Skip to main content
. 2010 Oct 20;37(11):5887–5895. doi: 10.1118/1.3504603

Algorithm 2:

Cyclic total-variation superiorization with DROP (TVS1-DROP)

 
1. set k=0
2. set xk=xFBP the initial FBP reconstruction, and βk=1
3. repeat for 10 cycles
4.  set s to a subgradient of ϕ at xk
5.  if ∥s∥>0 set vk=−s∕∥s
6.  else set vk=s
7.  set continue=true
8.  while continue
9.   set yk=xkkvk
10.   calculate the merit function (total variation) withEq. 7, and if ϕ(yk)≤ϕ(xk)
11.    apply sequentially M times the projectionoperator Pt(k) to yk (Eq. 5)
12.    calculate the feasibility proximity with Eq. 6using histories from all M blocks, and if Pr(PMy)<Pr(xk)
13.     set xk+1=PMy
14.     set continue=false
15.    else set βkk∕2
16.   else set βkk∕2
17.  set k=k+1