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Purpose: To develop a binary image reconstruction method for the autolocalization of metallic
object�s� in CT with sparse projections.
Methods: The authors divide the system into two types of contents: Metal�s� and nonmetal�s�. The
boundaries of metallic objects are obtained by using a penalized weighted least-squares algorithm
with the adequate intensity gradient-controlled. A novel mechanism of “amplifying” the difference
between metal�s� and nonmetallic substances is introduced by preprocessing the sinogram data,
which is shown to be necessary in dealing with a case with sparse projection data. A series of
experimental studies are performed to evaluate the proposed approach.
Results: A novel binary CT image reconstruction formalism is established for the autodetermina-
tion of the shape and location of metallic objects in the presence of limited number of projections.
Experimental studies reveal that the presented algorithm works well even when the embedded metal
object�s� has different shape�s�. It is also shown that when the projection data are sparse, a differ-
ential manipulation of projection data can greatly facilitate the binary reconstruction process and
allow the authors to obtain accurate binary CT images that would otherwise be unattainable.
Conclusions: Binary CT reconstruction provides a viable method for determining the geometric
distribution information of the implanted metal objects in CT imaging. © 2010 American Asso-
ciation of Physicists in Medicine. �DOI: 10.1118/1.3505294�
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I. INTRODUCTION

The presence of metals in patients may cause streaking arti-
facts in x-ray CT,1–3 which has long been recognized as a
problem that not only limits the quality of CT images, but
also makes dose calculation in radiation therapy planning
problematic. In the past three decades, numerous methods
have been published to reduce the metal artifacts,1–6 but a
practical solution applicable in all clinical situations remains
illusive. A critical step in these methods is to identify the
shape and location of metals in either image space or projec-
tion space.

In general, finding the shape and location of metal objects
and determining the remaining density distribution can be
considered as two different, separate problems because of
their dramatically different mathematical properties. The
former can be formulated as a problem of binary image re-
construction with the pixels occupied by metal to be unity
and the rest of the pixels zero. The binary image reconstruc-
tion for convex shaped metals has, generally, an exact solu-
tion, which can be utilized as prior knowledge in the second

reconstruction problem of determining the tissue density dis-
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tribution of the remaining part. The importance of metal ob-
ject extraction is threefold: �1� It represents the first and nec-
essary step in CT metal artifact removal; �2� it presents a
viable technique for metal object localization with sparse
projection data; and �3� it has practical implications �even
without obtaining the detailed images� in a number of clini-
cal applications, such as dose reconstruction in brachy-
therapy and seeds implantation.

In this work, we propose a novel sinogram preprocessing
technique and a binary image reconstruction algorithm for
the identification of the metal objects from either full or
sparse projections. Instead of developing a full-fledged itera-
tive algorithm to obtain the tissue and metal density distri-
bution simultaneously, we aim to obtain a binary image of
the patient, such that the high density metals possess a “den-
sity” 1 and the remaining regions 0 with any anatomic detail
ignored. For this purpose, the projection data or sinogram is
first manipulated numerically, such that the difference of in-
tensities of the projections passing and nonpassing metal�s�
is enhanced. An edge-preserving iterative algorithm7–11 is
then applied to obtain the binary image based on the prepro-

cessed projection data. It is shown that the proposed binary
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reconstruction works well even when the number of projec-
tions is sparse and/or the metal�s� is of different shape�s�.
The obtained geometric information of the metal objects is
by itself valuable for many clinical applications, such as pro-
viding real-time image guidance during a dose delivery pro-
cess with the use of implanted fiducial markers and post-
therapy evaluation in permanent seeds implant based
brachytherapy. The binary image information will also be
indispensable to provide critical prior information for future
development of artifact-free CT imaging in the future.
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FIG. 1. The head phantom with BBs reconstructed using 62 projections: �a�
FDK algorithm; �b� PWLS algorithm without preprocessing of the projec-
tions; �c� the proposed algorithm ��=4�. The binary image extracted from
�c� is shown in �d�.
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FIG. 2. 1D profiles along the horizontal midlines of images in Figs. 1�a�–1�

1D profiles.
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II. MATERIAL AND METHODS

In the presence of a metal object, the linear attenuation
coefficient �LAC� at the boundary of the metal changes sud-
denly and the detection of the metal boundary is equivalent
to finding the edge of a signal. In other words, an image
containing metal�s� can generally be divided into two promi-
nent components with different intensity levels. Different
from conventional CT reconstruction, where the focus is to
derive the density distribution within the field of view, here
we propose to divide the image into two different but closely
related steps: �i� Binary reconstruction to localize the met-
al�s� and �ii� CT image reconstruction to determine the LAC
distribution of the remaining tissues with the obtained binary
information about the metallic objects as prior knowledge.
This work is focused on solving the first problem: To de-
velop a binary image reconstruction method for localizing
the boundary between the high and low density regions with
a set of CT projections, possibly sparse projection data.

II.A. Preprocessing of projection data

The performance of binary reconstruction can be greatly
improved by preprocessing the projection data, especially
when the number of projections is limited. Reducing the
number of projections not only decreases the angular cover-
age of the metal object, which results in streaking artifacts,
but also reduces the difference of image intensity between a
metal and its adjacent tissues in the image space, which
makes it difficult to localize the metal object�s�. To faithfully
reconstruct a binary image, it is useful to enhance the differ-
ence of the signals characterizing the metal objects and tis-
sues �in either image space or projection space�. In this work,
the difference of the projections passing and nonpassing
through the metal�s� is magnified in the projection space by
setting
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P̂i = Pi
�, �1�

where pi is the line integral of projection measurements at ith
projection pixel after log-transformation and � is a constant
which increases the pixel intensity to its �th power. This
operation is applied for all projection pixels, allowing us to
more effectively differentiate the metal and tissues. Image
reconstruction with the nonlinearly amplified projections
makes the metal objects localization easy, especially in the
presence of sparse projections.

II.B. Gradient-controlled PWLS algorithm

We use an image intensity threshold-based method to
identify the metal objects based on the nonlinearly “ampli-
fied” projection data. An iterative image reconstruction algo-
rithm based on the PWLS criterion7,9,10 is implemented to
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FIG. 3. The head phantom with BBs reconstructed using 62 projections. �a�
�=1; �b� �=2; �c� �=4; �d� �=10.
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FIG. 4. The 1D profile along the horizontal midline in images shown

in Fig. 3.
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accomplish the goal. In this algorithm, images are recon-
structed through minimizing an objective function, which
consists of a data fidelity term and a regularization term. The
regularization characterizes the a priori property of the sys-
tem and its role is to find a sharp edge between regions with
the difference of image intensities exceeding a threshold.

The difference of LACs between metal and anatomic
structures is usually much larger than that between different
structures. The preprocessing step, which enlarges the differ-
ence of projections passing and nonpassing metal objects in
the projection domain, leads to images more close to binary
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FIG. 5. �a� Head phantom with embedded BBs reconstructed using 46 pro-
jections; �b� 62 projections; �c� 85 projections; �d� 113 projections; �e� 136
projections; �f� 170 projections; �g� 226 projections. The image recon-
structed by proposed method without preprocessing from 678 projections is
displayed in �h�.
form.
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The idea behind the method is that regularization is only
applied for the neighbors of which the gradient is smaller
than the preselected threshold. By setting a proper gradient
threshold, the regularization term is applied within the metal
objects or normal tissues and the reconstructed image con-
tains only the metal object and a background with the
masked patient structure information. Mathematically, the
PWLS criterion can be written as7,12
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FIG. 7. The head phantom with brass reconstructed using 76 projections: �a�
FDK algorithm; �b� PWLS algorithm without sinogram preprocessing; �c�
the proposed algorithm. The binary image extracted from �c� in shown in

�d�. The inset in �a� shows the brass.
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���� = �p̂ − A����−1�p̂ − A�� + �R��� . �2�

The first term in the right side of Eq. �2� is the weighted
least-squares criterion and symbol � denotes the transpose
operator. p̂ is the processed projection data and � is the
vector of image intensity to be reconstructed. Note that the
aim here is to find a binary solution with the metal object�s�
having a higher intensity, instead of searching for the attenu-
ation coefficient distribution. By enlarging the difference of
image intensity between metal�s� and soft tissue through Eq.
�1�, the cost function in Eq. �2� favors the u that converges to
a binary distribution. In other words, the u in Eq. �2� is not
the conventional linear attenuation coefficients, but a quan-
tity close to be binary. The dimension of p̂ is the selected
number of total measured projection data and the dimension
of � is the total number of voxels in the reconstructed im-
ages. Matrix A represents the projection matrix and its ele-
ment aij is the length of the intersection of projection ray i
with pixel j. � is a diagonal matrix with ith element of �i

2,
i.e., an estimate of the variance of measured pi at detector bin
i, which can be estimated from the measured projection data
according to a mean-variance relationship of projection
data.9,10,13 The second term in the right side of Eq. �2� is a
prior constraint, where � is the parameter which controls
relative contribution from the measurement and the prior
constraint. The intensity map � is estimated by minimizing
the objective function �2� using the Gauss–Seidel updating
strategy.

For metal boundary reconstruction, we design a special
quadratic penalty term for the prior constraint in Eq. �3�. The
form of the penalty is expressed as

R��� = ��R� =
1

2�
j

�
m�Nj

cjmwjm�� j − �m�2, �3�
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cjm = �0 �� j − �m� � �

1 �� j − �m� 	 �
� , �4�

index j runs over all image elements in the image space, and
Nj represents the set of neighbors of the jth image pixel. The
parameter wij is set to 1 for the first-order neighbors and
1 /	2 for the second-order neighbors in previous
applications.9,13 By adding the parameter cjm in front, the
regularization is only applied for the neighbors of which the
gradient is smaller than the threshold �. Since the projection
data are preprocessed and the difference of intensity in image
space is enhanced, the threshold � can be set accordingly to
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FIG. 9. Head phantom with brass from �a� 28, �b� 46, and �c� 97 projections.

The FDK-reconstructed image using 678 projections is provided in �d�.
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the most distinguishable level. Generally, with higher power
of amplification or more projections, the suitable value of �
tends to be larger to provide clear boundaries of metal�s� and
other tissues.

II.C. Experimental studies

An anthropomorphic head phantom is first used to illus-
trate the performance of the presented method. There exists a
cubic empty space inside of the head phantom designed for
holding materials for dosimetric measurement. In this study,
three different types of metallic objects embedded in a tissue
equivalent bolus are placed in the space, including �1� fidu-
cial markers made of steel, �2� a brass of triangular shape,
and �3� a 1/2 in. metal screw of hexagon shape.

The CT projection data are acquired by a Varian Acuity
simulator �Varian Medical Systems, Palo Alto, CA�. The tube
voltage is set to 125 kVp. The x-ray tube current is set to 80
mA and the duration of the x-ray pulse at each projection
view is 25 ms. The distance of source-to-axis is 100 cm and
source-to-detector distance is 150 cm. The total number of
projections for a full 360° rotation is 680. To test the binary
image reconstruction with sparse projections, a limited num-
ber of projections are chosen uniformly in the angular space
out of the total 680 projections. The dimension of each ac-
quired projection image is 397 mm
298 mm, containing
1024
768 pixels. To save reconstruction time, the projec-
tion data at each projection view are downsampled by a fac-
tor of 2 and only the central 16 out of 768 projection data
along the axial direction are used. The size of reconstructed
image is 350
350
16 and the voxel size is 0.776
0.776

3
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III. RESULTS

III.A. Head phantom with embedded fiducial markers

Figure 1 illustrates the results with ten ball bearings �BBs�
inserted in the head phantom. Sixty-two projections are used
to reconstruct the image. The FDK algorithm �Fig. 1�a�� ex-
hibits strong artifacts caused by the BBs, which blurs the
image and makes the identification of the BBs difficult. As is
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FIG. 11. �a� The head phantom with metal screw inserted reconstructed us-
ing 76 projections by FDK algorithm; �b� PWLS algorithm without prepro-
cessing projection data; �c� PWLS combined with preprocessing projection
data. The binary image extracted from �c� is shown in �d�. The inset in �a�

shows the 1/2 in. screw.
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well known, FDK result is problematic even when the num-
ber of projections is not sparse �i.e., satisfying the classical
Shannon–Nyquist requirement�. Figure 1�b� shows the image
reconstructed by the PWLS algorithm without preprocessing
the projection data ��=0.01�. Reduced, as compared to the
FDK results, but still severe artifacts are observed in the
image. The image reconstructed using the proposed method
��=4 and �=1.1� is shown in Fig. 1�c�. Ten BBs are clearly
identified with the structure of the head as background. Pre-
processing the sinogram enhances the difference between the
projections passing and nonpassing through the metal�s� and
the choice of the threshold � becomes much easier to locate
the metal objects. The reconstructed BBs appear in different
sizes in Fig. 1�c� because they are not placed exactly on the
same image plane. Figure 1�d� is the reconstructed binary
image of the phantom. In Fig. 2, 1D profiles extracted from
the reconstructed image using different methods are plotted,
providing useful insights into the benefit of the proposed
sinogram preprocessing method. As can be seen, the PWLS
method smoothes the nonmetallic objects while keeping a
sharp edge between BBs and tissues. However, the intensity
difference between projections passing and nonpassing the
metal does not change much. The inset in upper-left corner
of Fig. 2 is a zoomed-in picture of Fig. 2, which illustrates
that the PWLS method smoothes out the nonmetallic objects
in the FDK reconstruction. From Figs. 1 and 2, it is clear that
preprocessing of the projection data greatly facilitates the
localization of the metals.

Figure 3 shows the effect of parameter � on the recon-
structed images. The image obtained without preprocessing
the projection data is shown in Fig. 3�a� ��=1�. The resulting
image is improved as the value of � increases. When �=4,
the metal objects are clearly seen in the reconstructed image
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increased unlimited. Figure 3�d� indicates that when �=10,
the image is totally destroyed by the overamplification of the
difference between the projections passing and nonpassing
through the metals. The 1D profile along the horizontal mid-
lines of those images �Fig. 3� is plotted in Fig. 4. The metal-
tissue contrast is increased as � increases. The solid line in
Fig. 4 represents the situation of �=10, illustrating that the
algorithm fails to faithfully reconstruct the image.

Figure 5 demonstrates the gradual improvement of the
resultant image quality as the number of projection takes 46,
62, 85, 113, 136, 170, and 226, respectively ��=4�. The
image reconstructed with the proposed method without pre-
processing from 678 projections is provided in Fig. 5�h�. In
Fig. 6, 1D profiles along the horizontal midlines of those
images are plotted to illustrate the gradual improvement. As
the projection number increases, the metal-tissue contrast in-
creases, though the intensity of the adjacent tissues is also
scaled up slightly.

III.B. Head phantom with triangularly shaped brass
insert

Results of the head phantom embedded with a triangularly
shaped brass are shown in Fig. 7 �the upper-left corner of
Fig. 7�a� shows the inserted triangle brass�. The number of
projections used for reconstruction is only 76. In the FDK-
reconstructed image �Fig. 7�a��, severe artifacts surrounding
the brass are observed and the brass shape in the recon-
structed image is geometrically distorted. The image recon-
structed using the gradient-controlled PWLS algorithm
��=109 and �=0.01� and the proposed method ��=4 and
�=1.3� are shown in Figs. 7�b� and 7�c�, respectively. Figure
7�d� shows the binary image extracted from Fig. 7�c� through
thresholding. The rough edge of the object in the recon-
structed image is a true reflection of the uneven boundaries
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from the images in Fig. 7 illustrate that sinogram preprocess-
ing can enhance the contrast between the metal and tissue in
image space.

Figure 9 shows the reconstructed image of the same phan-
tom with 28, 46, and 97 projections using the proposed
method. The FDK reconstruction using 678 projections is
displayed in Fig. 9�d� for comparison. As can be seen, the
streaking artifacts are reduced when more projections are
used. Figure 10 shows 1D profiles along the horizontal mid-
lines of images in Fig. 9, which indicates that the proposed
method clearly enlarges the intensity difference between
metal and tissues as compared to FDK method.

III.C. Head phantom with metal screw inserted

Figure 11�a� shows an FDK-reconstructed image of the
head phantom with a 1/2 in. screw inserted. The images ob-
tained using PWLS with and without sinogram preprocessing
are shown in Figs. 11�b� and 11�c�. Here we use 76 projec-
tions with amplification �=4. Severe streaking artifacts ap-
pear in the FDK algorithm. The PWLS algorithm smoothes
these artifacts, but the edge of the metal is still blurred by the
surrounding tissues �Fig. 11�b��. With preprocessing of the
projection data, the edge of the screw is sharpened in Fig.
11�c�. The binary image extracted �Fig. 11�d�� accurately lo-
calizes the metal screw. The 1D profiles along the horizontal
midlines of the images in Fig. 11 are plotted in Fig. 12.

Figure 13 shows the reconstructed images by the pro-
posed method using 46, 76, and 97 projections, along with
the FDK-reconstructed image using 678 projections. Even
though only 46 projections are used, the binary image �Fig.
13�d�� delineates the metal much clearer than that of FDK
reconstruction �Fig. 13�d��. Figure 14 shows the 1D profiles
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IV. DISCUSSION AND CONCLUSION

An effective technique has been described for accurate
localization of metal objects in CT. The proposed metal lo-
calization technique involves two novelties: �i� Preprocess-
ing the sinogram to enhance the contrast between the metal
and adjacent tissues and �ii� gradient-controlled PWLS crite-
rion to extract binary image information. In this work, we
modify the projection data by adjusting the value of the pa-
rameter � in Eq. �1�, which is quite natural because for any
two projections p1�1 and p2�1, a value of ��1 will en-

(a) (b)

(c) (d)

0.5

1

1.5

2

2.5

3

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

FIG. 13. Reconstructed images of metal screw using proposed method from
different projection numbers: �a� 46 projections; �b� 76 projections; �c� 97
projections. �d� Using FDK method from 678 projections.
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large the difference between them, i.e., �p1
�− p2

��� �p1− p2�. It
would be interesting to consider other sinogram preprocess-
ing methods to achieve the same goal.

An interplay exists between the number of projections and
the sinogram modification parameter �. In general, the image
quality improves �less streaking artifacts and enhanced con-
trast between the metal and tissue� as the number of projec-
tion increases. The search of the metal boundary using the
PWLS algorithm is facilitated by the enhanced metal-tissue
contrast. In principle, any edge-preserving iterative method
is applicable to solve the binary problem here. The PWLS is
chosen because of its demonstrated ability in this type of
applications.9 When the projection data are sparse, the metal-
tissue contrast is dramatically reduced, making the metal lo-
calization intractable. The situation can be compensated by
preprocessing the sinogram to enlarge the difference between
the projections passing and nonpassing the metal�s�. We
found that the preprocessing of sinogram is necessary for
cases with a small number of projections. It is important to
emphasize that there is an optimal range of the parameter �.
The interplay between the nonlinear modification of the si-
nogram and the number of projections is an interesting sub-
ject of study in the future for better understanding their in-
fluence on the reconstruction results individually and jointly.

Metal objects localization with sparse projections has
many potential applications,14–17 especially in 4D cone beam
CT �CBCT� imaging.18–21 When onboard CBCT is used for
scanning the thorax or upper abdomen, motion artifacts ap-
pear in the reconstructed images due to intrascanning organ
motion within the field of view. 4D CBCT or respiration-
correlated CBCT technique groups the acquired projection
data into several bins according to their respiratory phases
and reconstructs each phase bin independently to obtain a
series of volumetric images corresponding to different

200 250 300 350
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FDKmethod from678projections
proposedmethod from46projections
proposedmethod from76projections
proposedmethod from97projections
inNum
hrough the metal screw shown in images of Fig. 13.
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phases.18 In this case, since the projections are divided into
several phase groups during 4D CBC imaging, the number of
projections available for each phase �
70 projections� be-
comes much less than that in a regular 3D CBCT. The pro-
posed method provides a natural solution for localizing the
metals and for artifact removal on 4D CBCT imaging. In
other applications, the use of a limited number of projections
will greatly reduce the radiation dose incurred to the patients
and thus lead to improved patient care.

In conclusion, a novel binary image reconstruction tech-
nique has been proposed for accurate determination of the
locations and shapes of metal objects. Combining the effec-
tive preprocessing of the projection data and a gradient-
controlled PWLS algorithm, the technique can readily local-
ize implanted metal objects with an accuracy comparable
with CT pixel size. Given the widespread clinical use of
CT/CBCT imaging, the proposed method should have prac-
tical implications in diagnostics and image guided interven-
tions through more accurate localization of the implanted/
embedded metal objects and, in the future, possible artifact-
free CT image reconstruction with effective use of extracted
binary information.
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