Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 27;66(Pt 2):m202. doi: 10.1107/S160053681000262X

Methano­ldioxido{1-[(2RS)-(2-oxidoprop­yl)iminometh­yl]-2-naphtholato}molybdenium(VI)

Monadi Niaz a, Sheikhshoaie Iran b,*, Rezaeifard Abdolreza c
PMCID: PMC2979794  PMID: 21579666

Abstract

Crystals of the title compound, [Mo(C14H13NO2)O2(CH4O)], were obtained by recrystallization from methanol. The MoVI atom is coordinated by two oxide O atoms and by two O atoms and one N atom of the tridentate 1-[(2-oxidoprop­yl)iminometh­yl]-2-naphtholate Schiff base ligand. The coordination sphere is completed by the O atom of a methanol mol­ecule, yielding a distorted octa­hedron. O—H⋯O hydrogen bonding yields centrosymmetric dimers.

Related literature

For related structures with O= MoVI=O units and for the synthesis, see: Arnaiz et al. (2000); Holm et al. (1996); Syamal & Maurya (1989). For the prperties of related compounds, see: Arnold et al. (2001); Bagherzadeh et al. (2009); Bruno et al. (2006); Holm (1987); Maurya et al. (1997); Schurig & Betschinger (1992); Sheikhshoaie et al. (2009).graphic file with name e-66-0m202-scheme1.jpg

Experimental

Crystal data

  • [Mo(C14H13NO2)O2(CH4O)]

  • M r = 387.24

  • Monoclinic, Inline graphic

  • a = 7.9064 (5) Å

  • b = 15.078 (1) Å

  • c = 12.6796 (8) Å

  • β = 93.959 (1)°

  • V = 1507.96 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 100 K

  • 0.19 × 0.16 × 0.16 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.849, T max = 0.870

  • 18948 measured reflections

  • 4393 independent reflections

  • 3951 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.056

  • S = 1.01

  • 4393 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000262X/fi2095sup1.cif

e-66-0m202-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000262X/fi2095Isup2.hkl

e-66-0m202-Isup2.hkl (215.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5O⋯O2i 0.85 1.82 2.6667 (16) 179

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the Shahid Bahonar University of Kerman for financial support of this work.

supplementary crystallographic information

Comment

Transition metal oxo compounds containing Schiff base ligands have been in the focus of scientific interest for many years. These compounds are involved in oxygen transfer chemistry in both biological and industrial processes (Maurya et al., 1997), effective catalysts for epoxidation (Bagherzadeh et al., 2009; Holm, 1987; Schurig & Betschinger, 1992; Arnold et al., 2001). The success of molybdenum(VI) complexes in reactions to produce racemic epoxides led to the belief that some derivatives of these complexes could be applied as chiral catalysts (Bruno et al., 2006), and oxidation catalysis (Sheikhshoaie et al., 2009). Continuing our interest in the structural chemistry of dioxomolybdenum(VI) Schiff base complexes, we have synthesized and structurally characterized the title complex.

The molecular structure of the title complex is illustrated in Figure 1. The MoVI ion is in a distored octahedral environment being coordinated by two oxido O atoms (O4 and O3), three atoms (two oxygen and one nitrogen atoms) of the tridentate Schiff base ligand and one oxygen atom from methanol. The oxido-O atoms are in cis position with short Mo=O bonds (1.7001 (12) and 1.7140 (12)Å, respectively). The OH group of the methanol molecule acts as H bond donor, yielding centrosymmetric dimers (Fig. 2).

Experimental

To a solution of 0.229 mg (1 mmol) of tridentate Schiff base ligand 1-((E)-(2-hydroxypropylimino)methyl)naphthalen-2-ol) in 15 ml dry methanol was added a solution of 0.327 mg (1 mmol) of MoO2(acac)2 in 10 ml dry methanol, and refluxed for an additional 2 h. {[(1-amino-2-hydroxypropane)nitilomethylidyne-(2-naphthalato)]-dioxidomolybdenum(VI)(Methanol)} was obtained as a yellow microcrystalline precipitate. The precipitate was filtered off, washed with 5 ml absolute ethanol. Small yellow crystals formed upon recrystallisation from methanol.

Refinement

The hydrogen atoms of OH group was found in difference Fourier synthesis. The H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model, the Uiso(H) parameters were fixed to 1.2 Ueq(Ci), for methyl groups to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Thermal ellispoids at the 50% probability level.

Fig. 2.

Fig. 2.

The hydrogen bonding pattern in the title compound yielding centrosymmetric dimers. H bonds indicated by dashed lines. Moiety to the left generated by (i) 1–x, –y, 1–z.

Crystal data

[Mo(C14H13NO2)O2(CH4O)] F(000) = 784
Mr = 387.24 Dx = 1.706 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 211 reflections
a = 7.9064 (5) Å θ = 3–30°
b = 15.078 (1) Å µ = 0.89 mm1
c = 12.6796 (8) Å T = 100 K
β = 93.959 (1)° Prism, pale yellow
V = 1507.96 (17) Å3 0.19 × 0.16 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 4393 independent reflections
Radiation source: fine-focus sealed tube 3951 reflections with I > 2σ(I)
graphite Rint = 0.026
ω scans θmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.849, Tmax = 0.870 k = −21→21
18948 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0248P)2 + 1.35P] where P = (Fo2 + 2Fc2)/3
4393 reflections (Δ/σ)max = 0.008
202 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.65 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo1 0.530764 (16) 0.118564 (9) 0.344992 (10) 0.01228 (4)
O1 0.58279 (14) 0.07661 (8) 0.20452 (9) 0.0154 (2)
O2 0.58637 (14) 0.12750 (7) 0.49712 (9) 0.0149 (2)
O3 0.51942 (15) 0.22791 (8) 0.31257 (10) 0.0203 (2)
O4 0.32656 (14) 0.08304 (9) 0.35495 (10) 0.0197 (2)
O5 0.60141 (16) −0.02912 (8) 0.38095 (10) 0.0191 (2)
H5O 0.5424 −0.0612 0.4195 0.029 (6)*
N1 0.81591 (16) 0.11919 (9) 0.36213 (10) 0.0132 (2)
C1 0.86943 (19) 0.12061 (10) 0.17666 (12) 0.0122 (3)
C2 0.70542 (19) 0.09463 (10) 0.14066 (12) 0.0129 (3)
C3 0.6632 (2) 0.08250 (11) 0.03095 (13) 0.0157 (3)
H3A 0.5510 0.0660 0.0072 0.019*
C4 0.7821 (2) 0.09422 (11) −0.04064 (13) 0.0178 (3)
H4A 0.7531 0.0827 −0.1133 0.021*
C5 1.0683 (2) 0.14082 (12) −0.08389 (13) 0.0197 (3)
H5A 1.0391 0.1293 −0.1565 0.024*
C6 1.2258 (2) 0.17414 (12) −0.05370 (14) 0.0219 (3)
H6A 1.3049 0.1859 −0.1051 0.026*
C7 1.2691 (2) 0.19074 (11) 0.05381 (14) 0.0191 (3)
H7A 1.3777 0.2143 0.0748 0.023*
C8 1.15642 (19) 0.17334 (11) 0.12916 (13) 0.0156 (3)
H8A 1.1883 0.1850 0.2014 0.019*
C9 0.9488 (2) 0.12333 (11) −0.00845 (12) 0.0152 (3)
C10 0.99294 (19) 0.13813 (10) 0.10045 (12) 0.0126 (3)
C11 0.91962 (19) 0.12357 (10) 0.28859 (12) 0.0138 (3)
H11A 1.0370 0.1291 0.3090 0.017*
C12 0.8805 (2) 0.11752 (12) 0.47316 (12) 0.0180 (3)
H12A 0.9898 0.1496 0.4824 0.022*
H12B 0.8983 0.0556 0.4975 0.022*
C13 0.7473 (2) 0.16280 (11) 0.53555 (13) 0.0171 (3)
H13A 0.7493 0.2280 0.5215 0.021*
C14 0.7770 (2) 0.14687 (12) 0.65327 (13) 0.0207 (3)
H14A 0.6881 0.1765 0.6904 0.031*
H14B 0.8879 0.1707 0.6782 0.031*
H14C 0.7741 0.0830 0.6675 0.031*
C15 0.6958 (2) −0.08893 (12) 0.32155 (16) 0.0254 (4)
H15A 0.7596 −0.1296 0.3697 0.038*
H15B 0.7749 −0.0555 0.2805 0.038*
H15C 0.6182 −0.1230 0.2735 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.00938 (6) 0.01464 (7) 0.01329 (7) 0.00158 (5) 0.00413 (4) 0.00367 (5)
O1 0.0115 (5) 0.0216 (6) 0.0134 (5) −0.0023 (4) 0.0032 (4) 0.0024 (4)
O2 0.0145 (5) 0.0171 (5) 0.0139 (5) −0.0004 (4) 0.0057 (4) 0.0014 (4)
O3 0.0199 (6) 0.0187 (6) 0.0232 (6) 0.0048 (5) 0.0084 (5) 0.0080 (5)
O4 0.0122 (5) 0.0270 (6) 0.0203 (6) −0.0003 (5) 0.0038 (4) 0.0053 (5)
O5 0.0249 (6) 0.0135 (5) 0.0205 (6) 0.0016 (5) 0.0130 (5) 0.0023 (4)
N1 0.0117 (6) 0.0159 (6) 0.0121 (6) 0.0016 (5) 0.0018 (4) 0.0015 (5)
C1 0.0120 (6) 0.0139 (7) 0.0110 (6) 0.0004 (5) 0.0033 (5) 0.0007 (5)
C2 0.0122 (6) 0.0129 (7) 0.0138 (7) 0.0002 (5) 0.0040 (5) 0.0010 (5)
C3 0.0150 (7) 0.0166 (7) 0.0155 (7) −0.0029 (6) 0.0014 (5) −0.0012 (6)
C4 0.0195 (8) 0.0217 (8) 0.0125 (7) −0.0011 (6) 0.0024 (6) −0.0024 (6)
C5 0.0208 (8) 0.0255 (8) 0.0137 (7) 0.0009 (6) 0.0073 (6) 0.0007 (6)
C6 0.0201 (8) 0.0260 (9) 0.0212 (8) −0.0014 (7) 0.0118 (6) 0.0013 (7)
C7 0.0136 (7) 0.0208 (8) 0.0238 (8) −0.0018 (6) 0.0074 (6) 0.0007 (6)
C8 0.0127 (7) 0.0180 (7) 0.0164 (7) −0.0005 (5) 0.0032 (6) 0.0007 (6)
C9 0.0159 (7) 0.0169 (7) 0.0133 (7) 0.0008 (6) 0.0048 (5) 0.0001 (5)
C10 0.0129 (6) 0.0120 (7) 0.0132 (7) 0.0006 (5) 0.0043 (5) 0.0015 (5)
C11 0.0117 (6) 0.0159 (7) 0.0139 (7) 0.0003 (5) 0.0016 (5) 0.0010 (5)
C12 0.0143 (7) 0.0290 (8) 0.0109 (7) 0.0033 (6) 0.0019 (5) −0.0001 (6)
C13 0.0181 (7) 0.0171 (8) 0.0165 (7) −0.0018 (6) 0.0044 (6) −0.0002 (6)
C14 0.0238 (8) 0.0252 (8) 0.0135 (7) −0.0032 (7) 0.0038 (6) −0.0015 (6)
C15 0.0293 (9) 0.0179 (8) 0.0310 (10) 0.0028 (7) 0.0161 (8) −0.0015 (7)

Geometric parameters (Å, °)

Mo1—O3 1.7001 (12) C5—C9 1.415 (2)
Mo1—O4 1.7140 (12) C5—H5A 0.9500
Mo1—O2 1.9533 (11) C6—C7 1.405 (3)
Mo1—O1 1.9604 (11) C6—H6A 0.9500
Mo1—N1 2.2500 (13) C7—C8 1.376 (2)
Mo1—O5 2.3331 (12) C7—H7A 0.9500
O1—C2 1.3334 (18) C8—C10 1.421 (2)
O2—C13 1.433 (2) C8—H8A 0.9500
O5—C15 1.420 (2) C9—C10 1.418 (2)
O5—H5O 0.8499 C11—H11A 0.9500
N1—C11 1.2852 (19) C12—C13 1.522 (2)
N1—C12 1.464 (2) C12—H12A 0.9900
C1—C2 1.401 (2) C12—H12B 0.9900
C1—C10 1.445 (2) C13—C14 1.514 (2)
C1—C11 1.448 (2) C13—H13A 1.0000
C2—C3 1.420 (2) C14—H14A 0.9800
C3—C4 1.362 (2) C14—H14B 0.9800
C3—H3A 0.9500 C14—H14C 0.9800
C4—C9 1.422 (2) C15—H15A 0.9800
C4—H4A 0.9500 C15—H15B 0.9800
C5—C6 1.373 (2) C15—H15C 0.9800
O3—Mo1—O4 106.65 (6) C7—C6—H6A 120.3
O3—Mo1—O2 100.16 (6) C8—C7—C6 120.91 (16)
O4—Mo1—O2 95.61 (5) C8—C7—H7A 119.5
O3—Mo1—O1 95.98 (5) C6—C7—H7A 119.5
O4—Mo1—O1 102.94 (5) C7—C8—C10 120.96 (15)
O2—Mo1—O1 150.75 (5) C7—C8—H8A 119.5
O3—Mo1—N1 93.16 (5) C10—C8—H8A 119.5
O4—Mo1—N1 159.54 (5) C5—C9—C10 119.88 (15)
O2—Mo1—N1 75.44 (5) C5—C9—C4 120.82 (15)
O1—Mo1—N1 79.48 (5) C10—C9—C4 119.25 (14)
O3—Mo1—O5 168.75 (5) C9—C10—C8 117.79 (13)
O4—Mo1—O5 84.34 (5) C9—C10—C1 119.36 (14)
O2—Mo1—O5 80.69 (4) C8—C10—C1 122.80 (14)
O1—Mo1—O5 78.88 (4) N1—C11—C1 124.35 (14)
N1—Mo1—O5 76.13 (5) N1—C11—H11A 117.8
C2—O1—Mo1 133.87 (10) C1—C11—H11A 117.8
C13—O2—Mo1 119.69 (9) N1—C12—C13 106.52 (13)
C15—O5—Mo1 129.06 (10) N1—C12—H12A 110.4
C15—O5—H5O 105.9 C13—C12—H12A 110.4
Mo1—O5—H5O 121.4 N1—C12—H12B 110.4
C11—N1—C12 120.05 (13) C13—C12—H12B 110.4
C11—N1—Mo1 127.98 (11) H12A—C12—H12B 108.6
C12—N1—Mo1 111.93 (9) O2—C13—C14 110.47 (13)
C2—C1—C10 119.11 (14) O2—C13—C12 106.65 (13)
C2—C1—C11 120.87 (13) C14—C13—C12 112.07 (14)
C10—C1—C11 119.86 (13) O2—C13—H13A 109.2
O1—C2—C1 123.69 (14) C14—C13—H13A 109.2
O1—C2—C3 115.93 (14) C12—C13—H13A 109.2
C1—C2—C3 120.34 (14) C13—C14—H14A 109.5
C4—C3—C2 120.66 (15) C13—C14—H14B 109.5
C4—C3—H3A 119.7 H14A—C14—H14B 109.5
C2—C3—H3A 119.7 C13—C14—H14C 109.5
C3—C4—C9 121.14 (15) H14A—C14—H14C 109.5
C3—C4—H4A 119.4 H14B—C14—H14C 109.5
C9—C4—H4A 119.4 O5—C15—H15A 109.5
C6—C5—C9 121.00 (16) O5—C15—H15B 109.5
C6—C5—H5A 119.5 H15A—C15—H15B 109.5
C9—C5—H5A 119.5 O5—C15—H15C 109.5
C5—C6—C7 119.43 (15) H15A—C15—H15C 109.5
C5—C6—H6A 120.3 H15B—C15—H15C 109.5
O3—Mo1—O1—C2 57.22 (14) O1—C2—C3—C4 −176.28 (15)
O4—Mo1—O1—C2 165.86 (14) C1—C2—C3—C4 1.3 (2)
O2—Mo1—O1—C2 −66.15 (18) C2—C3—C4—C9 −3.3 (3)
N1—Mo1—O1—C2 −34.90 (14) C9—C5—C6—C7 0.3 (3)
O5—Mo1—O1—C2 −112.66 (14) C5—C6—C7—C8 0.6 (3)
O3—Mo1—O2—C13 −66.97 (11) C6—C7—C8—C10 0.0 (3)
O4—Mo1—O2—C13 −175.04 (11) C6—C5—C9—C10 −1.6 (3)
O1—Mo1—O2—C13 55.48 (15) C6—C5—C9—C4 175.93 (17)
N1—Mo1—O2—C13 23.68 (11) C3—C4—C9—C5 −175.91 (16)
O5—Mo1—O2—C13 101.65 (11) C3—C4—C9—C10 1.6 (2)
O3—Mo1—O5—C15 −43.8 (3) C5—C9—C10—C8 2.1 (2)
O4—Mo1—O5—C15 124.28 (15) C4—C9—C10—C8 −175.50 (15)
O2—Mo1—O5—C15 −139.07 (15) C5—C9—C10—C1 179.57 (15)
O1—Mo1—O5—C15 19.88 (15) C4—C9—C10—C1 2.0 (2)
N1—Mo1—O5—C15 −61.89 (15) C7—C8—C10—C9 −1.3 (2)
O3—Mo1—N1—C11 −72.74 (14) C7—C8—C10—C1 −178.68 (15)
O4—Mo1—N1—C11 121.60 (18) C2—C1—C10—C9 −3.9 (2)
O2—Mo1—N1—C11 −172.43 (14) C11—C1—C10—C9 171.46 (14)
O1—Mo1—N1—C11 22.76 (13) C2—C1—C10—C8 173.43 (15)
O5—Mo1—N1—C11 103.77 (14) C11—C1—C10—C8 −11.2 (2)
O3—Mo1—N1—C12 104.86 (11) C12—N1—C11—C1 176.40 (15)
O4—Mo1—N1—C12 −60.8 (2) Mo1—N1—C11—C1 −6.2 (2)
O2—Mo1—N1—C12 5.18 (10) C2—C1—C11—N1 −13.1 (2)
O1—Mo1—N1—C12 −159.63 (11) C10—C1—C11—N1 171.56 (15)
O5—Mo1—N1—C12 −78.62 (11) C11—N1—C12—C13 148.93 (15)
Mo1—O1—C2—C1 29.3 (2) Mo1—N1—C12—C13 −28.89 (15)
Mo1—O1—C2—C3 −153.24 (12) Mo1—O2—C13—C14 −168.83 (10)
C10—C1—C2—O1 179.71 (14) Mo1—O2—C13—C12 −46.80 (15)
C11—C1—C2—O1 4.4 (2) N1—C12—C13—O2 45.45 (16)
C10—C1—C2—C3 2.3 (2) N1—C12—C13—C14 166.45 (13)
C11—C1—C2—C3 −173.00 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5O···O2i 0.85 1.82 2.6667 (16) 179

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2095).

References

  1. Arnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141–2147.
  2. Arnold, U., Serpa da Cruz, R., Mandelli, D. & Schuchardt, U. (2001). J. Mol. Catal. A, 165, 149-158.
  3. Bagherzadeh, M., Tahsini, L., Latifi, R. & Woob, L. K. (2009). Inorg. Chim. Acta, 362, 3698–3702.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruno, S. M., Monteiro, B., Balula, M. S., Pedro, F. M., Abrantes, M., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Kuhn, F. E. & Goncalves, I. S. (2006). J. Mol. Catal. A Chem.260, 11–18.
  6. Holm, R. H. (1987). Chem. Rev.87, 1401–1449.
  7. Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev.96, 2239–2314. [DOI] [PubMed]
  8. Maurya, R. C., Mishra, D. D., Rao, S. N., Verma, R. & Rao, N. N. (1997). Indian J. Chem. Sect. A, 36, 599–601.
  9. Schurig, V. & Betschinger, F. (1992). Chem. Rev 92, 873–888.
  10. Sheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733-738.
  11. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Syamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev.95, 183–238.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000262X/fi2095sup1.cif

e-66-0m202-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000262X/fi2095Isup2.hkl

e-66-0m202-Isup2.hkl (215.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES