Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 23;66(Pt 2):m189. doi: 10.1107/S1600536810002114

Bis[(1-methyl-1H-benzimidazol-2-yl)methanol-κ2 N 3,O]bis­(thio­cyanato-κN)cobalt(II) methanol solvate

Yan-Ling Zhou a, Hong Liang b, Ming-Hua Zeng b,*
PMCID: PMC2979919  PMID: 21579656

Abstract

In the mononuclear title complex, [Co(NCS)2(C9H10N2O)2]·CH3OH, the cobalt(II) ion is surrounded by two (1-methyl-1H-benzimidazol-2-yl)methanol bidentate ligands and two thio­cyanate ligands, and exhibits a distorted octa­hedral coordination by four N atoms and two O atoms. The structure is consolidated by hydrogen bonds between the organic ligand, thio­cyanate anion and the uncoordinated methanol mol­ecule, leading to a chain along [100].

Related literature

For the synthesis of the ligand, see: van Albada et al. (1995) and literature cited therein. For the cobalt(II) dithio­cyanato adduct, see: Zeng et al. (2006). For the zinc(II) complex of a similar N-heterocycle, see: Zhou et al. (2007).graphic file with name e-66-0m189-scheme1.jpg

Experimental

Crystal data

  • [Co(NCS)2(C9H10N2O)2]·CH4O

  • M r = 531.53

  • Triclinic, Inline graphic

  • a = 7.5008 (13) Å

  • b = 10.3470 (18) Å

  • c = 16.042 (3) Å

  • α = 95.579 (3)°

  • β = 103.388 (3)°

  • γ = 95.179 (3)°

  • V = 1197.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 173 K

  • 0.40 × 0.36 × 0.09 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.708, T max = 0.921

  • 8542 measured reflections

  • 4146 independent reflections

  • 3288 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.116

  • S = 1.01

  • 4146 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002114/si2239sup1.cif

e-66-0m189-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002114/si2239Isup2.hkl

e-66-0m189-Isup2.hkl (203.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co1—N6 2.035 (3)
Co1—N5 2.047 (3)
Co1—N1 2.065 (3)
Co1—N3 2.079 (3)
Co1—O1 2.284 (2)
Co1—O2 2.327 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3 0.85 1.89 2.689 (3) 155
O3—H3A⋯S2i 0.85 2.45 3.297 (3) 179
O1—H1⋯S1i 0.85 2.36 3.177 (2) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank Central South University and Guangxi Normal University for supporting this study.

supplementary crystallographic information

Comment

The benzimidazol alcohols have widely been used as versatile ligands in coordination chemistry, and their metal complexes are of great interest in many fields. Recently, we have reported a few benzimidazol-2-yl methanol base cobalt and zinc complexes (Zeng et al. 2006, Zhou et al. 2007). In this paper, the title new cobalt(II) complex, (Fig. 1), is reported.

The complex consists of a mononuclear cobalt(II) complex molecule and a methanol molecule. The cobalt(II) ion is surrounded by two [(1-methyl-1H-benzimidazol-2-yl)methanol bidentate ligands and two thiocyanato ligands, and exhibits a distorted octahedral coordination by four N atoms and two O atoms (Albada et al. 1995) The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in our previously reported similar 2-Hydroxymethylbenzimidazole cobalt(II) complex (Zeng et al. 2006).

The structure is consolidated by hydrogen bonds between the organic ligand, thiocyanate anion and the uncoordinated methanol molecule, leading to a one-dimensional chain along the [100] direction. (Table 2, Fig. 2).

Experimental

(1-methyl-1H-benzimidazol-2-yl) methanol was purchased from a chemical supplier. This reagent (0.16 g, 1 mmol), cobalt(II) nitrate hexahydrate (0.15 g, 0.5 mmol) and ammonium thiocyanate(0.08 g, 1 mmol) were dissolved in water (10 ml) that was kept at about 333 K. Red platelets separated from the solution after two weeks.

Refinement

The C-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2(1.5)Ueq(C,Cmethyl). The hydroxy H atoms were located in a difference Fourier map and refined isotropically with distance restraints of O—H = 0.85 (1) Å, and Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot of the [Co(II)(NCS)2(C9H10N2O)2] molecule at the 50% probability level; hydrogen atoms are drawn as sphere of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the hydrogen bonded chains along [100] direction. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) -1 + x, y, z.

Crystal data

[Co(NCS)2(C9H10N2O)2]·CH4O Z = 2
Mr = 531.53 F(000) = 550
Triclinic, P1 Dx = 1.474 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5008 (13) Å Cell parameters from 4367 reflections
b = 10.3470 (18) Å θ = 2.8–25.0°
c = 16.042 (3) Å µ = 0.93 mm1
α = 95.579 (3)° T = 173 K
β = 103.388 (3)° Plate, red
γ = 95.179 (3)° 0.40 × 0.36 × 0.09 mm
V = 1197.3 (4) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 4146 independent reflections
Radiation source: fine-focus sealed tube 3288 reflections with I > 2σ(I)
graphite Rint = 0.021
phi and ω scans θmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.708, Tmax = 0.921 k = −12→12
8542 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0643P)2 + 1.1088P] where P = (Fo2 + 2Fc2)/3
4146 reflections (Δ/σ)max = 0.001
298 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. In Checkcif report, the following ALERTS were generatedPLAT230_ALERT_2_C Hirshfeld Test Diff for S1–C19.. 6.12 su PLAT230_ALERT_2_C Hirshfeld Test Diff for S2–C20.. 5.57 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M—X) Co1–O1..5.19 su Author response: referring to the alert levels C, similar anisotropic displacement ellipsoids were observed in the solvent-free cobalt(II) complex (Zeng et al., 2006), and similar distances for S—C and Co—O (2.268 (2) Å) are found in Zeng et al. (2006).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.49422 (6) 0.79547 (4) 0.71477 (3) 0.03196 (15)
O1 0.3407 (3) 0.9076 (2) 0.61010 (13) 0.0388 (5)
H1 0.2553 0.9321 0.6326 0.058*
O2 0.2200 (3) 0.7225 (2) 0.74875 (14) 0.0420 (6)
H2A 0.2062 0.6429 0.7575 0.063*
O3 0.0999 (4) 0.4972 (2) 0.79928 (16) 0.0552 (7)
H3A 0.0496 0.5315 0.8370 0.083*
N1 0.3872 (3) 0.6541 (3) 0.61074 (16) 0.0321 (6)
N2 0.2271 (4) 0.5910 (3) 0.47582 (16) 0.0360 (6)
N3 0.4426 (3) 0.9434 (3) 0.80037 (16) 0.0335 (6)
N4 0.3048 (4) 1.0150 (3) 0.90172 (17) 0.0377 (6)
N5 0.7251 (4) 0.8800 (3) 0.68486 (17) 0.0402 (7)
N6 0.6311 (4) 0.6910 (3) 0.80523 (19) 0.0451 (7)
C1 0.2850 (5) 0.8331 (3) 0.5273 (2) 0.0435 (8)
H1A 0.3651 0.8629 0.4901 0.052*
H1B 0.1561 0.8449 0.4996 0.052*
C2 0.2998 (4) 0.6920 (3) 0.53789 (19) 0.0335 (7)
C3 0.3678 (4) 0.5184 (3) 0.59742 (19) 0.0321 (7)
C4 0.4280 (4) 0.4266 (3) 0.6519 (2) 0.0365 (7)
H4A 0.4974 0.4526 0.7096 0.044*
C5 0.3834 (5) 0.2958 (3) 0.6193 (2) 0.0447 (8)
H5A 0.4227 0.2310 0.6554 0.054*
C6 0.2822 (5) 0.2573 (4) 0.5348 (2) 0.0479 (9)
H6B 0.2539 0.1666 0.5148 0.057*
C7 0.2218 (5) 0.3459 (4) 0.4795 (2) 0.0430 (8)
H7A 0.1532 0.3190 0.4218 0.052*
C8 0.2661 (4) 0.4773 (3) 0.51224 (19) 0.0335 (7)
C9 0.1212 (5) 0.5970 (4) 0.3872 (2) 0.0444 (8)
H9A 0.1124 0.6885 0.3776 0.067*
H9B −0.0029 0.5510 0.3786 0.067*
H9C 0.1837 0.5554 0.3462 0.067*
C10 0.1814 (5) 0.7973 (3) 0.8195 (2) 0.0412 (8)
H10A 0.1972 0.7475 0.8698 0.049*
H10B 0.0525 0.8184 0.8045 0.049*
C11 0.3106 (4) 0.9185 (3) 0.8402 (2) 0.0348 (7)
C12 0.5277 (4) 1.0679 (3) 0.83793 (19) 0.0332 (7)
C13 0.6722 (4) 1.1464 (4) 0.8213 (2) 0.0427 (8)
H13A 0.7323 1.1183 0.7779 0.051*
C14 0.7252 (5) 1.2669 (4) 0.8701 (2) 0.0508 (9)
H14A 0.8219 1.3231 0.8589 0.061*
C15 0.6418 (5) 1.3092 (4) 0.9354 (2) 0.0506 (9)
H15A 0.6843 1.3923 0.9681 0.061*
C16 0.4986 (5) 1.2322 (4) 0.9530 (2) 0.0471 (9)
H16A 0.4411 1.2597 0.9975 0.056*
C17 0.4430 (4) 1.1128 (3) 0.9026 (2) 0.0373 (7)
C18 0.1719 (5) 1.0184 (4) 0.9551 (2) 0.0528 (10)
H18A 0.0893 0.9362 0.9418 0.079*
H18B 0.0995 1.0916 0.9433 0.079*
H18C 0.2377 1.0295 1.0162 0.079*
C19 0.8474 (4) 0.9482 (3) 0.6751 (2) 0.0354 (7)
C20 0.7421 (4) 0.6650 (3) 0.8619 (2) 0.0317 (7)
C21 0.2200 (7) 0.4131 (5) 0.8363 (3) 0.0730 (14)
H21B 0.3474 0.4535 0.8455 0.109*
H21A 0.2018 0.3309 0.7978 0.109*
H21C 0.1958 0.3952 0.8918 0.109*
S2 0.89902 (12) 0.63097 (9) 0.94306 (5) 0.0424 (2)
S1 1.01807 (12) 1.04930 (9) 0.66347 (6) 0.0445 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0292 (2) 0.0377 (3) 0.0279 (2) 0.00460 (18) 0.00559 (17) 0.00169 (18)
O1 0.0360 (12) 0.0467 (13) 0.0333 (12) 0.0101 (10) 0.0075 (10) 0.0003 (10)
O2 0.0414 (13) 0.0489 (14) 0.0382 (13) −0.0009 (11) 0.0173 (11) 0.0048 (11)
O3 0.0719 (18) 0.0496 (15) 0.0489 (15) 0.0112 (14) 0.0232 (14) 0.0048 (12)
N1 0.0266 (13) 0.0411 (15) 0.0290 (14) 0.0046 (11) 0.0079 (11) 0.0026 (11)
N2 0.0301 (14) 0.0506 (17) 0.0254 (13) 0.0021 (12) 0.0057 (11) 0.0000 (12)
N3 0.0262 (13) 0.0445 (16) 0.0302 (14) 0.0046 (11) 0.0069 (11) 0.0061 (12)
N4 0.0382 (15) 0.0475 (17) 0.0349 (14) 0.0134 (13) 0.0195 (12) 0.0084 (12)
N5 0.0329 (15) 0.0484 (17) 0.0403 (16) 0.0052 (13) 0.0139 (13) −0.0018 (13)
N6 0.0438 (17) 0.0477 (18) 0.0396 (16) 0.0114 (14) −0.0007 (14) 0.0050 (13)
C1 0.044 (2) 0.051 (2) 0.0332 (18) 0.0089 (16) 0.0055 (15) 0.0054 (15)
C2 0.0247 (15) 0.0475 (19) 0.0302 (16) 0.0046 (13) 0.0107 (13) 0.0036 (14)
C3 0.0243 (15) 0.0425 (18) 0.0324 (16) 0.0016 (13) 0.0149 (13) 0.0009 (14)
C4 0.0317 (17) 0.0443 (19) 0.0358 (17) 0.0025 (14) 0.0135 (14) 0.0045 (15)
C5 0.045 (2) 0.043 (2) 0.052 (2) 0.0053 (16) 0.0233 (17) 0.0076 (17)
C6 0.051 (2) 0.040 (2) 0.055 (2) 0.0002 (17) 0.0227 (18) −0.0050 (17)
C7 0.0381 (19) 0.056 (2) 0.0343 (18) −0.0029 (16) 0.0159 (15) −0.0067 (16)
C8 0.0266 (16) 0.0448 (19) 0.0313 (16) 0.0016 (14) 0.0145 (13) −0.0001 (14)
C9 0.0383 (19) 0.062 (2) 0.0281 (17) 0.0057 (17) 0.0020 (14) −0.0007 (16)
C10 0.0424 (19) 0.045 (2) 0.0438 (19) 0.0089 (15) 0.0213 (16) 0.0116 (15)
C11 0.0297 (16) 0.0445 (19) 0.0340 (17) 0.0094 (14) 0.0107 (14) 0.0120 (14)
C12 0.0272 (16) 0.0422 (18) 0.0291 (16) 0.0095 (14) 0.0029 (13) 0.0037 (14)
C13 0.0296 (17) 0.053 (2) 0.0430 (19) 0.0019 (15) 0.0110 (15) −0.0069 (16)
C14 0.0345 (19) 0.058 (2) 0.056 (2) −0.0017 (17) 0.0112 (17) −0.0066 (19)
C15 0.041 (2) 0.053 (2) 0.051 (2) 0.0014 (17) 0.0065 (17) −0.0123 (18)
C16 0.046 (2) 0.059 (2) 0.0378 (19) 0.0163 (18) 0.0111 (16) −0.0029 (17)
C17 0.0311 (17) 0.050 (2) 0.0332 (17) 0.0120 (15) 0.0091 (14) 0.0066 (15)
C18 0.057 (2) 0.061 (2) 0.054 (2) 0.0158 (19) 0.037 (2) 0.0099 (19)
C19 0.0328 (18) 0.0428 (19) 0.0317 (17) 0.0155 (15) 0.0079 (14) 0.0006 (14)
C20 0.0321 (17) 0.0296 (16) 0.0367 (17) 0.0036 (13) 0.0146 (15) 0.0040 (13)
C21 0.084 (3) 0.101 (4) 0.056 (3) 0.047 (3) 0.039 (2) 0.032 (3)
S2 0.0376 (5) 0.0594 (6) 0.0333 (4) 0.0147 (4) 0.0086 (4) 0.0129 (4)
S1 0.0376 (5) 0.0423 (5) 0.0599 (6) 0.0092 (4) 0.0199 (4) 0.0134 (4)

Geometric parameters (Å, °)

Co1—N6 2.035 (3) C5—C6 1.392 (5)
Co1—N5 2.047 (3) C5—H5A 0.9500
Co1—N1 2.065 (3) C6—C7 1.371 (5)
Co1—N3 2.079 (3) C6—H6B 0.9500
Co1—O1 2.284 (2) C7—C8 1.390 (5)
Co1—O2 2.327 (2) C7—H7A 0.9500
O1—C1 1.421 (4) C9—H9A 0.9800
O1—H1 0.8500 C9—H9B 0.9800
O2—C10 1.411 (4) C9—H9C 0.9800
O2—H2A 0.8500 C10—C11 1.474 (5)
O3—C21 1.384 (5) C10—H10A 0.9900
O3—H3A 0.8501 C10—H10B 0.9900
N1—C2 1.315 (4) C12—C13 1.387 (5)
N1—C3 1.389 (4) C12—C17 1.401 (4)
N2—C2 1.351 (4) C13—C14 1.380 (5)
N2—C8 1.388 (4) C13—H13A 0.9500
N2—C9 1.470 (4) C14—C15 1.392 (5)
N3—C11 1.317 (4) C14—H14A 0.9500
N3—C12 1.397 (4) C15—C16 1.378 (5)
N4—C11 1.345 (4) C15—H15A 0.9500
N4—C17 1.378 (4) C16—C17 1.382 (5)
N4—C18 1.457 (4) C16—H16A 0.9500
N5—C19 1.155 (4) C18—H18A 0.9800
N6—C20 1.154 (4) C18—H18B 0.9800
C1—C2 1.498 (5) C18—H18C 0.9800
C1—H1A 0.9900 C19—S1 1.636 (4)
C1—H1B 0.9900 C20—S2 1.630 (3)
C3—C4 1.388 (5) C21—H21B 0.9800
C3—C8 1.405 (4) C21—H21A 0.9800
C4—C5 1.384 (5) C21—H21C 0.9800
C4—H4A 0.9500
N6—Co1—N5 95.76 (12) C7—C6—H6B 118.9
N6—Co1—N1 102.52 (11) C5—C6—H6B 118.9
N5—Co1—N1 102.62 (10) C6—C7—C8 116.5 (3)
N6—Co1—N3 96.87 (11) C6—C7—H7A 121.7
N5—Co1—N3 101.37 (10) C8—C7—H7A 121.7
N1—Co1—N3 147.26 (10) N2—C8—C7 132.0 (3)
N6—Co1—O1 178.26 (10) N2—C8—C3 105.7 (3)
N5—Co1—O1 84.12 (10) C7—C8—C3 122.2 (3)
N1—Co1—O1 75.83 (9) N2—C9—H9A 109.5
N3—Co1—O1 84.85 (9) N2—C9—H9B 109.5
N6—Co1—O2 88.91 (11) H9A—C9—H9B 109.5
N5—Co1—O2 173.52 (10) N2—C9—H9C 109.5
N1—Co1—O2 80.65 (9) H9A—C9—H9C 109.5
N3—Co1—O2 73.54 (9) H9B—C9—H9C 109.5
O1—Co1—O2 91.34 (8) O2—C10—C11 107.8 (3)
C1—O1—Co1 113.38 (19) O2—C10—H10A 110.1
C1—O1—H1 116.7 C11—C10—H10A 110.1
Co1—O1—H1 100.9 O2—C10—H10B 110.1
C10—O2—Co1 114.71 (19) C11—C10—H10B 110.1
C10—O2—H2A 106.8 H10A—C10—H10B 108.5
Co1—O2—H2A 116.5 N3—C11—N4 113.3 (3)
C21—O3—H3A 109.5 N3—C11—C10 123.5 (3)
C2—N1—C3 106.1 (3) N4—C11—C10 123.2 (3)
C2—N1—Co1 117.9 (2) C13—C12—N3 131.3 (3)
C3—N1—Co1 135.7 (2) C13—C12—C17 119.5 (3)
C2—N2—C8 106.9 (3) N3—C12—C17 109.2 (3)
C2—N2—C9 127.6 (3) C14—C13—C12 117.4 (3)
C8—N2—C9 125.5 (3) C14—C13—H13A 121.3
C11—N3—C12 104.8 (3) C12—C13—H13A 121.3
C11—N3—Co1 118.5 (2) C13—C14—C15 122.4 (4)
C12—N3—Co1 136.2 (2) C13—C14—H14A 118.8
C11—N4—C17 107.4 (3) C15—C14—H14A 118.8
C11—N4—C18 126.4 (3) C16—C15—C14 121.0 (3)
C17—N4—C18 126.2 (3) C16—C15—H15A 119.5
C19—N5—Co1 167.6 (3) C14—C15—H15A 119.5
C20—N6—Co1 160.2 (3) C15—C16—C17 116.6 (3)
O1—C1—C2 108.7 (3) C15—C16—H16A 121.7
O1—C1—H1A 110.0 C17—C16—H16A 121.7
C2—C1—H1A 110.0 N4—C17—C16 131.6 (3)
O1—C1—H1B 110.0 N4—C17—C12 105.3 (3)
C2—C1—H1B 110.0 C16—C17—C12 123.2 (3)
H1A—C1—H1B 108.3 N4—C18—H18A 109.5
N1—C2—N2 112.9 (3) N4—C18—H18B 109.5
N1—C2—C1 122.2 (3) H18A—C18—H18B 109.5
N2—C2—C1 124.9 (3) N4—C18—H18C 109.5
C4—C3—N1 131.5 (3) H18A—C18—H18C 109.5
C4—C3—C8 120.0 (3) H18B—C18—H18C 109.5
N1—C3—C8 108.5 (3) N5—C19—S1 177.8 (3)
C5—C4—C3 117.7 (3) N6—C20—S2 178.9 (3)
C5—C4—H4A 121.2 O3—C21—H21B 109.5
C3—C4—H4A 121.2 O3—C21—H21A 109.5
C4—C5—C6 121.3 (3) H21B—C21—H21A 109.5
C4—C5—H5A 119.3 O3—C21—H21C 109.5
C6—C5—H5A 119.3 H21B—C21—H21C 109.5
C7—C6—C5 122.2 (3) H21A—C21—H21C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O3 0.85 1.89 2.689 (3) 155
O3—H3A···S2i 0.85 2.45 3.297 (3) 179
O1—H1···S1i 0.85 2.36 3.177 (2) 162

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2239).

References

  1. Albada, G. A. van, Lakin, M. T., Veldman, N., Spek, A. L. & Reedijk, J. (1995). Inorg Chem 34, 4910–4917.
  2. Barbour, L. J. (2001). J Supramol Chem 1, 189–191.
  3. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (1996). SADABS University of Goöttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Westrip, S. P. (2010). publCIF. In preparation.
  8. Zeng, M.-H., Zhou, Y.-L. & Ng, S. W. (2006). Acta Cryst. E62, m2101–m2102.
  9. Zhou, Y.-L., Zeng, M.-H. & Ng, S. W. (2007). Acta Cryst. E63, m15–m16.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002114/si2239sup1.cif

e-66-0m189-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002114/si2239Isup2.hkl

e-66-0m189-Isup2.hkl (203.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES