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Purpose: When comparing binary test results from two diagnostic systems, superiority in both
“sensitivity” and “specificity” also implies differences in all conventional summary indices and
locally in the underlying receiver operating characteristics (ROC) curves. However, when one of
the two binary tests has higher sensitivity and lower specificity (or vice versa), comparisons of their
performance levels are nontrivial and the use of different summary indices may lead to contradic-
tory conclusions. A frequently used approach that is free of subjectivity associated with summary
indices is based on the comparison of the underlying ROC curves that requires the collection of
rating data using multicategory scales, whether natural or experimentally imposed. However, data
for reliable estimation of ROC curves are frequently unavailable. The purpose of this article is to
develop an approach of using “diagnostic likelihood ratios,” namely, likelihood ratios of “positive”
or “negative” responses, to make simple inferences regarding the underlying ROC curves and
associated areas in the absence of reliable rating data or regarding the relative binary characteristics,
when these are of primary interest.

Methods: For inferences related to underlying curves, the authors exploit the assumption of con-
cavity of the true underlying ROC curve to describe conditions under which these curves have to be
different and under which the curves have different areas. For scenarios when the binary charac-
teristics are of primary interest, the authors use characteristics of “chance performance” to demon-
strate that the derived conditions provide strong evidence of superiority of one binary test as
compared to another. By relating these derived conditions to hypotheses about the true likelihood
ratios of two binary diagnostic tests being compared, the authors enable a straightforward statistical
procedure for the corresponding inferences.

Results: The authors derived simple algebraic and graphical methods for describing the conditions
for superiority of one of two diagnostic tests with respect to their binary characteristics, the under-
lying ROC curves, or the areas under the curves. The graphical regions are useful for identifying
potential differences between two systems, which then have to be tested statistically. The simple
statistical tests can be performed with well known methods for comparison of diagnostic likelihood
ratios. The developed approach offers a solution for some of the more difficult to analyze scenarios,
where diagnostic tests do not demonstrate concordant differences in terms of both sensitivity and
specificity. In addition, the resulting inferences do not contradict the conclusions that can be ob-
tained using conventional and reasonably defined summary indices.

Conclusions: When binary diagnostic tests are of primary interest, the proposed approach offers an
objective and powerful method for comparing two binary diagnostic tests. The significant advan-
tage of this method is that it enables objective analyses when one test has higher sensitivity but
lower specificity, while ensuring agreement with study conclusions based on other reasonable and
widely acceptable summary indices. For truly multicategory diagnostic tests, the proposed method
can help in concluding inferiority of one of the diagnostic tests based on binary data, thereby
potentially saving the need for conducting a more expensive multicategory ROC study. © 2010
American Association of Physicists in Medicine. [DOL: 10.1118/1.3503849]
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I. INTRODUCTION

Performance assessments of diagnostic tests using receiver
operating characteristics (ROC) approaches constitute an im-
portant area of investigation in many fields. Conceptual and
statistical components of the conventional ROC analysis

have been described in a number of books.'™ This general
area remains of interest and there continues to be develop-
ment of an ensemble of statistical tools facilitating assess-
ments of diagnostic tests, in general, and in diagnostic imag-
ing applications, in particular.
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Diagnostic tests for the detection of a specific condition
(“abnormality”) being investigated (D for actually present or

“abnormal” and D for actually absent or “normal”) can be
implemented using different rating scales, such as pseudo-
continuous, categorical, or binary. The simplest, and often
more clinically relevant, form of a diagnostic test is a binary
test, which provides results indicating the presence (“+”) or
absence (“—”) of the abnormality. The binary form of a test
is frequently achieved by dichotomizing a multicategory
scale. This dichotomization can be implicit or explicit de-
pending on whether multicategory test results are actually
observable or latent.

Since specific dichotomization could affect the perfor-
mance of the resulting binary test, an important question
when comparing two tests is whether they actually originated
from different dichotomizations of the same, or different,
underlying multicategory diagnostic tests. The ROC curve
[“sensitivity” as a function of “l-specificity” or ROC(f)] of
a given multicategory diagnostic test describes the perfor-
mance characteristics of all binary diagnostic tests resulting
from dichotomizations of a multicategory scale with differ-
ent thresholds.’

f=1 - specificity = P(+ |D),

t = sensitivity = P(+ |D). (1)

Comparisons of ROC curves help address the underlying is-
sue whether or not different binary diagnostic tests result
from the same or different multicategory tests.” However, in
some instances, multicategory data may be unavailable or
may not be as reliable as binary data. For example, in imag-
ing studies, the experimental collection of multicategory re-
sults for well-defined diagnostic tasks that are primarily bi-
nary in nature from a perception point of view (e.g., presence
or absence of pneumothorax on a chest x ray or microcalci-
fications on mammograms) could lead to imprecise and pos-
sibly incorrect conclusions.® Moreover, in tests where the
observer’s interpretation is considered an integral part of the
diagnostic system itself, the practical usefulness of the por-
tions of ROC curves derived by the conventional rating ap-
proach could be questioned. Indeed, although the points on
the rating-based ROC curve provide estimates of sensitivity
for every possible value of specificity, the question remains
whether all of these operating points can be actually
achieved in practice.

However, in some instances, even without actual ROC-
type rating data, it is still possible to determine the relation-
ship between ROC curves underlying two binary diagnostic
tests. Indeed, without any assumptions about the ROC curve
itself, one can state that a binary diagnostic test with both
better sensitivity (denoted here as ¢) and “specificity” (de-
noted here as 1-f) corresponds to at least a locally higher
ROC curve. Thus, a result of comparisons of the underlying
ROC curves and related indices can be inferred when both
sensitivity and specificity associated with one binary test can
be shown to be statistically simultaneously better than sen-
sitivity and specificity associated with another binary test.
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Fi1G. 1. True operating characteristics of a conventional and a new diagnos-
tic test. The conventional test has a better negative diagnostic likelihood
ratio and better specificity. The points on the bold line connecting the oper-
ating characteristics of the conventional test to the trivial corner (1,1) dem-
onstrate characteristics achievable by augmenting the conventional test by a
random guess.

Statistical analysis is important since performance character-
istics computed from a sample of the targeted population can
appear to be better for an actually inferior test just by chance
(i.e., due to “lucky” sampling). Unfortunately, it is quite
common to obtain data sets that do not demonstrate a simul-
taneous superiority in both estimated characteristics. In these
cases statistical tests for simultaneous superiority in both
measures are automatically insignificant. The superiority in
both characteristics is frequently more difficult to demon-
strate during developmental phases and initial testing of
newly proposed diagnostic technologies. For example, dur-
ing developmental efforts of systems for screening purposes
(whether imaging based or not), the initial phase/stage of
assessments often aims to increase sensitivity of a binary test
regardless of any possible increases in false positive rates
(i.e., a decrease in specificity). This often results in scenarios
where the new test initially has both statistically and appar-
ently higher sensitivity but lower specificity (e.g., Fig. 1).
In cases when the interest lies in the binary characteristics
rather than in underlying ROC curves, the comparison of two
binary diagnostic tests, one of which has higher sensitivity
but lower specificity, may present several issues. In such in-
stances, informative inferences are still possible with scalar
indices, such as “accuracy,” “Youden’s index,” “odds ratio,”
or “expected utility.”4 These approaches frequently incorpo-
rate explicitly subjective or sample-dependent information,
such as prevalence in approaches based on accuracy and both
prevalence and utility function in approaches based on ex-
pected utility. In general, all approaches that are based on
summarizing two characteristics (e.g., sensitivity and speci-
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ficity) by a single index impose a specific type of equiva-
lence between different diagnostic tests, which leads to the
possibility of contradicting conclusions when different ap-
proaches are used. For example, due to differences in the
general shape of isolines for the odds ratio (hyperbolae) and
for Youden’s index (a line with a slope of 1), a test with a
better odds ratio can have a lower Youden’s index and vice
versa.

The background for generating inferences about ROC
curves based on binary data was described almost half a
century ago.17 One of the approaches mentioned in Ref. 17 is
also applicable for two binary diagnostic tests, one of which
has truly higher sensitivity but lower specificity. However,
statistical analysis for this approach was never considered.
We demonstrate that the comparison of diagnostic likelihood
ratios (i.e., likelihood ratios of “positive” or “negative” re-
sponses) enables straightforward statistical inferences re-
garding underlying ROC curves. Furthermore, using consid-
erations similar to Refs. 15 and 17, one can develop an
approach for approximate inferences about the area under the
underlying ROC curve (AUC). This approach is also appli-
cable in instances when of one of two diagnostic tests being
compared has higher estimated sensitivity but lower specific-
ity and may be useful whether the interest lies in the under-
lying ROC curves, the areas under the curves, or in binary
characteristics at naturally adopted thresholds. For scenarios
in which the binary characteristics are of primary interest, we
discuss the objectivity of the resulting inferences in that a
binary test superior in likelihood ratios is also superior ac-
cording to the conventional intrinsic indices, such as
Youden’s index and odds ratio. Finally, we discuss the con-
straints on prevalence levels and utility structure without
which the nonintrinsic indices, such as accuracy and ex-
pected utility, could potentially lead to paradoxical study
conclusions.

In Sec. I A we discuss the implications associated with
expected concavity (or equivalently up-convexity) of ROC
curves and outline the justification as to why the violation of
true concavity is often unreasonable to expect. We also pro-
vide in this section background information on diagnostic
likelihood ratios. In Sec. II B we describe inferences that can
be made based on likelihood ratios of two binary diagnostic
tests and relationships to other indices. Section III offers a
discussion of the proposed methodology and the Appendix
provides a detailed basis for generating inferences in regard
to AUCs of underlying ROC curves.

Il. MATERIALS AND METHODS
Il.A. Background

Il.A.1. Concavity of ROC curves and implications
regarding the properties of a diagnostic test

The solution proposed in this paper exploits the assump-
tion of concavity of the underlying ROC curve. The assump-
tion of concavity of “practically reasonable”” ROC curves has
been promoted by many authors'™!" as an important, useful,
and frequently necessary property. Several investigators also
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considered a variety of ROC inferences resulting from the
exploitation of the assumption of concavity (or equivalently
up-convexity).”‘15 The implications of concavity have also
been used to make the graphical comparison of operating
characteristics of diagnostic tests.'>!7

Concavity of ROC curves is “natural” to assume in a large
number of practical applications, including observer perfor-
mance studies, because violation of this property implies that
a diagnostic system could locally perform worse than a
purely guessing system. This follows from the fact that a
straight line connecting two experimentally ascertained op-
erating points (determined by 1-specificity or “f” and sensi-
tivity or “¢””) for two binary tests represents the performance
of a system that randomly chooses between the decisions of
the two tests.'? For the straight line connecting the operating
point of a binary test to the trivial points (0,0) or (1,1), there
is an even more intuitively appealing interpretation.
Namely, any point on a straight line connecting an operating
point (f},;) of a given diagnostic test with the trivial oper-
ating point (1,1) describes an operating characteristic of a
test that relabels as positive a random fraction of those sub-
jects which had been originally called negative.7’l7 Indeed, if
the probability of relabeling a negative subject as positive is
p regardless of its true status (e.g., by flipping a coin), the
operating characteristics of such an augmented test (f7,#")
can be represented as

?=P+|D)+[1-P+|D)] X p=t;+(1-1;) X p
= X (1-p)+1Xp,

ff=PH+|D)+[1-P+ D)X p=fi+(1-f) Xp
=fiX{1=-p)+1Xp. 2)

This important consideration provides a useful interpretation
for comparisons of two binary diagnostic tests when the true
operating point of one test resides below the straight line
connecting the true operating point of the other test to the
trivial corners in the ROC space as shown in Fig. 1. Specifi-
cally, treating points depicted on Fig. 1 as representing the
true operating characteristics of a test, one can claim that the
“conventional” diagnostic test is better because by random
augmentation, it is possible to construct a diagnostic test that
is better than the “new” test with respect to both sensitivity
and specificity (hence a better test regardless of prevalence
and/or utilities). The algebraic relationships and statistical
inferences for these comparisons can be obtained from the
straightforward relationship of the straight lines passing
through the trivial points to the isolines of diagnostic likeli-
hood ratios."

Il.A.2. Diagnostic likelihood ratios

As an alternative to using a pair of operating characteris-
tics (f, 1) [i.e., (1-specificity, sensitivity)], a binary diagnostic
test can also be uniquely characterized by a pair of “diagnos-
tic likelihood ratios,” or briefly DLR,5 (sometimes also
termed simply “likelihood ratios” if the binary nature of the
test is implied4), which can be expressed as follows:



5824 Bandos, Rockette, and Gur: Likelihood ratios in performance comparisons

., P|D) 1
DLR = ——— =~
p+D) S

3)
__PID) 1-1
DIR = ——=——
P-ID) =S

The use of diagnostic likelihood ratios has additional practi-
cal significance, since superiority in positive (greater is bet-
ter) or negative (smaller is better) diagnostic likelihood ratios
is equivalent to dominance in positive and negative predic-
tive values, correspondingly.13 It is worth noting, however,
that the superiority in terms of diagnostic likelihood ratios is
more general than the superiority in terms of sensitivity-
specificity pairs. Indeed, a binary diagnostic test superior
with respect to both sensitivity and specificity is superior
with respect to likelihood ratios. However, it is possible that
a binary test is superior in terms of likelihood ratios but
actually has lower sensitivity, or alternatively lower specific-
ity, but not simultaneously both. Hence, DLR superiority
does not have as strong an implication as the dominance of
sensitivity and specificity and for certain utility and preva-
lence structures, a binary diagnostic test with lower likeli-
hood ratios could have a higher expected utili'[y.l3"4 At the
same time, in light of the interpretation of DLR isolines as
performance curves of a random augmentation (Sec. IT A 1),
the claim of the adequacy of a binary diagnostic test with
inferior likelihood ratios is rather questionable. For the sub-
sequent discussion, it is also important to note that isolines of
the diagnostic likelihood ratios are the straight lines passing
through the trivial points (0,0) (for DLR*) and (1,1) (for
DLR").

11.B. Diagnostic likelihood ratios and the ROC curve

Given a single point representing the true operating char-
acteristics of a binary diagnostic test in the ROC space and
assuming that the binary test had been obtained by a specific
dichotomization of a multicategory rating scale of the origi-
nal (but unobserved) test results, one could attempt to de-
scribe the general location of the actual entire performance
curve. Since a ROC curve is, by definition, monotonically
nondecreasing, the operating characteristics of a given point
limits the location of possible ROC curves to a region with
better sensitivity or specificity, but not both simultaneously.
However, this range is typically too wide for many practical
applications.

Using the assumption of the concavity of the ROC curve,
we can narrow the range where possible ROC curves could
reside. Indeed, a concave ROC curve cannot lie below the
straight line connecting any of its two points or, in other
words,

Fe(fuf) ROC() =ROC(H,) X % +ROC(f)
27J1
Ioh
et

As a result, a concave ROC curve cannot lie within the tri-
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FiG. 2. Concave ROC curves passing through a given point.

angle obtained by connecting an operating point
(f1,ROC(f})) on the curve and the trivial points (0,0) and
(1,1), i.e.,

fe(0.f) ROC()=ROC(f,) X %
1
_ I—f ffi
fe (fi,1) ROC(f) = ROC(f)) X -1, + l_f‘l- 4)

In addition, a concave ROC curve cannot lie above the
straight line complimenting the extensions of these lines be-
yond a binary operating point, i.e.,

- ]_f f_ﬁ
fe©.f1) ROC() =ROC() X T+
fe(fi.1) ROC()=ROC(f) X % 5)

1

Had it been otherwise, the ROC curve could no longer be
concave around (f;,ROC(f})). These lines are illustrated in
Fig. 2.

As noted in Sec. IT A, straight lines passing through a
given operating point and the trivial corners represent the
isolines of the positive and negative DLRs. Thus, a concave
ROC curve passing though any given point always resides
between two DLR isolines passing though this very point
(Fig. 2). In other words, the true likelihood ratios of a given
binary diagnostic test determine the upper and lower bounds
for the family of all concave ROC curves that could charac-
terize underlying multicategory results.
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FiG. 3. Possible locations (regions) for concave ROC curves passing
through two given points. The regions marked with a 45° pattern correspond
to curves passing through the point (f;,7;) and those marked with a 135°
pattern correspond to curves passing through the point (f5,1,).

Thus, if the true characteristics of a test are inferior with
respect to both diagnostic likelihood ratios, it has at least a
locally inferior ROC curve (in the range including both
points), as shown, for example, in Fig. 3.

Similar regions can be constructed using estimated char-
acteristics of the binary diagnostic test. However, the fact
that the estimated characteristics of one of the diagnostic
tests are beyond the region of the ROC curve of the other
merely demonstrates the possibility that one can statistically
reject a hypothesis of equality of the ROC curves. Formal
statistical inferences can then be made using straightforward
asymptotic techniques either directly in regards to likelihood
ratios™'® or indirectly in regards to predictive values.'®

1l.C. Diagnostic likelihood ratios and the overall
discriminative ability

There is frequently an interest in comparing overall dis-
criminative ability of two diagnostic tests, i.e., in the ability
to distinguish a normal from an abnormal subject. The dis-
criminative ability of a multicategory test is numerically
equivalent to the area under its ROC curve.*” Hence, the
discriminative ability of a reasonable diagnostic test is al-
ways smaller than the area under the highest concave ROC
curve passing though a known (given) binary point. On the
other hand, since a reasonable diagnostic test could discrimi-
nate subsets or patients better than chance, its discriminative
ability is better than the area under the lowest concave ROC
curve passing though a known binary point. Indeed, as dis-
cussed previously, the straight lines connecting a given bi-
nary point to (0,0) and (1,1) describe the “chance perfor-
mance” in the subsets of subjects labeled by the binary test
as positive and negative, correspondingly.
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Thus, by comparing the minimum possible AUC for one
point with the maximum AUC for the other point, it is pos-
sible to derive both algebraic and graphical rules for the lo-
cation of the point, which ensures inferiority of the area un-
der the latent ROC curve. The graphical approach for
constructing the region in which a given point dominates in
terms of possible associated AUC has three steps that are
illustrated in Fig. 4. These are

(1) Draw a straight line though the given point (f},;) par-
allel to the “guessing line” (diagonal line with slope of
1) [the isoline of the Youden’s index (or area under the
lowest concave ROC curve)]. Note the points of inter-
section of this line with the borders of the ROC space:
Points 1 and 2 [Fig. 4(b)].

(2) Connect the trivial corner (1,1) to point 1 and the trivial
corner (0,0) to point 2 with straight lines [Figs. 4(c) and
4(d)]. These lines represent the upper bound
of the dominated region in the lower left quadrant
[f<0.5,/=0.5] and the wupper right quadrant
[0.5=f,0.5=t] of the ROC unit square (The isolines of
the diagnostic likelihood ratios of a specific magnitude
(see Eq. (6))]. Note the points of intersection of the first
line with the vertical midline (f=0.5) (point 4) and of
the second line with the horizontal middle line (r=0.5)
(point 3).

(3) Complete the upper boundary of the dominant region in
the upper left quadrant of the ROC unit square (i.e.,
f<0.5<r) with a section of a hyperbola connecting
points 3 and 4 [Fig. 4(e)].

Algebraic expressions and justification for this represen-
tation are provided in the Appendix.

The set of points that must have smaller latent AUCs than
that of a given point (i.e., AUC dominance region) can be
approximated by the region below two straight lines passing
though the trivial corners of the ROC space in Fig. 4. As
discussed in Sec. II A, these are isolines of specific positive
and negative DLRs; hence, any point that falls below both
lines has worse DLRs than the slopes of the corresponding
lines. Using this relationship (algebraic details are given in
the Appendix), the AUC dominance region of a point (f;,#;)
can be approximated using diagnostic likelihood ratios as
follows:

DILR'. < ———
¢ l-t,+f1 . (6)

DLR(;, > 1-1+f;

Alternatively, if one of two diagnostic system being com-
pared is known to have lower specificity, one can test infe-
riority of the latent AUCs exactly by verifying that both
DLR™ is sufficiently poor (higher) and the specificity is lower
than 0.5, i.e.,
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The substantial advantage of expressing regions of AUC in-
feriority in the form of Eq. (6) and (7), as well as relating
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ratios (end of Sec. I B), is the ability to perform straightfor-
ward nonparametric inferences. Asymptotic inferences about
DLRs can be made using a closed-form approximation for
the variance of their logarithms.5 Similarly, the variance and
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covariance of estimated log(DLR) and log(1—¢+f) can be
readily computed and used to test the relationships in Eq. (6)
and (7).

11.D. Diagnostic likelihood ratios and performance of
a binary test

As previously discussed, inferiority with respect to both
diagnostic likelihood ratios beyond certain limits [e.g., Eq.
(6)] implies both inferiority with respect to the area under the
underlying ROC curves and at least a local inferiority of the
ROC curves themselves. Inferiority with respect to both di-
agnostic likelihood ratios also has a direct implication in
regards to relative performance levels of two binary diagnos-
tic tests. Indeed, if, as in Fig. 1, the conventional test actually
has better diagnostic likelihood ratios than the new test, it
also means that it is possible to augment the “conventional”
test with a random guess (see Sec. Il A), in a manner that
results in either a better sensitivity at the same specificity as
of the new test or a better specificity at the same sensitivity
as of the new test. This would make any statement of supe-
riority of the new test according to any of the performance
indices rather questionable.

Naturally, the inferiority with respect to both diagnostic
likelihood ratios also implies inferiority with respect to many
conventional summary indices. For example, if a test is in-
ferior with respect to both diagnostic likelihood ratios it is
also inferior with respect to

(1) Youden’s index,’ since a test with smaller Youden’s in-
dex corresponds to a point below the unislope line [Fig.
4(b)] and a region of DLR inferiority is completely be-
low this line.

(2) Odds ratio, since its isolines’ are ROC-like concave
curves and there is no concave ROC curve that can pass
through both a point and its corresponding region of
DLR inferiority.

(3) Positive and negative predictive values (in the same
population), since the isolines for predictive values are
the same as for diagnostic likelihood ratios."

Interpretation of DLR isolines as performance curves of a
given binary diagnostic test augmented with a guessing pro-
cess highlights an important problem with the use of an ac-
curacy index and the need for caution when defining the
utility function for the expected utility index. The problem
stems from the fact that even when performance is assessed
for the same sample of subjects, accuracy and expected util-
ity may be greater for a binary test which is inferior with
respect to likelihood ratios (hence, offers less sensitivity and
specificity that the other test augmented by “guess”). Indeed,
the isolines for the accuracy and expected utility are straight
lines with slopes that depend on prevalence (and a utility
function in case of expected utility) and by varying these
parameters, the slope can be made arbitrarily close to O.
Hence, if a binary diagnostic test is inferior with respect to
both likelihood ratios but has higher sensitivity, it is possible
to find values of prevalence (and utility structure) that result
in higher accuracy (expected utility). Thus, even for the same
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sample, a reasonable use of these nonintrinsic performance
measures should be limited to comparisons of tests which are
unlikely to have a uniform ordering in both diagnostic like-
lihood ratios simultaneously.

lll. DISCUSSION

One of the more challenging problems in comparing bi-
nary diagnostic tests arises when one test has higher sensi-
tivity but lower specificity than the other. We described sev-
eral objective solutions based on diagnostic likelihood ratios.
In scenarios where comparisons of binary characteristics are
of interest, the proposed use of the diagnostic likelihood ra-
tios offers an objective comparison, which holds regardless
of the prevalence or utility structure. This approach is also
applicable to instances where estimated sensitivity and speci-
ficity levels of diagnostic tests do not differ consistently. For
scenarios where the underlying ROC curve or the overall
discriminative ability are of interest, the methods presented
here can help determine the inferiority of one of the tests
based on the binary data without conducting a more compli-
cated multicategory ROC study.

The proposed methodology permits one to resolve prob-
lems that are typically addressed by expensive effort-
intensive ROC studies. However, the proposed approach can-
not and is not intended to replace ROC studies in general.
For example, this methodology does not permit assessment
of potential improvements in sensitivity for some diagnostic
tests with lower specificity but a smaller (better) negative
diagnostic likelihood ratio. Furthermore, even in cases when
inferences with diagnostic likelihood ratios are possible,
when reliable multicategorical data for constructing and
comparing ROC curves are available, traditional methods of-
ten provide for more powerful and complete inferences than
the approach described here. However, this conjecture rests
on the underlying assumption of the reliability of the rating-
based ROC curve and the practical ability of a system to
actually operate at any given point (i.e., with any desired
level of specificity). For example, the system’s ability to op-
erate at a point with any given specificity level is not always
possible if a system has intrinsically a limited ability to dis-
tinguish among a fraction of the subjects (e.g., due to finite
image resolution or contrast sensitivity). In this case, regard-
less of the decision threshold, it is unclear whether the sys-
tem is able to achieve a specificity level which is lower than
the proportion of subjects originally perceived as completely
negative (e.g., all cases that were given a rating of “0”).

Relative to other procedures for comparing performance
of a binary task, it is useful to highlight the general statistical
properties of the procedures when comparing DLRs and/or
sensitivity-specificity characteristics of diagnostic tests/
systems. Without any loss of generality, we discuss the rela-
tive properties using the example of two diagnostic systems
with known specificity levels. For diagnostic systems that
truly differ in sensitivity alone (actual specificity levels being
the same), the statistical test for equality of sensitivity will
naturally be more powerful than the test for equality of nega-
tive diagnostic likelihood ratios (DLR™). However, as differ-
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ences in true specificity levels increase (while keeping the
difference in sensitivity levels the same), the statistical
power of the test based on DLR™ gradually increases and the
test eventually becomes more powerful than a simple com-
parison of sensitivity levels. This is easy to visualize, for
example, in systems with approximately the same sensitivity.
In addition, if a more “specific” system is also more “sensi-
tive,” a comparison of binary characteristics or the underly-
ing (but unobserved) ROC curves using sensitivity-
specificity pairs has to rely on a subjective combination of
both characteristics, while it is possible to draw objective
conclusions through a comparison of diagnostic likelihood
ratios.
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APPENDIX: AUC DOMINANCE REGION

By definition, a concave curve cannot lie above any of its
tangent lines. As a result, the maximum-area concave curve
passing through a given point coincides with a certain
straight line passing through this point. By maximizing the
area under such a straight-line ROC curve passing though a
point (f,,?,), the maximum area under a concave ROC curve
passing through it can be shown to be equal to"
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The parameters of the maximum-area straight-line ROC
passing through a specific point depend on the coordinate of
that point. Different possibilities are demonstrated in Fig. 5.
Regardless of the coordinates of the point (f,1;), the low-
est possible concave ROC curve passing though the point
consists of the two line segments connecting the point to the
trivial extremes (corners). Hence, the minimum area under a
concave ROC curve passing through (f;,#,) has the form

. H+1-
Grn = ]Tfl (A2)
or it is equal to half the corresponding Youden’s index.'

Both minimum and maximum areas under the concave
ROC curves passing through a given point have explicit for-
mulation in terms of sensitivity and specificity. Therefore,
one can derive an explicit formulation for the regions of
AUC dominance. Specifically, for a given point (f,7;), one
can explicitly construct the region of points (f,#) such that
any concave ROC curve passing through this point (f;,#,)
has a higher AUC than any other concave ROC curve pass-
ing through any point within that region. This region can be
defined as

,
1
< — X <t=05
-t + 1, / f
N AR <AD" =19 1-1,+ 1 A3
(o AGy <AGut=), oy Lzt 1 f<05<rt (a3)
4 f
I <U-n+f) X[+t -f) 05=f<1
|
Since the maximum area for a point (f,,1,) varies depending max - 4min : f _ H+1-1 - 1
on the quadrant the point belongs to, in order to demonstrate (f2:12) o) <4 21, 2 <h -1, +f

Eq. (A3) we consider points within each of these quadrants.
First, let (f,,1,) be in the lowest left quadrant in the ROC
space (i.e., f,<0.5, 1,=0.5). Then

fr
max _ 1 _ J2
Ay =1 2t

and
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X f5.

Second, when (f,,f,) is in the upper left quadrant (i.e.,
f><0.5<t,), then

iy =1=2(1-1)

and
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FiG. 5. The concave ROC curves passing though a point
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Last, if (f,,t;) is in the upper right triangle (i.e.,
0.5=f,<t,), then

and
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(f>,1,) that have maximum possible areas under them.

(1-1) <t1+1—f1

max min
Al <A{a) e 1- 21-1y) > S <(l1
—t+f) X fa+ (t = f1).
The shape of the domain can be confirmed by geometric

considerations. Indeed, the minimum-area concave ROC
curve passing through (f;,,) is composed from the two lines
connecting (f},;) to the trivial corners (0,0) and (1,1). The
isoline for the area under such a triangle is a straight line
with a unit slope [e.g., Fig. 4(b)]. The isoline for the
maximum-area ROC curve passing through (f,,7,) in the
lower left, i.e., f<<t=0.5, or the upper right, i.e., 0.5=f<t¢,
quadrants of ROC square is a straight line passing through
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(0,0) or (1,1) correspondingly [e.g., Figs. 5(a) and 5(d)].
Hence, the border of the domain in the lower left or upper
right quadrants is a straight line connecting trivial corners
(0,0) and (1,1) to the point where the unislope line passing
through (f,,7;) intersects the upper boundary of the ROC
square (space) [Fig. 4(d)]. The coordinates of these intersec-
tions are (1-7;+f,,1) and (0,1,—f;). A section of a hyper-
bola (the isoline of maximum AUC for f=0.5<r) completes
the boundary of the domain in the upper left quadrant of the
ROC space as shown in Fig. 4(e).
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