Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 26;66(Pt 6):o1462. doi: 10.1107/S1600536810019045

Methyl 5-chloro-2-(4-methyl­benzene­sulfonamido)­benzoate

Bin Wang a,b, Song Xia a,b, Ya-Bin Shi a,b, Fei-Fei He a,b, Hai-Bo Wang a,*
PMCID: PMC2979427  PMID: 21579530

Abstract

In the title compound, C15H14ClNO4S, the benzene rings are oriented at a dihedral angle of 85.42 (1)°. An intra­molecular N—H⋯O hydrogen bond results in the formation of a five-membered ring and an intramolecular C—H⋯O inter­action also occurs.

Related literature

For general background to the use of the title compound as an inter­mediate in the synthesis of quinoline, see: Theeraladanon et al. (2004). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-o1462-scheme1.jpg

Experimental

Crystal data

  • C15H14ClNO4S

  • M r = 339.78

  • Monoclinic, Inline graphic

  • a = 18.549 (4) Å

  • b = 9.935 (2) Å

  • c = 8.5190 (17) Å

  • β = 97.34 (3)°

  • V = 1557.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.891, T max = 0.981

  • 2914 measured reflections

  • 2825 independent reflections

  • 1259 reflections with I > 2σ(I)

  • R int = 0.093

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.141

  • S = 1.00

  • 2825 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019045/bq2211sup1.cif

e-66-o1462-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019045/bq2211Isup2.hkl

e-66-o1462-Isup2.hkl (138.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1⋯O4 0.86 2.07 2.615 (6) 120
C9—H9A⋯O2 0.93 2.35 3.022 (6) 129

supplementary crystallographic information

Comment

Quinolines are a major class of alkaloids and play an important role in the fields of natural products and medicinal chemistry. The title compound, (I), is a useful intermediate. (Theeraladanon et al., 2004) and we report here in the crystal structure of it. In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A(C2-C7) and B(C8-C13) are planar with a dihedral angle of 85.42 (1) ° between them. The intramolecular N-H···O hydrogen bond (Table 1) results in the formation of a five-membered ring C (C8/C13/C14/O4/N). In the crystal structure, intermolecular C-H···O hydrogen bonds link the molecules into chains along the b axis (Fig. 2).

Experimental

The title compound, (I) was prepared by the literature method (Theeraladanon et al., 2004). Crystals suitable for X-ray analysis were obtained by slow evaporation of an methanol solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I).

Crystal data

C15H14ClNO4S F(000) = 704
Mr = 339.78 Dx = 1.449 Mg m3
Monoclinic, P21/c Melting point: 388 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 18.549 (4) Å Cell parameters from 25 reflections
b = 9.935 (2) Å θ = 8–12°
c = 8.5190 (17) Å µ = 0.40 mm1
β = 97.34 (3)° T = 293 K
V = 1557.1 (5) Å3 Needle, colourless
Z = 4 0.30 × 0.10 × 0.05 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1259 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.093
graphite θmax = 25.3°, θmin = 1.1°
ω/2θ scans h = 0→22
Absorption correction: ψ scan (North et al., 1968) k = 0→11
Tmin = 0.891, Tmax = 0.981 l = −10→10
2914 measured reflections 3 standard reflections every 200 reflections
2825 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.033P)2] where P = (Fo2 + 2Fc2)/3
2825 reflections (Δ/σ)max < 0.001
200 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.29259 (8) 0.49679 (16) 1.24335 (16) 0.0564 (4)
Cl −0.02197 (9) 0.34294 (17) 0.71715 (19) 0.0780 (6)
O1 0.3413 (2) 0.4520 (4) 1.3779 (4) 0.0819 (14)
O2 0.2559 (2) 0.6236 (4) 1.2478 (5) 0.0722 (12)
O4 0.2340 (2) 0.1125 (4) 1.2061 (5) 0.0770 (13)
O5 0.1500 (2) 0.0066 (4) 1.0409 (4) 0.0642 (11)
N 0.2329 (2) 0.3752 (4) 1.2181 (5) 0.0583 (13)
H1 0.2374 0.3100 1.2850 0.070*
C1 0.4669 (4) 0.4931 (9) 0.6934 (7) 0.114 (3)
H1B 0.4700 0.4028 0.6543 0.170*
H1C 0.5149 0.5252 0.7309 0.170*
H1D 0.4452 0.5503 0.6096 0.170*
C2 0.4210 (3) 0.4943 (9) 0.8276 (7) 0.0697 (18)
C3 0.3884 (4) 0.6094 (7) 0.8730 (8) 0.081 (2)
H3A 0.3945 0.6885 0.8178 0.098*
C4 0.3475 (3) 0.6136 (6) 0.9950 (7) 0.0662 (17)
H4A 0.3264 0.6938 1.0224 0.079*
C5 0.3382 (3) 0.4966 (6) 1.0771 (6) 0.0503 (13)
C6 0.3695 (3) 0.3769 (6) 1.0334 (7) 0.0634 (17)
H6A 0.3630 0.2972 1.0871 0.076*
C7 0.4102 (3) 0.3791 (7) 0.9098 (8) 0.0754 (19)
H7A 0.4312 0.2994 0.8807 0.090*
C8 0.1733 (3) 0.3692 (5) 1.0920 (6) 0.0510 (14)
C9 0.1384 (3) 0.4848 (5) 1.0265 (7) 0.0630 (16)
H9A 0.1556 0.5690 1.0613 0.076*
C10 0.0799 (3) 0.4767 (5) 0.9126 (7) 0.0547 (15)
H10A 0.0573 0.5548 0.8710 0.066*
C11 0.0539 (3) 0.3519 (6) 0.8589 (6) 0.0531 (14)
C12 0.0869 (3) 0.2351 (6) 0.9199 (6) 0.0543 (14)
H12A 0.0690 0.1518 0.8832 0.065*
C13 0.1475 (3) 0.2419 (5) 1.0376 (6) 0.0449 (12)
C14 0.1818 (3) 0.1175 (5) 1.1044 (7) 0.0533 (14)
C15 0.1805 (4) −0.1223 (5) 1.0982 (8) 0.088 (2)
H15A 0.1529 −0.1942 1.0445 0.132*
H15B 0.1786 −0.1294 1.2100 0.132*
H15C 0.2301 −0.1283 1.0778 0.132*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0692 (9) 0.0539 (9) 0.0446 (8) −0.0107 (9) 0.0018 (7) −0.0062 (8)
Cl 0.0678 (10) 0.0855 (12) 0.0761 (11) 0.0157 (9) −0.0087 (8) −0.0023 (9)
O1 0.101 (3) 0.097 (3) 0.041 (2) −0.019 (3) −0.020 (2) 0.006 (2)
O2 0.083 (3) 0.052 (3) 0.084 (3) −0.002 (2) 0.021 (2) −0.017 (2)
O4 0.087 (3) 0.059 (3) 0.076 (3) 0.005 (2) −0.023 (3) 0.005 (2)
O5 0.075 (3) 0.036 (2) 0.077 (3) 0.004 (2) −0.006 (2) 0.004 (2)
N 0.069 (3) 0.057 (3) 0.049 (3) −0.013 (3) 0.005 (2) 0.009 (2)
C1 0.091 (5) 0.192 (9) 0.058 (4) −0.041 (6) 0.012 (4) −0.015 (5)
C2 0.053 (4) 0.107 (6) 0.045 (3) −0.020 (4) −0.010 (3) 0.001 (4)
C3 0.089 (5) 0.080 (5) 0.074 (5) −0.023 (4) 0.005 (4) 0.029 (4)
C4 0.075 (5) 0.049 (4) 0.073 (4) −0.002 (3) 0.002 (4) 0.013 (3)
C5 0.053 (3) 0.052 (3) 0.043 (3) −0.006 (3) −0.006 (2) −0.005 (3)
C6 0.080 (4) 0.056 (4) 0.053 (4) −0.003 (3) 0.006 (3) −0.001 (3)
C7 0.070 (4) 0.089 (5) 0.064 (4) 0.008 (4) −0.001 (4) −0.019 (4)
C8 0.055 (4) 0.051 (3) 0.047 (3) −0.002 (3) 0.007 (3) −0.008 (3)
C9 0.079 (4) 0.035 (3) 0.075 (4) 0.010 (3) 0.010 (4) 0.008 (3)
C10 0.058 (4) 0.037 (3) 0.068 (4) 0.008 (3) 0.003 (3) 0.007 (3)
C11 0.052 (3) 0.058 (4) 0.049 (3) 0.007 (3) 0.002 (3) 0.008 (3)
C12 0.052 (3) 0.055 (4) 0.058 (3) −0.005 (3) 0.012 (3) 0.002 (3)
C13 0.054 (3) 0.037 (3) 0.044 (3) 0.001 (3) 0.008 (3) 0.004 (2)
C14 0.068 (4) 0.040 (3) 0.053 (4) −0.001 (3) 0.011 (3) 0.003 (3)
C15 0.132 (6) 0.032 (4) 0.100 (5) 0.023 (4) 0.019 (5) 0.020 (3)

Geometric parameters (Å, °)

S—O2 1.434 (4) C4—H4A 0.9300
S—O1 1.436 (4) C5—C6 1.395 (7)
S—N 1.634 (4) C6—C7 1.372 (8)
S—C5 1.740 (5) C6—H6A 0.9300
Cl—C11 1.736 (5) C7—H7A 0.9300
O4—C14 1.215 (6) C8—C9 1.398 (7)
O5—C14 1.331 (6) C8—C13 1.409 (7)
O5—C15 1.459 (6) C9—C10 1.363 (7)
N—C8 1.442 (6) C9—H9A 0.9300
N—H1 0.8600 C10—C11 1.386 (7)
C1—C2 1.511 (8) C10—H10A 0.9300
C1—H1B 0.9600 C11—C12 1.382 (6)
C1—H1C 0.9600 C12—C13 1.410 (6)
C1—H1D 0.9600 C12—H12A 0.9300
C2—C7 1.370 (8) C13—C14 1.470 (7)
C2—C3 1.372 (8) C15—H15A 0.9600
C3—C4 1.363 (9) C15—H15B 0.9600
C3—H3A 0.9300 C15—H15C 0.9600
C4—C5 1.379 (7)
O2—S—O1 120.2 (3) C2—C7—C6 122.4 (6)
O2—S—N 109.7 (2) C2—C7—H7A 118.8
O1—S—N 102.9 (2) C6—C7—H7A 118.8
O2—S—C5 107.7 (3) C9—C8—C13 119.1 (5)
O1—S—C5 109.1 (3) C9—C8—N 122.3 (5)
N—S—C5 106.5 (2) C13—C8—N 118.5 (5)
C14—O5—C15 117.3 (4) C10—C9—C8 121.4 (5)
C8—N—S 124.8 (4) C10—C9—H9A 119.3
C8—N—H1 117.6 C8—C9—H9A 119.3
S—N—H1 117.6 C9—C10—C11 120.0 (5)
C2—C1—H1B 109.5 C9—C10—H10A 120.0
C2—C1—H1C 109.5 C11—C10—H10A 120.0
H1B—C1—H1C 109.5 C12—C11—C10 120.6 (5)
C2—C1—H1D 109.5 C12—C11—Cl 119.9 (4)
H1B—C1—H1D 109.5 C10—C11—Cl 119.5 (4)
H1C—C1—H1D 109.5 C11—C12—C13 120.1 (5)
C7—C2—C3 117.0 (6) C11—C12—H12A 120.0
C7—C2—C1 120.9 (8) C13—C12—H12A 120.0
C3—C2—C1 122.1 (7) C12—C13—C8 118.9 (5)
C4—C3—C2 123.2 (6) C12—C13—C14 120.0 (5)
C4—C3—H3A 118.4 C8—C13—C14 121.1 (5)
C2—C3—H3A 118.4 O4—C14—O5 121.8 (5)
C3—C4—C5 118.6 (6) O4—C14—C13 125.2 (5)
C3—C4—H4A 120.7 O5—C14—C13 113.0 (5)
C5—C4—H4A 120.7 O5—C15—H15A 109.5
C4—C5—C6 120.0 (5) O5—C15—H15B 109.5
C4—C5—S 121.2 (5) H15A—C15—H15B 109.5
C6—C5—S 118.7 (4) O5—C15—H15C 109.5
C7—C6—C5 118.7 (6) H15A—C15—H15C 109.5
C7—C6—H6A 120.7 H15B—C15—H15C 109.5
C5—C6—H6A 120.7
O2—S—N—C8 53.5 (5) S—N—C8—C13 151.2 (4)
O1—S—N—C8 −177.4 (4) C13—C8—C9—C10 0.2 (8)
C5—S—N—C8 −62.7 (5) N—C8—C9—C10 −176.8 (5)
C7—C2—C3—C4 0.8 (9) C8—C9—C10—C11 −0.1 (8)
C1—C2—C3—C4 −179.1 (5) C9—C10—C11—C12 −0.1 (8)
C2—C3—C4—C5 −0.1 (9) C9—C10—C11—Cl 178.5 (4)
C3—C4—C5—C6 −0.5 (8) C10—C11—C12—C13 0.2 (8)
C3—C4—C5—S 175.0 (4) Cl—C11—C12—C13 −178.4 (4)
O2—S—C5—C4 13.7 (5) C11—C12—C13—C8 −0.1 (7)
O1—S—C5—C4 −118.4 (4) C11—C12—C13—C14 179.0 (5)
N—S—C5—C4 131.2 (4) C9—C8—C13—C12 −0.1 (7)
O2—S—C5—C6 −170.7 (4) N—C8—C13—C12 177.0 (4)
O1—S—C5—C6 57.2 (5) C9—C8—C13—C14 −179.2 (5)
N—S—C5—C6 −53.2 (5) N—C8—C13—C14 −2.1 (7)
C4—C5—C6—C7 0.5 (8) C15—O5—C14—O4 −0.4 (8)
S—C5—C6—C7 −175.1 (4) C15—O5—C14—C13 179.4 (5)
C3—C2—C7—C6 −0.8 (8) C12—C13—C14—O4 −180.0 (5)
C1—C2—C7—C6 179.1 (5) C8—C13—C14—O4 −0.9 (8)
C5—C6—C7—C2 0.2 (8) C12—C13—C14—O5 0.2 (7)
S—N—C8—C9 −31.8 (7) C8—C13—C14—O5 179.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N—H1···O4 0.86 2.07 2.615 (6) 120
C9—H9A···O2 0.93 2.35 3.022 (6) 129

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2211).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1989). CAD-4 EXPRESS Enraf–Nonius, Delft. The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Theeraladanon, C., Arisawa, M., Nishida, A. & Nakagawa, M. (2004). Tetrahedron, 60, 3017–3035.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019045/bq2211sup1.cif

e-66-o1462-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019045/bq2211Isup2.hkl

e-66-o1462-Isup2.hkl (138.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES