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Abstract
Fluorescence molecular imaging/tomography may play an important future role in preclinical
research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire
more measurement information than the continuous wave (CW) counterpart, improving the image
quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has
been extensively applied in optical molecular imaging, high-order photon migration models need to
be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-
domain parallel adaptive finite element solver is developed with simplified spherical harmonics
(SPN) approximations. To fully evaluate the performance of the SPN approximations, a fast time-
resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous
geometries is developed using a convolution strategy to realize the simulation of the fluorescence
excitation and emission. The validation results show that high-order SPN can effectively correct the
modeling errors of the diffusion equation, especially when the tissues have high absorption
characteristics or when high modulation frequency measurements are used. Furthermore, the parallel
adaptive mesh evolution strategy improves the modeling precision and the simulation speed
significantly on a realistic digital mouse phantom. This solver is a promising platform for
fluorescence molecular tomography using high-order approximations to the radiative transfer
equation.

1. Introduction
Imaging of the biological actions of therapeutics in vivo is paramount for the advancing field
of molecular medicine (Weissleder 1999, Massoud and Gambhir 2003, Herschman 2003,
Cherry 2004). Currently, nuclear imaging techniques of positron emission tomography (PET),
single photon emission computed tomography (SPECT), or gamma scintigraphy are the clinical
‘gold-standards’ of molecular imaging. These techniques depend upon the collection of high
energy photons that emanate from the relaxation of a radionuclide that is targeted to a specific
disease marker in order to generate either a planar image (gamma scintigraphy) or a
tomographic image (PET and SPECT). Preclinical small animal studies using these techniques
are commonplace in the drug discovery field.

Optical molecular imaging is akin to nuclear imaging in that it also involves the collection of
photons, albeit low energy photons that have significant attenuation due to scatter and
absorption. In contrast to bioluminescence (Contag and Bachmann 2002, Wang et al 2004,
Alexandrakis et al 2005, Chaudhari et al 2005, Cong et al 2005, Lv et al 2006, Dehghani et
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al 2006, Kuo et al 2007, Lu et al 2009a, Klose et al 2010) or emerging Cherenkov imaging
(Cho et al 2009, Robertson et al 2009) approaches, fluorescence imaging has the capability
for higher photon count rate for both planar and tomographic imaging as the fluorescent gene
product or fluorescent exogenous agent can be repeatedly excited by tissue surface illumination
(Sevick-Muraca et al 2002). Although most gene reporters are excited and emit in the visible
regime where limited tissue penetration and autofluorescence can confound signals, new
fluorescent gene reporters such as IFP1.4 (Shu et al 2009) are excited in the red range (>690
nm) with reduced autofluorescence and greater tissue penetration, opening up interesting
possibilities for quantitative tomography for preclinical drug discovery. Exogenous agents with
near-infrared (NIR) excitation (>780 nm) have minimal tissue autofluorescence thereby
offering the lowest background for fluorescence planar and tomography techniques. Indeed,
using indocyanine green (ICG), a dim and poor fluorophore with a low quantum efficiency of
0.016, planar human imaging has been conducted even at microdosages of <100 μg and
millisecond data acquisition rates (Sevick-Muraca et al 2008, Rasmussen et al, 2009) to image
structures in shallow tissues as well as tissue at depths up to 4–5 cm (Sevick-Muraca et al
2008).

Given the high photon count rates of planar fluorescence imaging for both fluorescent gene
products and exogenous agents, tomographic reconstruction for quantification of expression/
deposition should be possible given an accurate forward model for propagation of light in
tissues. For quantification, the forward model must be suitable for visible and red wavelength-
excitable gene products in preclinical studies, as well as NIR excitable exogenous agents in
preclinical as well as clinical studies. While significant work has been accomplished using the
diffusion approximation to the radiative transport equation (RTE) to model light transport in
biological tissues (Gibson et al 2005), the high tissue absorption associated with visible and
red-excited wavelengths, the small tissue volumes of preclinical models, or the shallow depths
of human imaging studies obviate its use. A direct solution of the RTE is an alternative (Lewis
and Warren 1984, Klose et al 2005, Rasmussen et al 2006, Joshi et al 2008), but with an expense
of solving N (N + 2) and (N + 1)2-coupled partial differential equations corresponding to
discrete ordinates (SN) and spherical harmonics (PN) methods, where N depicts the
approximation degree. High-order approximations have been recently attempted to obtain
sufficient performance for model-based iterative image reconstructions with less memory
requirement and time cost compared with direct RTE solvers (Klose and Larsen 2006, Cong
et al 2007, Yuan et al 2009, Chu et al 2009). However, in order to realize quantitative
tomographic reconstruction in complex heterogeneous geometries, such as a mouse, we need
to fully evaluate and validate the performance of those high-order approximations.

In addition, time-dependent measurements, i.e. time- or frequency-domain measurements
involving pulsed or modulated illumination of excitation light, have been shown to improve
reconstructions of embedded fluorescent tissues by providing more information than
continuous wave or time-independent methods (Godavarty et al 2003), but few, if any, studies
validate higher order approximation model predictions of both excitation and fluorescence
measurements in both time and 3D space. Owing to the complex and curvilinear geometries
associated with biological tissues, finite element methods (FEM) become necessary for
accurate quantification especially in small volumes where gradients of excitation and emission
fluence distribution contribute substantially to discretization errors. The adaptive finite element
method uses local mesh evolution strategy not only to accelerate the simulation with fewer
discretized points but also to improve upon the discretization errors, forward solution accuracy
and therefore reconstruction quality (Joshi et al 2004, Lv et al 2006). When the simulation
region is decomposed into several subdomains, parallel simulation implementation can
effectively accelerate the adaptive FEM simulation (Gu et al 2009, Lu and Chatziioannou
2009), enabling fully parallel adaptive finite element photon migration simulation with high-
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order RTE approximations that are suitable for use within inverse image reconstruction
algorithms (Lu et al 2009b).

Herein, the forward solution for frequency domain, fluorescent photon migration in biological
tissues, is realized with fully parallel adaptive finite element methods. The simplified spherical
harmonics (SPN) approximations are validated using a unique time-domain tetrahedron-based
Monte Carlo (MC) fluorescence simulator utilizing the convolution method (Swartling et al
2003) for improvement in computational time. Compared with diffusion approximation,
computational validation shows the preferable performance of the SPN approximations
especially in cases of high absorption and high modulation frequency. Simulation performance
is then evaluated using a whole-body digital mouse to document improvement arising from
parallel adaptive finite element strategies for fluorescence molecular imaging.

In the following section, the proposed simulation framework that incorporates parallel adaptive
strategy and SPN approximations for frequency-domain fluorescence molecular imaging is
introduced. The validation and comparative simulation results of the SPN approximations and
MC methods are demonstrated in section 3. The performance and simulation improvements
from parallel adaptive mesh evolution are represented in section 4. The conclusion and relevant
discussions are provided in section 5. The forward simulation model presented herein
represents a platform pertinent to time-dependent and -independent measurements, excitation
and emission measurements, as well as emission measurements employing bioluminescence
and Cherenkov emission tomography in small animals for drug discovery purposes.

2. Methods
2.1. The simplified spherical harmonics (SPN) approximations for frequency domain
fluorescence molecular imaging

The frequency domain RTE for fluorescence molecular imaging in 3D are (Rasmussen et al
2006)

(1a) (1b)

where the modulation frequency is ω; ψx,m are the excitation and emission radiances; cb(r) is
the light speed in the domain Ω;  and  are the scattering and absorption
coefficients, respectively;  is the absorption coefficient of the fluorophore; Q and τ are the
quantum efficiency and lifetime of the fluorophore, respectively; p (ŝ, ŝ′) is the scattering phase
function giving the probability of a photon anisotropically scattering from the direction ŝ′ to
direction ŝ. Generally, the Henyey–Greenstein (HG) phase function is often used to
characterize this probability (Ishimaru 1997):

(2)

where g is the anisotropy parameter; cos θ denotes the scattering angle that is equal to ŝ · ŝ′.
The HG phase function is easily expanded by the Legendre polynomial and is therefore
convenient for numerical computation. The angle-independent fluence φx,m is further defined
as
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(3)

At the tissue surface, r ∈ ∂Ω, we assume that some photons are internally reflected and do not
escape from the domain because of the mismatch between the refractive indices nb of the
domain Ω and nm of the surrounding external medium. Therefore, the partially reflecting
boundary condition for ψx,m is described by (Klose and Larsen 2006)

(4a) (4b)

where v is the unit outer normal vector; the incidence angle θb from the volume is not beyond
the critical angle θc (θc = arcsin(nm/nb) based on Snell’s law), and where the reflectivity R(cos
θb) is given by (Haskell et al 1994)

(5)

where θm is the transmission angle. The exiting partial current J+(r) at each point r on the
volume surface (where the illumination S(r, ŝ, ω) is not considered) is given as (Klose and
Larsen 2006)

(6)

After a series of deductions with the PN method, the excitation SPN approximations are obtained
similar to that described by Klose and Larsen (2006)

(7)

where  (Chu et al 2009); when ψx is expanded by the PN
approximation,  are the Legendre moments of ψx (2 ≤ n ≤ N, N is an odd positive integer).
The (N + 1)/2 boundary conditions for equation (7) can be obtained (Klose and Larsen 2006).
When we define  as the composite moments of ,

(8)
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the general equations of the SPN approximations and its boundary conditions for excitation
wavelength can be subsequently written as

(9a) (9b)

where  and  can be calculated for SP1 to SP7 (Klose and Larsen
2006). The corresponding approximation and boundary conditions for emission wavelength
can be similarly defined as

(10a) (10b)

2.2. The parallel adaptive finite element methods for the SPN approximations
For the finite element analysis, a general weak formulation for the SPN approximations can be
written as (Rao 1999)

(11a) (11b)

To avoid the processing of  in boundary integration, we assume that  are unknown
variables in the boundary equations ((9b) and (10b)). We obtain  and fSi (·)by solving a
set of first-order equations to obtain the boundary conditions.

After the simulation domain Ω is discretized into the volumetric mesh , the mesh is next
partitioned into Nc mesh subdomains  (1 ≤  ≤ Nc), where Nc is the number of the utilized
CPUs. For the finite element implementation, the space of linear finite elements  is introduced
on .  are approximated as

(12)

where  are the discretized values at a discretized point p at the lth adaptive mesh for
excitation and emission wavelengths when using the basis function υp (r);  is the total number
of the discretized points over the whole domain. Upon combining equations (11a),(11b), and
(12), one obtains
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(13)

where  is the number of the total discretized elements in subdomain ,

and

τe and ∂τe are the basic volumetric and surface elements of the mesh and belong to the respective
subdomain in parallel implementation. After assembling all the submatrices on element τe, we
obtain

(14)

In contrast to fixed or uniformly refined meshes, adaptively refined meshes require an a
posteriori error estimation and the processing of hanging nodes. A posteriori error estimators
decide which element should be refined or coarsened based upon the current solution. In
parallel mode, the local error indicators are suitable because they reduce communications
between processors. In this application, the gradient-jump error indicator is applied (Kelly et
al 1983). For the SPN, the local jump indicator for element τe is defined as (Kirk 2007)

(15)

where wi is a weighted factor corresponding to ϕi, and Ri, τe is the local residual for ϕi, which
is defined by

Lu et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2010 November 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(16)

vτe is the outward unit normal for element τep and hτe is the diameter of τep. Using , a
statistical strategy is used to decide the proportion of refined and coarsened elements (Carey
1997) by computing the mean (m) and standard deviation (σ) of the distribution as an indictor
for adaptive refinement or coarsening. The refinement and coarsening ratios (γr and γc) are set
to select elements. By judging whether the log-error of one element is higher than (m + γr σ),
or lower than (m − γcσ), the element is either refined or coarsened. When coarsening an element,
only the refined elements are operated upon.

Since the hanging node constraint needs to consider specific elements in geometric method
processing, the algebraic constraint method is selected to deal with hanging nodes (Carey
1997). Adaptive mesh evolution brings new challenges for balancing computational burden
across partitioned domains. Imbalance deteriorates parallel performance and dynamic
repartitioning of the mesh is indispensable for balancing computational burden. A k-way
partitioning method is used to perform the partitioning after mesh refinement (Karypis and
Kumar 1998). The reader is referred to Lu and Chatziioannou (2009) for details.

2.3. Time-resolved tetrahedron-based Monte Carlo fluorescence simulation
MC methods provide ground truth to evaluate and validate photon migration simulations. The
need to simulate illumination patterns that have been demonstrated to improve reconstructions
(Joshi et al 2006) and incorporate time dependence (Sevick-Muraca et al 1997, Li et al 1998,
Godavarty et al 2004, Patwardhan et al 2005) while providing comparable domains for
validating FEM solutions of complex geometries requires new MC solvers. To fully validate
the SPN approximations for our parallel FEM solver, we develop a time-resolved MC
fluorescence simulator (TR-TIM-OS) based on a tetrahedron-based inhomogeneous MC
optical simulator (TIM-OS) (Shen and Wang 2010).

2.3.1. Arbitrary shaped source settings and photon sampling—Triangular and
tetrahedral elements have become popular in numerical computation, especially in numerical
computation, because of their ability to describe complex geometries. Tetrahedron-based MC
photon simulation facilitates validation of complex geometries and patterned illumination
sources that require triangular and tetrahedral elements (Shen and Wang 2010). In fluorescent
photon MC, there are two manners to initiate photon trajectories: (i) through external
illumination of excitation photons and (ii) through internal generation of emission photons.

On the boundary of a domain, a triangle is the basic element describing the surface. In order
to set arbitrary-shaped area illumination Eai, a group of triangles

( ) at any position of the surface can be selected. In order to
simulate the spatially uniform photon illumination when the area of the selected triangles is
calculated, a uniform random number generator can be used to randomly select one from all
the triangles depending on their areas. In a selected triangle, the position of the sampled point
obeying the uniform random distribution is given by (Turk 1990)

(17)
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where rd1 and rd2 are the random number obeying a uniform distribution. If the sum of rd1
and rd2 is greater than ‘1.0’, two new random numbers for them are regenerated. Conversely,

rd3 = 1 − rd1 − rd2. The emitting direction  of the photon can be uniformly
sampled.

Since the volumetric domain is discretized using tetrahedral elements, a group of tetrahedra

( ) can be selected as volumes containing fluorophores of uniform
distribution that can be sites for generation of fluorescent photons. Similar to the method for
simulating excitation area illumination, any  can be selected randomly. The position 
of the generated emission photon can be obtained randomly and quickly using the algorithm
in Rocchini and Cignoni (2000). The emitting direction of the emission photon can then be
uniformly sampled over the whole solid angle.

2.3.2. Photon tracking—Once the initial excitation or emission photon generation is
simulated as described above, trajectories are simulated using conventional MC techniques
(Wang et al 1995, Boas et al 2002) where the weight of each photon is set to ‘1.0’ and attenuated
depending upon the length of a step; each step length is sampled from

(18)

where rds is a uniform random number in [0, 1]. The corresponding time traveled is calculated
from

(19)

When an emission photon is generated, the photon travel time is increased by (− ln(rdl )τ) due
to the fluorescence lifetime, where rdl is similar to rds. At each step, the position, weight and
accumulated travel time are recorded. In MC simulation using tetrahedron-based discretized
domains, a data structure is designed to record the element adjacent information. When the
photon trajectory occurs over two or even several tetrahedra, the photon trajectory can also be
quickly localized through the established element adjacent information. Preliminary tests have
shown that tetrahedron- and analytic geometry-based MC simulation have comparable
simulation time (Shen and Wang 2010), although for validation work, simulation time is not
as critical as is for FEM simulation. After setting the time step ΔtMC and the total photon
traveling time  and  for excitation and emission procedures, respectively, the absorbed
photon weight over time can be recorded before it is terminated.

2.3.3. Convolution-based emission simulation—In the MC simulation employed,
simulation of excitation and emission photon distributions are performed separately. After
simulating the temporal excitation, the fluence distribution over time is obtained within the
whole simulation domain.  is used to describe the fluence in the tetrahedral

element . If  describes a group of triangles for the surface
measurement domain, then to each  and , the time-resolved emission surface fluence
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 is obtained in the emission simulation. The final emission fluence

 on the surface triangle  can be computed from

(20)

With  and , the corresponding amplitude and phase shift can be

determined from the discrete Fourier transform of  when the specific modulated
frequency ω is selected (Pan et al 2007). The convolution approach dramatically speeds upon
time-dependent MC simulation of emission.

3. Simulations
In order to demonstrate the performance of the SPN approximations, the in-house code was
evaluated (SP1(i.e. the diffusion approximation), SP3 and SP7) for performance and compared
to MC for validation. Currently, many open-source, high-quality software packages have been
developed to meet the need of FEM-based simulation. In our application, libMesh was selected
as the basis development environment (Kirk et al 2006). LibMesh provides almost all of the
components used in parallel PDE-based simulation with unstructured discretization. We used
PETSc developed by Argonne National Laboratory (ANL) to solve the linear systems in
parallel mode (Balay et al 2001) and METIS (Karypis and Kumar 1998) to dynamically
partition the whole domain in libMesh using the k-way partitioning algorithm. The time-
resolved tetrahedron-based MC program, that is TR-TIM-OS, was written in C/C++ (Intel
MKL 2009). All the simulations were performed on a cluster of eight nodes (eight CPU cores
of 3.0 GHz and 16 GB RAM at each node).

3.1. Validation of SPN approximations with Monte Carlo simulation
The validation studies were performed using a simulated cylindrical phantom of 12.5 mm
radius and 25.0 mm height. The phantom was simulated to contain a single spherical fluorescent
heterogeneity and a second non-fluorescent inclusion (figures 1(a) and (b)). The center of the
phantom is located at the origin of the Cartesian coordinate. The phantom was discretized into
a tetrahedron-based volumetric mesh with approximately 5900 nodes and the average element
diameter of 1.2 mm. This mesh was used in the SPN- and MC-based simulations. The range of
the launched photon numbers was from 107 to 108. With the increase of the absorption
coefficient, the number of launched photons was increased to reduce simulated Poisson noise.
A fluorescent spherical volume with 1.0 mm radius was simulated at the half-radius position
(the center: (− 6.25, 0.0, 0.0)) as the single fluorescent domain. An area located at the height
of 4.0 mm along the Z-axis subtending a circumferential angle of 11.2° was used as the uniform
illumination area with its center along the negative x-axis. The absorption and scattering
coefficients of the phantom were set to 0.005 mm−1 and 5.0 mm−1, respectively. The
anisotropic factor and refractive index were 0.9 and 1.33, respectively. The absorption
coefficient, lifetime and quantum efficient (QE) of the fluorophore were set to 0.0147 mm−1,
1.0 ns, and 0.016 consistent with available near-infrared fluorophores. The goal of fluorescence
molecular imaging/tomography is to acquire the quantitative information of the fluorophores
in the in vivo animal and human body; the two parameters collected were the excitation photon
fluence distribution (φx(r), r ∈ Ω) in the body and the outgoing emission photon fluence
( , r ∈ ∂Ω).
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The comparison results of  are shown in figure 2 for a modulation frequency of 100 MHz.
The amplitudes obtained from SPN approximations and MC simulation were normalized with
the average values of SP7 and MC methods, respectively. The absolute phase shift was used
for the comparison. In order to demonstrate the difference between SPN approximations and
MC simulation, their amplitude ratios and phase shift errors were calculated using

( ) and (PSPN − PMC), respectively.  and  are the normalized SPN and
MC amplitude; PSPN and PMC are the corresponding absolute phase shift. Due to the effect of
the Poisson noise of the MC simulation in , the values of the points far from the fluorophore
have somewhat larger errors than those close to the fluorophore. However, the amplitude ratios
and phase errors between several SPN approximations and MC are close, showing the accuracy
of the in-house codes.

3.2. Performance of SPN approximations

3.2.1. With varying ratios of  to μa—The performance evaluation of the SPN
approximations in fluorescence molecular imaging was first performed with different ratios of

 to μa. When the absorption coefficient of the phantom was adjusted to 0.05 mm−1 with other
parameters unchanged from those used in the accuracy validation, the comparison of  and
φx between several SPN approximations and MC was computed as shown in figures 3(a) and
(b), respectively. At the ratio of  to μa of 10, the difference of the amplitude ratios and phase
errors between SP1, SP3 and SP7 becomes distinct as compared to when the ratio was set to
100 (figure 2). With the increase of the distance from the illumination area, the phase errors
of φx gradually become large (~1.0°). Note that the simulated amplitudes near the source
domain from all SPN approximations are inaccurate, resulting in the inaccuracy of the
normalized amplitude ratios. The distance from the illumination area where this inaccuracy
predominates extends about 3.0 mm in this case. When the amplitudes were re-normalized
using the average values of φx that did not include values within this distance from the source,
better accuracy of the SPN-based amplitudes occurs (figure 3(b)). In these simulations, the
errors arise from both model mismatch and discretization. To further confirm the performance
of SPN approximation in the near-source domain, a fine mesh consisting of approximately 46
000 nodes and having an average element length of 0.55 mm was used. Upon setting the ratios
of  to μa to 10.0 and 2.0 and launching 108 and 3 × 108 photons, respectively, we observe
that the errors are reduced as shown in figures 4(a) and (b). Although the phase shift errors are
reduced and the amplitude ratio ranges are closer to ‘1.0’, the error and ratio trends are
consistent with those using the coarse mesh. Furthermore, the inaccuracy of SPN approximation
in the near-source domain remains.

When the absorption coefficient of the phantom was set to 0.25 mm−1 (and the ratio of  to
μa is 2.0), the advantages of the high-order SPN approximations become more distinct as shown
in figures 3(c) and (d). In this case, the amplitude and phase shift of  and φx, computed from
SP3 and SP7, contain the maximal amplitude ratio and phase errors that differ from MC by a
factor of 0.4 and 2.0°, respectively. The comparable errors between SP1 and MC are 0.9 and
4.0°. The corresponding differences of φx between DA and high-order SPN approximations are
also distinct as shown in figure 3(d). The inaccuracy becomes worse regarding SPN
approximations with the increased distances from the fluorophore and illumination area. Note
that near the source, the distance in which φx inaccuracy occurred did not change when the
absorption coefficient of the phantom was adjusted from 0.05 mm−1 to 0.25 mm−1.

3.2.2. With varying modulation frequencies—Although 100 MHz is the optimal
modulation frequency for experimental measurements (Thompson and Sevick-Muraca 2003),
higher modulation frequencies of 500 and 1000 MHz were considered to evaluate the

Lu et al. Page 10

Phys Med Biol. Author manuscript; available in PMC 2010 November 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



performance of high-order SPN approximations. Figure 5 shows the comparison of SPN
approximations and MC simulations when the absorption and scattering coefficients of the
phantom were fixed to 0.05 and 5.0 mm−1, respectively. Similar accuracies of the excitation
and emission amplitude at 100 MHz cases were obtained. However, the diffusion equation has
inaccurate excitation and emission phase when compared with high-order SPN approximations.
With the increase of the modulation frequency, the diffusion inaccuracy becomes worse. For

, the maximal phase errors of SP3 and SP7 relative to MC are 2.0 and 4.0° at 500 and 1000
MHz, respectively. However, the counterparts of the diffusion equation reach 6.0 and 12.0°.

3.2.3. With inclusions of high absorption and void-like optical characteristics—
In practice, small animal fluorescence molecular imaging encounters organs of varying optical
properties. The performance evaluation in heterogeneous domains is important. A cylindrical
phantom with 2.0 mm radius and 20.0 mm height was simulated within the cylindrical
homogeneous phantom. Its center was co-located with that of the homogeneous phantom. The
discretized volumetric mesh is shown in figure 1(b), consisting of 6162 nodes. The same
fluorophore properties with the validated homogeneous phantom case were used in this
evaluation. The optical properties of the surrounding continuous volume were set to 0.05 (μa)
and 5.0 mm−1 (μs), respectively. The optical properties of the inclusion were set to 0.25 (μa)
and 5.0 mm−1 (μs), to simulate the high-absorption domain. As shown in figures 6(a) and (b),
there is little effect of the high-absorption domain in values of  computed from the SPN
approximations. However, φx of several SPN approximations are inaccurate in the simulated
phantom containing the high-absorption region, significantly affecting the quantitative
information acquisition of the fluorophore. Note that there is little effect in the phase shift
compared with the emission amplitude.

For the void-like case, the simulated inclusion was set as a low-scattering domain with a
scattering coefficient of 0.1 mm−1 and the high ratio of  and μa equal to 20.0. The comparison
of MC and SPN approximations of  and φx is shown in figures 6(c) and (d). Similar to the
high-absorption inclusion, low-scattering inclusions appreciably impact  even though φx is
inaccurate compared to MC simulation.

4. Evaluation of the parallel adaptive finite element strategy on a simulated
mouse

As the final evaluation of the proposed algorithm, the microMRI-based mouse volume
(MOBY) (Segars et al 2004) was investigated for accuracy and computational performance.
Amira 5.2 (Visage Imaging, Inc., San Diego, CA) was used to obtain the discretized mesh of
MOBY. The coarse and fine meshes, consisting of approximately 21 000 and 230 000
discretized points, respectively, were generated for adaptive mesh evolution and the acquisition
of the precise solution. Most organs were depicted in the discretized mesh as described along
with assigned optical properties in table 1, reproduced from Alexandrakis et al (2005). To
represent a fluorescent heterogeneity, a cubic domain with volume of 15.6 mm3 was simulated
within the liver. The optical parameters of the fluorophore were the same with those used in
the cylindrical phantom. The illumination area was simulated as a triangular element near the
x-axis on the mouse surface. In order to observe the performance of the adaptive mesh evolution
as a function of SPN, the solutions were obtained from the SP3 and SP7 approximations of the
excitation light only. Because emission and excitation solutions are solved on independently
adapted meshed and require accurate interpolation schemes (for example see Lee et al
(2008)), we focus only on the effect of SPN approximation order on adaptive meshes in the
simulation precision. Future work will address independently adapted meshing.
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The dynamic mesh partitioning and adaptive mesh evolution are shown in figure 7 when ten
domains and ten CPUs were used in the parallel adaptive simulation. To guarantee the same
number of the final discretized points in SP3- and SP7-based simulation, the refinement ratio
γr was set to 99.9% and 99.91%, respectively, and both of the coarsening ratios γc were set to
0.0%. Upon comparing the initial partitioned mesh and the counterparts after the first and third
adaptive mesh refinements (figure 7), one finds that the subdomains for CPUs were almost
totally different due to the adaptive mesh evolution. If the initial partitioning mesh was used
for the entire simulation, the load imbalance would significantly impair the simulation
performance. It is noteworthy that because the larger errors exist in the proximity of the
illumination area, mesh refinements were performed primarily in the vicinity of the triangular
surface element.

After the SP3-, SP7- and MC-based simulation results were acquired on the fine mesh of the
MOBY, the amplitude and phase shift profiles of φx along the X-axis transecting the fluorophore
domain were obtained by the interpolation. The relative errors of the normalized amplitude

and phase shift were calculated using  and |P SPN − PMC |/|PMC | as shown
in figure 8. To remove the effect of the inaccuracy of SP3 and SP7 in the near-source domain,
the φx values within the range of 3.0 mm far from the illumination were not considered in the
comparisons. Compared to the solution on the fine mesh, the solutions of the excitation
amplitude and phase shift of SP3 and SP7 close to the illumination are significantly improved
due to the adaptive mesh evolution. Note that there are several spikes in the comparisons. We
believe the spikes are from the poor discretization and element quality since they are not
observed from the solution on the fine mesh.

To further observe the performance of the proposed algorithm, the computational time as a
function of CPUs is shown in figure 9. For the SP3- and SP7-based simulations on the adaptive
and fixed fine meshes, the parallel implementation significantly improves the simulation speed
although the simulation is not always accelerated with the increasing CPU number. The
maximal acceleration ratios for fixed fine meshes were 1.27 and 2.31 for SP3 and SP7,
respectively. The maximal acceleration ratios for adaptively refined meshes were 2.93 and 4.13
for SP3 and SP7, respectively. These results show that the acceleration ratio is more positively
impacted by adaptive mesh evolution for SP7 than SP3. However, higher order approximations
take more CPUs (10 and 18 CPUs for SP3 and SP7, respectively).

The computational time of several modules that perform specific computational tasks, matrix
assembly, mesh communication, mesh partitioning, mesh adaptive, error estimation and
solver, were considered to analyze performance bottleneck. Figures 9(b) and (c) illustrate the
computational time as a function of number of CPUs for SP3 and SP7, respectively. Although
the time costs of several modules (matrix assembly, error estimation and solver) are quickly
reduced at the beginning, the improvement of the time cost decreases after an optimal CPU
number. In contrast, mesh communication becomes worse with the increased number of CPU
due to the more frequent communication between CPUs. Furthermore, figure 9(d) shows the
percentage of several modules in the total simulation time. Mesh communication and solver
are the major time-consuming modules especially with the increase of the approximation
degree. Significant improvement can be obtained by the acceleration of solver.

5. Summary and conclusion
Herein, a parallel adaptive finite element simulation algorithm is developed with the radiative-
transfer-based model for frequency domain fluorescence molecular imaging. To demonstrate
the performance of high-order SPN approximations, the time-resolved tetrahedron-based
Monte Carlo fluorescence simulator is developed, suitable for complex heterogeneous
geometries and arbitrary-shaped illumination. The comparison results show that high-order
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SPN approximations may obtain more precise simulation in the high-absorption and high-
frequency cases compared with the popular diffusion approximation. The strategy of the
parallel adaptive mesh evolution further accelerates the simulation and improves the simulation
precision especially when higher order SPN approximations are applied. The proposed
simulation algorithm provides a possible solution for fast and quantitative fluorophore
reconstruction for fluorescence molecular tomography at the whole-body small animal level.

Although the radiative transfer equation can provide more accurate solutions, the cost may
prevent its use within iterative inverse solutions. For accurate quantitation in drug discovery,
suitable high-order approximations may be necessary. As a consequence, optimizing
performance of higher order approximations become necessary in order to realize
reconstruction accuracy. This paper systematically demonstrates accuracy improvements
compared with the diffusion equation and developed Monte Carlo methods. The time cost of
SP7 approximation makes the SP3 approximation an optimal choice for conditions in which
small animal imaging is conducted. However, the poor performance of SPN approximations in
near-source and void-like regions makes the development and investigation of more advanced
high-order approximations necessary.

Precise and fast simulation can be obtained using a fully parallel adaptive mesh evolution
strategy. The performance evaluation shows that the time improvement of higher order SPN
approximations obtained from the proposed algorithm becomes more distinct compared with
sequential implementation, providing a powerful computational platform for radiative-
transfer-based simulation. However, the distributed memory-based parallel simulation exhibits
a performance bottleneck especially when a great number of CPUs are used. With the increase
of the approximation degree of radiative-transfer-based model, it is necessary to obtain optical
simulation performance by increasing the CPU number. The development of current multi-
core techniques makes the hybrid threaded-MPI parallel mode possible, potentially improving
the simulation performance for the high-order radiative-transfer-based model. Module solver
becomes a time-consuming phase especially for higher order approximation. Note that the
acceleration becomes slow when the CPUs reach a certain number. To improve the parallel
simulation performance, more advanced preconditioners and iterative techniques need to be
investigated.

In conclusion, we have developed a fully parallel adaptive finite element algorithm for
fluorescent photon propagation simulation using high-order radiative-transfer-based models.
The fully performance evaluations show the advantages and limits of SPN approximations and
the developed parallel simulation framework. Optimal improvements can be further
investigated in future research. Currently, using dual-labeled near-infrared fluorescence and
PET traces, we are developing methods to assess the quantitative algorithm by comparing it
to established PET.
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Nomenclature

Ω, ∂Ω domain and its boundary

r position vector

ŝ, ŝ′ outgoing and incoming directions of photons
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ω modulation frequency

ψx,m excitation (x) and emission (m) radiances

, g absorption and scattering coefficients, and anisotropy factor of the
domain at excitation and emission wavelengths

absorption coefficient of the fluorophore

cb light speed in the domain Ω

p(·) scattering phase function

Q,τ quantum efficiency and lifetime of the fluorophore

cos θ scattering angle

φx,m excitation and emission fluence

nb, nm refractive indices of the domain Ω and the medium

S illumination source

R(·) reflectivity ratio

θb, θm, θc incidence, transmission and critical angle

exiting partial current at excitation and emission wavelengths

γn,ϕn Legendre moments of ψ and composite moments of γn
coefficients of SPN approximations at excitation and emission
wavelengths

coefficients of illumination source of SPN approximations

coefficients of boundary conditions at excitation and emission
wavelengths

, volumetric mesh and its subdomain

Nc, , number of CPUs, nodes of the mesh, elements in 

τe,∂τe volumetric and surface elements

value at node p at the l-th mesh

basis function in FEM

submatrix and subvector at τe

submatrix and subvector at 

error indicator

wi, weighted factor and local residual

γr, γc refinement and coarsening ratios

group of triangles for illumination and emission measurements, group of
tetrahedra for fluorephore

rdi uniformly random number

sampled point on the surface for excitation
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sx,m step size of photon trajectory

Δtx,m traveling time corresponding to sx,m

simulation time for excitation and emission wavelengths

ΔtMC Δtx,m, time step and travel time of photons

time-resolved excitation and emission fluences

time-resolved artificial emission fluence
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Figure 1.
The discretized meshes of the used phantoms. The black circles and lines are for comparisons
of the exiting partial current  and the fluence φx. The red solid spheres represent fluorescent
heterogeneities and the cylindrical inclusion is also represented.
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Figure 2.
Emission comparisons between the diffusion equation, Monte Carlo method and SPN
approximations in the phantom (figure 1(a)) where μa = 0.005 mm−1, μs = 5.0 mm−1, g = 0.9
and nb = 1.33. The modulation frequency is 100 MHz. ‘A * to MC’ and ‘P * to MC’ denote
the normalized amplitude ratios and the errors of the absolute phase shift between SPN and
MC. Two dash-dot lines are 0 degree (top) and the ratio of ‘1’ (bottom).
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Figure 3.
Comparisons of  ((a) and (c)) and φx ((b) and (d)) between the diffusion equation, Monte
Carlo method and SPN approximations in the homogeneous phantom when μs = 5.0 mm−1, g
= 0.9 and nb = 1.33. The  ratios of ((a) and (b)) and ((c) and (d)) are 10.0 and 2.0,
respectively. The display settings are the same as those in figure 2.
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Figure 4.
Comparisons of φx between the diffusion equation, Monte Carlo method and SPN
approximations on the fine mesh of the homogeneous phantom when μs = 5.0 mm−1, g = 0.9
and nb = 1.33. The  ratios of (a) and (b) are 10.0 and 2.0, respectively. The modulation
frequency is 100 MHz. The display settings are the same as those in figure 2.
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Figure 5.
Comparisons of  ((a) and (c)) and φx ((b) and (d)) between the diffusion equation, Monte
Carlo method and SPN approximations in the homogeneous phantom when μa = 0.05 mm−1,
μs = 5.0 mm−1, g = 0.9 and nb = 1.33. The modulation frequencies are 500 MHz for (a) and (b)
and 1000 MHz for (c) and (d). The display settings are the same as those in figure 2.
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Figure 6.
Comparisons of  ((a) and (c)) and φx ((b) and (d)) between the Monte Carlo method and
SPN approximations in phantoms containing high absorption and void-like inclusions. μa, μs,
g, and nb of the surrounding continuous volume of the phantom are fixed to 0.05 mm−1, 5.0
mm−1, 0.9, and 1.33, respectively. μa and μs of the small cylindrical inclusion are set to 0.25
mm−1 and 5.0 mm−1 (high absorption), and 0.005 mm−1 and 0.1 mm−1 (void-like), respectively.
The modulation frequency is 100.0 MHz. The display settings are the same as those in figure
2.
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Figure 7.
Dynamic mesh partitioning and evolution and the fine mesh partitioning.
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Figure 8.
Comparisons of φx between SP3, SP7 and the Monte Carlo method in the digital mouse phantom
(MOBY). The modulation frequency is 100 MHz. ‘A SP3,7 (*) to MC’ and ‘P SP3,7 (*) to MC’
denote the relative errors of the excitation amplitude and phase shift on different fixed and
adaptively refined meshes. The dash-dot rectangles are used to show the part of the significant
error reduction due to the adaptive mesh evolution.
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Figure 9.
Time analysis of SP3- and SP7-based simulation using the MOBY phantom. (a) The total cost
time of the SP3 and SP7 approximations. (b) (SP3) and (c) (SP7) denote the cost time of the
submodules of the parallel adaptive finite element simulation. (d) The time percentage of the
submodules in the total cost time for SP3 and SP7.
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Table 1

Optical properties of organs of the MOBY mouse phantom at 700 nm.

μa (mm−1) μs (mm−1) g n

Heart 0.038 9.05 0.9 1.33

Liver 0.23 6.48 0.9 1.33

Lung 0.13 21.24 0.9 1.33

Stomach 0.0077 13.77 0.9 1.33

Pancreas 0.043 21.09 0.9 1.33

Kidney 0.043 21.09 0.9 1.33

Spleen 0.23 6.48 0.9 1.33

Intestine 0.0078 10.88 0.9 1.33

Bone 0.039 23.40 0.9 1.33

Brain 0.0027 11.80 0.9 1.33

Bladder 0.0027 11.80 0.9 1.33

Muscle 0.0027 11.80 0.9 1.33

Phys Med Biol. Author manuscript; available in PMC 2010 November 12.


