Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 9;66(Pt 2):o322. doi: 10.1107/S1600536809055597

5-(4-Ethoxy­benzyl)-1H-tetra­zole

Yun-Long Gao a, Gui-Long Zhao b, Hua Shao b, Wei Liu a, Jian-wu Wang a,*
PMCID: PMC2979912  PMID: 21579752

Abstract

In the title mol­ecule, C10H12N4O, the tetra­zole and benzene rings form a dihedral angle of 67.52 (2)°. In the crystal, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into chains along the a axis. The relatively short distance of 3.760 (3) Å between the centroids of the tetra­zole rings suggests the existence of π–π inter­actions.

Related literature

For details of the biological activities of sodium-glucose co-transporter 2 (SGLT2) inhibitors, see: Arakawa et al. (2001); Meng et al. (2008). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-0o322-scheme1.jpg

Experimental

Crystal data

  • C10H12N4O

  • M r = 204.24

  • Monoclinic, Inline graphic

  • a = 4.9291 (10) Å

  • b = 18.145 (4) Å

  • c = 11.363 (2) Å

  • β = 99.19 (3)°

  • V = 1003.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.34 × 0.06 × 0.04 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) T min = 0.969, T max = 0.996

  • 6870 measured reflections

  • 1768 independent reflections

  • 1487 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.103

  • S = 1.10

  • 1768 reflections

  • 142 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055597/cv2684sup1.cif

e-66-0o322-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055597/cv2684Isup2.hkl

e-66-0o322-Isup2.hkl (87.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.91 (1) 1.90 (1) 2.7897 (16) 166 (1)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors constitute a new class of antidiabetic agents (Arakawa et al., 2001; Meng et al., 2008). The title compound, (I), was prepared as an intermediate of a new class of SGLT2 inhibitors designed in our laboratories.

In (I) (Fig. 1), all bond lengths in the molecular are normal (Allen et al., 1987). Atoms O1/C2/C9/C10 lie in the benzene ring (C3—C8) plane with a maximun deviation of 0.045 (2) Å for O1 . The tetrazole ring (N1—N4/C1) forms the dihedral angle of 67.52 (2) ° with the benzene ring (C3—C8).

In the crystal structure, relatively short distance of 3.760 (3) Å between the centroids of tetrazole rings suggests an existence of π—π interactions. Intermolecular N—H···N hydrogen bonds (Table 1) link the molecules related by translation along axis a into chains.

Experimental

A round-bottomed flask was charged with 1.61 g (10 mmol) of 4-ethoxyphenylacetonitrile, 3.25 g (50 mmol) of sodium azide and 2.67 g (50 mmol) of ammonium chloride and 50 ml of DMF, and the resulting mixture was stirred at 120 ° C for 15 h. On complete cooling, the mixture was filtered to remove the existing solid and the filtrate was evaporated on a rotary evaporator equipped with an oil pump, and the residue was dissolved in 100 ml of water. The aqueous solution thus obtained was adjusted to pH = 2 with concentrated hydrochloric acid, when it turned turbid. This turbid mixture was cooled with ice-water bath and stirred for complete crystallization. The precipitated crystals were collected via suction filtration and dried at 60° C in vacuo to afford the title product as white crystals 1.68 g (yield 82.3%). Crystals suitable for single-crystal X-ray diffraction were obtained via slow evaporation at room temperature of a solution of the pure title compound in dichloromethane/petroleum ether.

Refinement

All H atoms were found on difference maps. C-bound H atoms were placed in idealized positions (C—H 0.93 - 0.97 Å), and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for aryl and methylene and 1.5Ueq(C) for the methyl H atoms. The N-bound H atom was refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with the atomic labels and 40% probability displacement ellipsoids.

Crystal data

C10H12N4O F(000) = 432
Mr = 204.24 Dx = 1.352 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3598 reflections
a = 4.9291 (10) Å θ = 1.1–27.9°
b = 18.145 (4) Å µ = 0.09 mm1
c = 11.363 (2) Å T = 113 K
β = 99.19 (3)° Needle, colourless
V = 1003.2 (3) Å3 0.34 × 0.06 × 0.04 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer 1768 independent reflections
Radiation source: rotating anode 1487 reflections with I > 2σ(I)
multilayer Rint = 0.048
Detector resolution: 14.63 pixels mm-1 θmax = 25.0°, θmin = 2.1°
ω and φ scans h = −5→5
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) k = −21→19
Tmin = 0.969, Tmax = 0.996 l = −13→13
6870 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.067P)2] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.004
1768 reflections Δρmax = 0.24 e Å3
142 parameters Δρmin = −0.34 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.354 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.09591 (18) 0.17311 (5) 0.48558 (8) 0.0241 (3)
N1 1.0194 (2) 0.48750 (6) 0.33955 (10) 0.0214 (3)
N2 0.9379 (2) 0.55573 (6) 0.36698 (11) 0.0252 (3)
N3 0.6749 (2) 0.55229 (5) 0.36251 (11) 0.0242 (3)
N4 0.5824 (2) 0.48270 (5) 0.33271 (10) 0.0211 (3)
C1 0.8013 (2) 0.44332 (7) 0.31894 (11) 0.0187 (3)
C2 0.8099 (3) 0.36438 (7) 0.28353 (12) 0.0225 (4)
H2A 0.9937 0.3456 0.3100 0.027*
H2B 0.7744 0.3613 0.1972 0.027*
C3 0.6058 (3) 0.31536 (7) 0.33333 (12) 0.0195 (3)
C4 0.5715 (3) 0.32048 (7) 0.45271 (12) 0.0234 (3)
H4 0.6676 0.3562 0.5012 0.028*
C5 0.3974 (3) 0.27333 (7) 0.49957 (12) 0.0243 (4)
H5 0.3739 0.2781 0.5788 0.029*
C6 0.2566 (2) 0.21864 (7) 0.42871 (12) 0.0198 (3)
C7 0.2858 (2) 0.21280 (7) 0.30957 (11) 0.0204 (3)
H7 0.1916 0.1766 0.2614 0.024*
C8 0.4583 (3) 0.26196 (7) 0.26324 (12) 0.0206 (3)
H8 0.4748 0.2588 0.1830 0.025*
C9 −0.0624 (3) 0.11821 (7) 0.41507 (12) 0.0244 (4)
H9A 0.0578 0.0838 0.3832 0.029*
H9B −0.1819 0.1410 0.3490 0.029*
C10 −0.2311 (3) 0.07851 (8) 0.49534 (14) 0.0319 (4)
H10A −0.1106 0.0560 0.5601 0.048*
H10B −0.3407 0.0412 0.4505 0.048*
H10C −0.3489 0.1131 0.5264 0.048*
H1 1.197 (2) 0.4782 (8) 0.3340 (13) 0.030 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0280 (6) 0.0230 (5) 0.0223 (6) −0.0068 (4) 0.0069 (4) 0.0006 (4)
N1 0.0145 (6) 0.0227 (6) 0.0272 (7) 0.0000 (5) 0.0042 (5) 0.0004 (5)
N2 0.0213 (6) 0.0226 (6) 0.0322 (7) −0.0013 (5) 0.0056 (5) −0.0012 (5)
N3 0.0212 (6) 0.0227 (6) 0.0292 (7) −0.0017 (5) 0.0062 (5) −0.0001 (5)
N4 0.0174 (6) 0.0204 (6) 0.0255 (7) −0.0009 (5) 0.0037 (5) −0.0005 (4)
C1 0.0161 (7) 0.0232 (7) 0.0170 (7) −0.0019 (5) 0.0033 (5) 0.0031 (5)
C2 0.0184 (7) 0.0232 (7) 0.0270 (8) 0.0011 (5) 0.0066 (6) −0.0001 (5)
C3 0.0165 (7) 0.0185 (7) 0.0239 (8) 0.0030 (5) 0.0042 (6) 0.0025 (5)
C4 0.0241 (8) 0.0220 (7) 0.0232 (8) −0.0034 (5) 0.0009 (6) −0.0033 (5)
C5 0.0292 (8) 0.0262 (7) 0.0177 (8) −0.0028 (6) 0.0047 (6) −0.0009 (5)
C6 0.0184 (7) 0.0182 (7) 0.0228 (8) 0.0006 (5) 0.0034 (6) 0.0033 (5)
C7 0.0200 (7) 0.0195 (7) 0.0211 (8) −0.0007 (5) 0.0017 (6) −0.0020 (5)
C8 0.0222 (7) 0.0220 (7) 0.0183 (8) 0.0036 (5) 0.0055 (6) −0.0001 (5)
C9 0.0237 (7) 0.0204 (7) 0.0284 (9) −0.0029 (6) 0.0022 (6) 0.0011 (5)
C10 0.0268 (8) 0.0277 (8) 0.0418 (10) −0.0040 (6) 0.0077 (7) 0.0055 (6)

Geometric parameters (Å, °)

O1—C6 1.3753 (15) C4—C5 1.3778 (18)
O1—C9 1.4296 (16) C4—H4 0.9300
N1—C1 1.3313 (16) C5—C6 1.3914 (18)
N1—N2 1.3533 (15) C5—H5 0.9300
N1—H1 0.906 (9) C6—C7 1.3881 (18)
N2—N3 1.2908 (16) C7—C8 1.3922 (18)
N3—N4 1.3666 (14) C7—H7 0.9300
N4—C1 1.3244 (16) C8—H8 0.9300
C1—C2 1.4903 (18) C9—C10 1.5113 (18)
C2—C3 1.5184 (17) C9—H9A 0.9700
C2—H2A 0.9700 C9—H9B 0.9700
C2—H2B 0.9700 C10—H10A 0.9600
C3—C8 1.3845 (18) C10—H10B 0.9600
C3—C4 1.3965 (18) C10—H10C 0.9600
C6—O1—C9 117.34 (10) C4—C5—H5 119.9
C1—N1—N2 109.29 (10) C6—C5—H5 119.9
C1—N1—H1 129.7 (10) O1—C6—C7 124.72 (12)
N2—N1—H1 120.9 (10) O1—C6—C5 115.34 (11)
N3—N2—N1 106.26 (10) C7—C6—C5 119.94 (12)
N2—N3—N4 110.35 (10) C6—C7—C8 118.98 (12)
C1—N4—N3 106.37 (10) C6—C7—H7 120.5
N4—C1—N1 107.74 (11) C8—C7—H7 120.5
N4—C1—C2 127.53 (11) C3—C8—C7 121.81 (12)
N1—C1—C2 124.71 (11) C3—C8—H8 119.1
C1—C2—C3 114.42 (10) C7—C8—H8 119.1
C1—C2—H2A 108.7 O1—C9—C10 107.31 (11)
C3—C2—H2A 108.7 O1—C9—H9A 110.3
C1—C2—H2B 108.7 C10—C9—H9A 110.3
C3—C2—H2B 108.7 O1—C9—H9B 110.3
H2A—C2—H2B 107.6 C10—C9—H9B 110.3
C8—C3—C4 118.14 (11) H9A—C9—H9B 108.5
C8—C3—C2 120.93 (12) C9—C10—H10A 109.5
C4—C3—C2 120.86 (12) C9—C10—H10B 109.5
C5—C4—C3 120.89 (12) H10A—C10—H10B 109.5
C5—C4—H4 119.6 C9—C10—H10C 109.5
C3—C4—H4 119.6 H10A—C10—H10C 109.5
C4—C5—C6 120.20 (13) H10B—C10—H10C 109.5
C1—N1—N2—N3 −0.13 (14) C2—C3—C4—C5 −176.44 (11)
N1—N2—N3—N4 0.10 (14) C3—C4—C5—C6 1.3 (2)
N2—N3—N4—C1 −0.03 (14) C9—O1—C6—C7 −3.22 (17)
N3—N4—C1—N1 −0.05 (14) C9—O1—C6—C5 177.21 (11)
N3—N4—C1—C2 −178.47 (12) C4—C5—C6—O1 177.84 (11)
N2—N1—C1—N4 0.12 (15) C4—C5—C6—C7 −1.75 (19)
N2—N1—C1—C2 178.59 (12) O1—C6—C7—C8 −179.16 (11)
N4—C1—C2—C3 −36.43 (19) C5—C6—C7—C8 0.39 (18)
N1—C1—C2—C3 145.41 (13) C4—C3—C8—C7 −1.88 (18)
C1—C2—C3—C8 138.01 (13) C2—C3—C8—C7 175.05 (11)
C1—C2—C3—C4 −45.14 (17) C6—C7—C8—C3 1.45 (19)
C8—C3—C4—C5 0.49 (19) C6—O1—C9—C10 −177.01 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N4i 0.91 (1) 1.90 (1) 2.7897 (16) 166 (1)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2684).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arakawa, K., Ishihara, T., Oku, A., Nawano, M., Ueta, K., Kitamura, K., Matsumoto, M. & Saito, A. (2001). Br. J. Pharmacol.132, 578–586. [DOI] [PMC free article] [PubMed]
  3. Meng, M., Ellsworth, B. A., Nirschl, A. A., McCann, P. J., Patel, M., Girotra, R. N., Wu, G., Sher, P. M., Morrison, E. P., Biller, S. A., Zahler, R., Deshpande, P. P., Pullockaran, A., Hagan, D. L., Morgan, N. N., Taylor, J. R., Obermeier, M. T., Humphreys, W. G., Khanna, A., Discenza, L., Robertson, J. M., Wang, A., Han, S., Wetterau, J. R., Janovitz, E. B., Flint, O. P., Whaley, J. M. & Washburn, W. N. (2008). J. Med. Chem. 51, 1145–1149. [DOI] [PubMed]
  4. Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055597/cv2684sup1.cif

e-66-0o322-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055597/cv2684Isup2.hkl

e-66-0o322-Isup2.hkl (87.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES