third, by using neural data, our input representation of perceptual
evidence was defined continuously at all times. Consequently, our models needed to account
for activity throughout a trial, from prior to the stimulus array until the saccade was made. This
requirement had implications that were critical for ruling out certain model architectures.

A different approach to modeling has aimed to provide a system-level account of saccade
generation that includes FEF, SC, and LIP (for a review, see Girard & Berthoz, 2005). Several
of these models propose connections between visual and movement neurons (J. W. Brown et
al., 2004; Hamker, 2005b; Hamker & Zirnsak, 2006; Mitchell & Zipser, 2003). This approach
to modeling is advantageous in that interactions across multiple brain areas may be taken into
account and the dynamics of those areas explored under a variety of tasks. Connections between
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visual and movement neurons were also proposed by Heinzle et al. (2007), who developed a
detailed spiking network model of local FEF circuitry that includes connections between visual
and movement neuron connections. One advantage of our simplified architecture is that it
allowed us to contrast alternative mechanisms mediating the visual-to-movement
transformation, which could later be incorporated into larger scale models and models
including realistic populations of spiking neurons. Other models have also proposed a gating
inhibition that prevents movement neurons from ramping up until visual neuron activity is
sufficient (Hamker, 2005b; Heinzle et al., 2007) or withholds a preplanned movement during
countermanding (Boucher et al., 2007; Lo, Boucher, Paré, Schall, & Wang, 2009; Lo & Wang,
2006). In most of these models, however, inhibition is either dependent on the level of
movement neuron activity or it is applied directly to the movement neurons. A key conclusion
of our simulations is that inhibition must be independent of the level of movement neuron
activity to predict both neural and behavioral observations. If this is the case, then a direct
inhibition of the movement neurons themselves may cause the models to predict a zero baseline,
which is rarely observed. We address this in our models by applying the gate specifically to
the model input from the visual neurons, which provides a parsimonious and neurally plausible
explanation for the observed pattern of data. We reached this conclusion by fitting our models
to behavior and predicting neural dynamics. This was possible because we chose a level of
complexity appropriate to draw conclusions about abstract theories of decision making and
guide the development of biologically plausible models.

We used the saccade visual search task to evaluate accumulator models because it contains the
necessary components to constitute a perceptual decision: stimuli with interpretations relevant
to alternative behaviors (Schall, 2001). Our goal was to address specific decision-making
mechanisms; therefore, we did not expand the model to address important aspects of search
behavior (e.g., set-size manipulations and target-absent trials). That being said, our proposed
mechanism for visual-to-motor interactions does have implications for more complete models
of search. Many visual search models include a salience map that represents explicitly the
perceptual evidence for and against different stimuli being the target defined by the task
contingencies (Bundesen et al., 2005; Findlay & Walker, 1999; Wolfe, 2007). FEF, SC, and
LIP visual neurons have been associated with a neural instantiation of the hypothetical saliency
map (Findlay & Gilchrist, 1998; Goldberg et al., 2006; Thompson & Bichot, 2005). For saccade
decisions, our model assumes that the saliency map is the representation of perceptual evidence
supporting a saccade to that location in visual space (see also Hamker, 2005a). When this
evidence exceeds the gate, it feeds into an accumulator producing a particular response. In the
saccade visual search task, the response is a saccade to the location of the target, and the
accumulation is accomplished by movement neuron activity. There is evidence that an
accumulation to response threshold may operate in motor cortex for manual responses (Lecas,
Requin, Anger, & Vitton, 1986; but see M. M. Churchland, Yu, Ryu, Santhanam, & Shenoy,
2006). Detailed theories have been developed to explain the formation of the saliency map
(Bundesen et al., 2005; Itti & Koch, 2001). To more completely connect our proposed decision-
making models with models of search, the gated accumulator models will need to be fitted to
a data set in which the number of stimuli in the search array is varied across trials. Of particular
interest is whether changes in the visual inputs alone would be sufficient to predict changes in
behavior due to changes in the number of stimuli or whether additional parameters and the
number of accumulating units will need to vary (Cohen, Heitz, et al., 2009b). Although much
work remains, this suggests a foundation to begin bridging accumulator models of perceptual
decisions with models of search and eye movements in a manner compatible with
neurophysiological observations.
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Inhibitory Interactions
We tested neural implementations of race (Logan & Cowan, 1984), diffusion (Ratcliff,
1978), and competitive (Usher & McClelland, 2001) models that assume different inhibitory
interactions between accumulators. Often, these models cannot be distinguished using
behavioral data alone (Ratcliff & Smith, 2004; Van Zandt, Colonius, & Proctor, 2000; Van
Zandt & Ratcliff, 1995), and some are formally equivalent under certain assumptions (Bogacz
et al., 2006). We expected that neural constraints imposed by our framework would distinguish
among these models. Some models with perfect or leaky integration made distinguishable
predictions, but none predicted both behavioral and neural data. In contrast, all gated integrators
predicted the behavioral and neural data, but there was no reason to prefer one model over
another. The various forms of gated models were difficult to distinguish because the visual
inputs only affected the accumulation of evidence for a brief time before the threshold was
reached.

These results show that the simplest gated model, the independent gated race, is sufficient to
account for the observed pattern of neural and behavioral data. However, there are several
reasons to believe that some form of inhibitory interaction may be operating that is not revealed
by our relatively limited behavioral data. Inhibitory interactions are necessary to optimize the
rate of reward (Bogacz et al. 2006), and feed-forward inhibition allows accumulators to
approximate a log likelihood decision variable when neuronal activity indicates support for
alternative hypotheses (Gold & Shadlen 2007). Neurophysiological data also provide evidence
for competition among FEF and SC neurons. There appears to be a local center-surround
inhibition between ~20% of neurons in FEF and SC (McPeek & Keller, 2002; Schall, Hanes,
et al., 1995; Schall et al., 2004), but the long-range interactions we considered in our
simulations are less well understood. Micro-stimulation of FEF in one hemisphere can reduce
firing rates in the opposite hemisphere (Schlag, Dassonville, & Schlag-Rey, 1998), but
microstimulation could activate both visual and movement neurons. Thus far, however,
experimental results concerning the precise nature of interactions have been inconclusive.

The nature of inhibitory interactions among response alternatives may be resolved with
neurophysiological experiments. The diffusion and competitive models make different
predictions about the relative level of activity recorded simultaneously from visual and
movement neuron representing the same or different objects. The diffusion model predicts that
activity for visual neurons representing an object should vary inversely with the activity of
movement neuron representing the alternative object in the time interval prior to reaching
threshold because increased visual neuron will lead to decreased movement neuron activity.
The competitive model predicts that activity of movement neurons representing alternative
responses will vary inversely during the same time interval because activation of one response
should lead to decreased activation of the alternative response. Behavioral tasks that require
more complex stimulus–response mapping may also require competitive interactions that are
not apparent in the visual search task that we used. For example, tasks that dissociate the cue
and response locations (Sato & Schall, 2003) or involve dynamically changing search arrays
(Murthy et al., 2009) have been shown to require inhibition of the previously prepared response
(Camalier et al., 2007; Verbruggen, Schneider & Logan, 2008), which could be due to feed-
forward or lateral inhibition.

Neural Mechanisms
Our model predicts a functional connection between visual and movement neurons. This
relationship has long been hypothesized (Bruce & Goldberg, 1985; Schiller & Koerner,
1971) but has not been tested as it was here. Most directly, this could be interpreted as local
topographic projections from FEF and SC visual neurons to movement neurons, but empirical
evidence for intrinsic connections between functionally defined neuronal populations is
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difficult to obtain (for evidence from rat SC, see Ozen, Augustine, & Hall, 2000), and
behavioral data demonstrate that these connections cannot be hardwired (e.g., Hallett &
Lightstone, 1976; Mays & Sparks, 1980). Eye movements are guided by a distributed network
of structures (Wurtz et al., 2001). LIP visual neurons project to FEF and SC (Ferraina, Paré,
& Wurtz, 2002; Paré & Wurtz, 1997). FEF visual and movement neurons project to SC,
although reports vary on the proportion of visual versus motor signals (Segraves & Goldberg,
1987; Sommer & Wurtz, 2000), and saccades elicited by microstimulation of FEF are impaired
when SC is inactivated (Hanes & Wurtz, 2001). An ascending pathway through the
mediodorsal thalamus also carries information from SC to FEF (Lynch, Hoover, & Strick,
1994), but inactivation of SC does not decrease FEF movement neuron activity (Berman,
Joiner, Cavanaugh, & Wurtz, 2009). The visual-to-motor transformation described in our
model most likely represents a visual selection process that is distributed across these structures
and culminates in the activation of FEF and SC movement neurons, as well as long-lead burst
neurons in the brainstem that initiate the actual saccade (Scudder, 1988).

Our model predicts that some gating mechanism intervenes between visual and movement
neurons. A potential neurophysiological source is the basal ganglia, which are hypothesized
to gate the preparation of motor responses (J. W. Brown et al., 2004; Frank, 2006). This gating
would be reflected in the activity of FEF and SC neurons. The substantia nigra pars reticulata
of the basal ganglia sends inhibitory projections to SC (Hikosaka & Wurtz, 1983) and to FEF
via the mediodorsal thalamus (Goldman-Rakic & Porrino, 1985). A recent model has proposed
that these projections serve a gating function (Lo & Wang, 2006), but the gate is applied directly
to movement neurons and they do not distinguish among visual and movement neurons. Other
models have posited a gating function of FEF and SC fixation neurons (Boucher et al., 2007;
Heinzle et al., 2007; Lo et al., 2009). Fixation neurons maintain a high baseline firing rate
during fixation and reduce their activity prior to the onset of a saccade (Dorris et al., 1997;
Hanes et al., 1998; Paré & Hanes, 2003; but see Hafed, Goffart, & Krauzlis, 2009; Krauzlis,
Basso, & Wurtz, 1997). Finally, Shea-Brown, Gilzenrat, and Cohen (2008) proposed that the
release of neuromodulators may correspond to an increase in gain on a decision variable; they
implemented such a mechanism in a simple two-layer network where threshold crossings in
the first layer lead to increased gain in the second layer, which has potential parallels to our
gated visual-to-movement network. Ultimately, the current data and simulations do not allow
a strong claim about the source of the gating inhibition, but we note that there are known
mechanisms that could implement this simple function.

Although we have implemented the gating mechanism as a constant value throughout a
simulated trial, evidence suggests that it may be more dynamic. Specifically, some FEF visual
and movement neurons exhibit a pause in discharge rate prior to the visual or movement
response (Sato & Schall, 2001). Across cortical areas, a preexcitatory dip of activity has been
attributed to a resetting of neural integration (Mazurek et al., 2003) and decreased activity in
cortical afferents due to the division of attention among stimuli (Furman & Wang, 2008; Wong
et al., 2007), but no conclusive data exist to indicate the neurophysiological mechanisms
responsible for this. Our model could explain the dip as a transient rise in the level of gating
inhibition following array onset. The goal of the present report was to distinguish models
according to predictions of a set of observed neurophysiological data in which a dip was
uncommon, and it is not clear that augmenting the models with a transient rise in gate would
aid in model selection, so we must leave the exploration of possible explanations for this
phenomenon to future model developments.

Linking Propositions
Linking propositions are statements that map unobservable cognitive states onto observable
neural states (Schall, 2004; Teller, 1984). Conclusions drawn from the association between
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models and neurophysiology are only as valid as the linking propositions upon which they are
based. Identifying valid linking propositions is a complex issue, particularly when the models
have been primarily developed in an abstract mathematical framework, rather than from
neurobiological observations. This is apparent when considering the mapping of a single
accumulator process onto neuronal activity in the oculomotor circuit. Many FEF, SC, and LIP
neurons have similar properties. For example, in monkeys performing visual search, the visual
neurons in FEF, LIP, and SC all seem to perform the same selection process at approximately
the same time (e.g., McPeek & Keller, 2002; Schall & Hanes, 1993; Thomas & Paré, 2007).
However, these are heterogeneous structures, and the diversity of cell types within and across
FEF, SC, and LIP must be recognized (Barash, Bracewell, Fogassi, Gnadt, & Andersen,
1991; Bruce & Goldberg, 1985; Horwitz & Newsome, 1999). Thus, the accumulation process
may map onto multiple brain areas, but it is doubtful that it maps onto all neurons in any
particular area. Here, we drew an important theoretical distinction between visual neurons
(perceptual evidence) and movement neurons (evidence accumulation) located within FEF.

Previous work has identified accumulator models with tonic visual neurons in LIP and FEF
(Gold & Shadlen, 2007). LIP neuron activity has been described as integrating sensory
evidence from early visual areas (e.g., area MT), and this has been modeled as an accumulation
to a threshold (Ditterich, 2006b; Mazurek et al., 2003; Wang, 2002). However, unlike visual
neurons in oculomotor areas, the activity of MT neurons is most closely linked to the immediate
stimulus features independent of the task at hand (Law & Gold, 2008). Furthermore, LIP does
not initiate the response. LIP does not contain many movement neurons (Wurtz et al., 2001),
and their response is more dependent on visual stimulation (Paré & Wurtz, 2001). LIP neurons
do not project directly to the brainstem saccade generator; the final command to move the eyes
must be relayed through FEF or SC movement neurons (Sparks, 2002). Finally, many models
of an LIP accumulator include substantial delays prior to and following the accumulation that
are modeled as a constants (e.g., Mazurek et al., 2003). Under certain conditions, however,
these stages may account for variability in RT. The accumulation to threshold movement
neurons in FEF and SC is one example (Hanes & Schall, 1996). Hence, the decision to act
cannot end in LIP.

Conclusions
Computational models can explain neuronal function in terms of cognitive processes. Since
the identification of both visual and movement neurons in FEF and SC, it has been assumed
that the visual information flows directly to movement neurons (Bruce & Goldberg, 1985;
Schiller & Koerner, 1971). The identification of movement neuron activity with an
accumulation to threshold suggested a natural framework to investigate this assumption more
rigorously. Models using actual visual neuron activity as input predicted not only the variability
in observed behavior but also the dynamics of movement neuron activity. This union of
cognitive modeling and neurophysiology strengthens the interpretation of visual neuron
activity as a representation of perceptual evidence of saccade target location and the
interpretation of movement neuron activity as the accumulation of that evidence.

Neurophysiology can also inform the development of cognitive models. By using observed
neural spike times in the model evaluation, we eliminated assumptions that govern all
properties of model input. Perhaps most important is the demonstration that this neurally
constrained approach to modeling actually works. Variable neural signals can be used as input
to cognitive models to make accurate predictions about observed behavior. Furthermore, we
showed that the constraints imposed by neurophysiology can be used to rule out models that
make indistinguishable predictions about behavior. Our framework is relatively simple and
flexible enough to be extended to other models of search and decision making.
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Figure 1.
Stochastic accumulator model illustration.
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Figure 2.
Connectivity between visual cortical areas and the oculomotor system. Middle temporal (MT),
visual area V4, visual area TEO, visual area TE, and lateral intraparietal area (LIP) project to
the frontal eye field (FEF). LIP and FEF project to the superior colliculus (SC). FEF and SC
project to the brainstem saccade generator. Not pictured are connections between prefrontal
cortex and FEF, from LIP to SC, and from the substantia nigra pars reticulata of the basal
ganglia to SC and to FEF via the mediodorsal nucleus of the thalamus.
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Figure 3.
Saccade visual search task and frontal eye field (FEF) activity during search. Panel A illustrates
example stimulus arrays used for color search (top), motion search (middle; arrows indicate
direction of motion), and form search (bottom). The color and motion search included a
manipulation of target–distractor similarity, with an example of easy on the left and hard on
the right. The form search included only one difficulty condition. Right panels show examples
of FEF visual (Panel B) and movement (Panel C) neuron activity during visual search. Easy
trials are shown in red, hard trials are shown in green. Solid lines are trials in which the target
was in the visual neuron’s receptive field or movement neuron’s movement field, and dashed
lines are trials in which the target was outside the neurons’ response fields.
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Figure 4.
Simulation methods. Spike trains were recorded from frontal eye field visual neurons during
a saccade search task. Trials were sorted into two populations according to whether the target
(top) or distractors (bottom) were within the neuron’s response field. N spike trains were
randomly sampled from each population to generate a normalized activation function that
served as model input on a given simulated trial.
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Figure 5.
General model architecture. Two visual units represent activity when a target is in the neuron’s
receptive field, vT, and when a distractor is in the neuron’s response field, vD. The activity of
the visual units (far left) on a trial is determined from samples of neural activity as shown in
Figure 4. Visual neuron activity serves as input to movement units representing a saccade to
the target, mT, and distractor, mD. Models were defined by setting parameters equal to zero to
eliminate connections shown in dashed grey (see text for details). RT = response time.
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Figure 6.
Observed behavioral data. Cumulative distribution of correct response times (RTs). RTs from
easy trials are red, hard are green. Each panel indicates a different data set. Monkey F (color
search), L (motion search), M (Mc = color, Mm = motion search), pooled (Vincentized RT
distribution from F, L, and M), and Q (form search).
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Figure 7.
Behavioral predictions of the nonintegrated models. Panel A shows the fits of the nonintegrated
race model. Panel B shows the fits of the nonintegrated difference model. Left panels show
the predicted cumulative response time (RT) distributions for the pooled data set (solid lines)
with observed 10th, 30th, 50th, 70th, and 90th percentiles (open circles). Easy is red, hard is
green. Right panels show scatterplots of observed versus predicted quantiles for individual data
sets for easy and hard, Monkey F = ○, L = +, Mm = Δ, Mc = x, and Q = ●.
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Figure 8.
Behavioral predictions of the perfect (left panels), leaky (middle panels), and gated (right
panels) accumulator models to the pooled data set. Each panel shows the predicted cumulative
response time (RT) distributions for the pooled data set (solid lines) with observed 10th, 30th,
50th, 70th, and 90th percentiles (open circles). Easy is red, hard is green.
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Figure 9.
Behavioral predictions of the perfect (left panels), leaky (middle panels), and gated (right
panels) accumulator models to all data sets. Each panel shows a scatterplot of the observed
versus predicted response time (RT) quantiles that were fit by the data. Easy is red, hard is
green. Monkey F = ○, L = +, Mm = Δ, Mc = x, and Q = ●.
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Figure 10.
Movement neuron activity. A: Activity for a representative movement neuron from fast and
slow trials (average activity from 10 consecutive trials at the 0.1 and 0.9 response time [RT]
quantiles). B: Scatterplots of neural measurements plotted versus RT. Insets illustrate the
pattern of activity implicated by a significant correlation. C: Mean correlation across all
movement neurons. Percentages of neurons with significant correlation are shown below. D:
Mean distractor/target (D/T) ratio. Error bars are 95% confidence intervals. Easy trials are in
red, hard trials in green. Fast trials are in black, slow trials in grey. Inset illustrates calculation.
sp/s = spikes per second.
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Figure 11.
Simulation results: perfect accumulator models. The left panels plot the sample trajectories for
the race (Panel A), diffusion (Panel B), and competitive (Panel C) models. The left panels plot
model activation from fast and slow trials (average activity from 10 consecutive trials at the
0.1 and 0.9 response time [RT] quantiles). The center panels plot the mean correlation for
simulated data. The right panels plot the mean predicted distractor/target (D/T) ratio. Brackets
are 95% confidence intervals around observed mean values. Symbols indicate Data Sets F (○),
L (+), Mm (△), Mc (x), Q (●), and pooled (□). Easy trials are in red, hard trials in green.
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Figure 12.
Simulation results: leaky accumulator models. The left panels plot the sample trajectories for
the race (Panel A), diffusion (Panel B), and competitive (Panel C) models. The left panels plot
model activation from fast and slow trials (average activity from 10 consecutive trials at the
0.1 and 0.9 response time [RT] quantiles). The center panels plot the mean correlation for
simulated data. The right panels plot the mean predicted distractor/target (D/T) ratio. Brackets
are 95% confidence intervals around observed mean values. Symbols indicate Data Sets F (○),
L (+), Mm (△), Mc (x), Q (●), and pooled (□). Easy trials are in red, hard trials in green.
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Figure 13.
Simulation results: gated accumulator models. The left panels plot the sample trajectories for
the race (Panel A), diffusion (Panel B), and competitive (Panel C) models. The left panels plot
model activation from fast and slow trials (average activity from 10 consecutive trials at the
0.1 and 0.9 response time [RT] quantiles). The center panels plot the mean correlation for
simulated data. The right panels plot the mean predicted distractor/target (D/T) ratio. Brackets
are 95% confidence intervals around observed mean values. Symbols indicate Data Sets F (○),
L (+), Mm (△), Mc (x), Q (●), and pooled (□). Easy trials are in red, hard trials in green.
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Figure 14.
Mean onset, growth rate, baseline, and threshold. Observed data are shown with brackets
indicating 95% confidence intervals around the mean. Predicted data are shown using symbols.
Easy is red, hard is green. Monkey F = ○, L = +, Mm = △, Mc = x, and Q =●. sp/s = spikes per
second.
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Table 1

Mean Response Times and Percent Correct

Monkey (task)

Easy search Hard search

Mean RT in ms (SD) % Correct Mean RT in ms (SD) % Correct

F (color) 187 (38.9) 95.8 228 (67.6) 70.3

L (motion) 266 (30.1) 98.6 314 (72.9) 94.5

Mm (motion) 228 (32.2) 88.2 271 (67.0) 73.3

Mc (color) 209 (21.4) 97.1 349 (96.0) 78.7

Q (form) — — 373 (161.7) 85.6

Pooled 210 (43.9) 94.4 274 (87.4) 75.7

Note. Dashes indicate that the animal did not perform an easy version of this task. RT = response time.
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