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Abstract
One of the major hurdles in the development of safe and effective drugs targeting G-protein coupled
receptors (GPCRs) is finding ligands that are highly selective for a specific receptor subtype.
Structural understanding of subtype-specific binding pocket variations and ligand-receptor
interactions may greatly facilitate design of selective ligands. To gain insights into the structural
basis of ligand subtype selectivity within the family of adenosine receptors (AR: A1, A2A, A2B, and
A3) we generated 3D models of all four subtypes using the recently determined crystal structure of
the AA2AR as a template, and employing the methodology of ligand-guided receptor optimization
for refinement. This approach produced 3D conformational models of AR subtypes that effectively
explain binding modes and subtype selectivity for a diverse set of known AR antagonists. Analysis
of the subtype-specific ligand-receptor interactions allowed identification of the major determinants
of ligand selectivity, which may facilitate discovery of more efficient drug candidates.

Introduction
Major targets for drug discovery and development, proteins of the G-protein coupled receptor
(GPCR) family are involved in recognition of a great variety of extracellular signals including
ions, small molecules, peptides and globular proteins1–2. Despite the diversity of natural GPCR
ligands, there exist several receptor subfamilies in which all proteins respond to a single
endogenous agonist: for example, all GPCRs in the adrenergic subfamily are activated by
epinephrine while all muscarinic receptors naturally bind acetylcholine and its derivatives.
GPCR subtypes within a subfamily usually have distinct amino acid sequences, tissue
distributions, effector coupling, and/or functional and pharmacological profiles; however, their
ligand binding pockets are highly conserved within the subfamily. The similarity of the
orthosteric binding pockets poses a challenge for design of subtype selective ligands which
remains one of the main hurdles in development of safe and effective medications targeting
GPCRs.

The Adenosine Receptor (AR) subfamily is comprised of four member subtypes (A1, A2A,
A2B, A3) that present a prominent example of closely related GPCRs activated by a single
endogenous agonist, adenosine3. All four AR subtypes have been considered as potential
therapies for neurodegenerative4–5, cardiac6–7, immune, and inflammatory disorders8–9 and
cancer10. Functional importance of different AR subtypes in various body functions and tissues
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imposes very high requirements on subtype selectivity of AR antagonists and agonists as
candidate drugs11–12 and leads to significant challenges in clinical development of the
candidate drugs. Despite early setbacks, 2008 has been marked by successful FDA approval
of the new generation A2AAR selective agonist regadenoson as a coronary vasodilator for use
in myocardial perfusion imaging13. This breakthrough, along with other advances in pre-
clinical and clinical studies3 boosts interest to development of a new generation of bioavailable
and safe agonists and antagonists for adenosine receptors.

The recent crystal structure of AA2AR in complex with an antagonist (PDB code: 3EML)14

elucidates the details of ligand-receptor interactions at atomic resolution (Figure 1), and
provides an excellent template for virtual ligand screening and structure-based drug discovery.
This was recently demonstrated by exceptionally high hit rates (~40%) in prospective virtual
ligand screening (VLS) for novel chemotypes of AA2AR antagonists15–16. The core ligand-
receptor interactions are defined by aromatic stacking of the ligand aromatic ring system with
the side chain of Phe168(5.29), hydrophobic interactions with Leu249(6.51), Ile274(7.39) and
M177(5.38), and the hydrogen bonding to Asn253(6.55). (Residue numbering is for
SWISSPROT human AA2AR sequence P29274, while Ballesteros-Weinstein numbering17 in
parenthesis represents position of the residue relative to the most conserved position in each
TM helix, extended to loop regions as in ref.14). As shown by mutations and computational
analysis18, these residues make a major contribution to the ligand binding affinity. Note that
the above mentioned “core” pocket side chains are fully conserved in all four AR subtypes,
with the exception of Leu replaced by a similar Val side chain in position 6.51 of A2B.
Moreover, there are only a few side chains in the binding pocket of crystallographic antagonist
ZM241385, which are conserved in less than 3 subtypes (positions 5.28, 6.66 7.32 and 7.35),
all of them located in the extracellular loop (ECL) region.

The subfamily-wide conservation of the core pocket residues and the peripheral location of
nonconserved amino-acids apparently pose serious challenges for the discovery of subtype
selective ligands. Previous SAR studies for major AR-binding chemotypes, including xanthine
and adenine derivatives and other polyheterocyclic compounds (for example reviewed in ref.
19), suggest that the core chemical scaffolds themselves do not provide significant subtype
selectivity. Extensive SAR analysis of multipoint substitutions in the scaffolds, in some cases
guided by pharmacophore models, was required to achieve high affinity and reliable selectivity
for each of the subtypes. Our virtual ligand screening efforts against the AA2AR crystal
structure15 also suggest that ligand subtype selectivity, especially between A2A, A2B and A1
subtypes, does not come automatically with the high affinity binding to one of the subtypes.
Indeed, while most of novel A2A binders found in the above VLS study among commercially
available compounds had reduced affinity to A3 subtype, only one of them showed ~10-fold
selectivity vs. A1 subtype.

In the past 20 years, intensive drug discovery efforts have resulted in hundreds of SAR profiles
and yielded a number of AR ligands with respectable (~100 fold) selectivity for each of the
subtypes 12. However, there is an ongoing interest in new chemical scaffolds and new highly
selective compounds with improved pharmacological properties. As there is still no clear
understanding of structural basis of ligand selectivity in ARs, structural models of AR subtypes
that may explain and predict ligand selectivity are of paramount importance for rational drug
discovery.

In this study we set out to generate accurate 3D models of all four AR subtypes that successfully
predict the subtype selectivity of known antagonists. We used the crystal structure of AA2AR
as a 3D template, and refined the models with a set of known subtype-selective ligands (Figure
SM2) using the recently developed Ligand Guided Receptor Optimization approach20–21.
While the starting raw homology models showed poor discrimination between ligands and
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decoys in our VLS benchmarks, the performance of the optimized models improved
dramatically through iterations of the procedure. For A1 and A3 subtypes, the screening
performance approached that of the AA2AR crystal structure. We then built the “virtual
selectivity panel” that demonstrated the excellent discrimination between subtype-selective
ligands. We also suggested the structural features of AR subtypes that play the key roles in
selective ligand recognition. The developed selectivity panel can be applied to rational design
of novel subtype-selective AR antagonists. With the rapid progress of GPCR crystallography,
the approach will become applicable to other GPCR families with at least one representative
crystal structure and known high affinity ligands.

Methods
Subtype selective ligand sets

High affinity adenosine receptor antagonists with at least 50-fold selectivity for each of the
AR subtypes were collected from literature (see Supplementary Materials). The ligand set
includes preclinical and clinical candidates listed in a recent review12, a diverse set of A2AAR
selective compounds from ref.22, as well as several series of AR binding compounds for
A1AR23–24, A3AR25, and A2BAR26–27, for which full AR selectivity profiles were available.
The ligand set included 22 selective compounds for each of the four subtypes, 88 compounds
total.

A set of 1000 decoy compounds was randomly selected from a Chemdiv Inc. database of drug-
like compounds so that distributions of chemical properties (molecular weight and predicted
LogP and LogS values) of ligand and decoy sets were similar.

Homology modeling of A1, A2B and A3 adenosine receptor subtypes
The initial homology models of A1AR, A2BAR and A3AR were generated using ICM
homology modeling tool with extensive side chain sampling and refinement28–29. For stretches
of residues that aligned against gaps in the AA2AR template, the algorithm used an automated
search for initial loop placement. The portion of the loop EL2 between positions Leu141(4.62)
and Cys166(5.27) was omitted. For short loop EL3, extensive conformational modeling was
performed using ICM global optimization algorithm, which included sampling of backbone
conformations30.

Ligand guided optimization of AR subtype models
Initial models were optimized using Ligand-guided Receptor Optimization algorithm
(LiBERO) described previously15. Briefly, the protocol consists of repeated steps of model
conformational sampling and selection based on their VLS screening performance evaluated
on a small compound benchmark. The version of the LiBERO algorithm employed in this paper
did not use large scale sampling of the protein backbone. At each step of the optimization
procedure, a set of 100 conformational models was generated for each adenosine receptor
subtype by co-optimization of representative subtype-selective antagonists in the model
binding pocket. The optimization was performed using BPMC method31, which allowed
extensive sampling of the flexible ligand and flexible receptor side chain conformations, while
limiting protein backbone movements using harmonic restraints. For each of the resulting
conformers, a small-scale VLS benchmarking was performed and the model screening
performance was quantified using the NSQ_AUC measure described below.

ICM Grid Docking
ICM molecular modeling software30, 32 was used for ligand docking and scoring. ICM ligand
docking is based on biased probability Monte Carlo (BPMC) optimization of the ligand internal
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coordinates in the set of grid potential maps of the receptor33. Compounds in two-dimensional
representation were converted to 3D and optimized using MMFF-94 force field34. The
generated conformers were then placed into the binding pocket in four principal orientations
and used as starting points for Monte Carlo optimization. The optimized energy function
included the ligand internal strain and a weighted sum of the grid map values in ligand atom
centers. To ensure convergence of the Monte Carlo optimization, three independent runs of
the docking procedure were performed, and the best scoring pose per compound was kept. No
distance restraints or any other experimentally derived information was used in the ligand
docking procedure. The docking procedure took about 30 seconds of Intel Xeon 2.8 Ghz CPU
time per compound, and was performed using a 100 processor Linux cluster.

ICM Full-Atom Scoring
The top-scoring ligand poses were merged with their receptors to obtain full-atom models of
the complexes. The models were evaluated with all-atom ICM ligand binding score35–36 that
has been previously derived from a multi-receptor screening benchmark as a compromise
between approximated Gibbs free energy of binding and numerical errors. The score was
calculated as:

(4)

where Evw, Eel, Ehb, Ehp, and Esf are Van der Waals, electrostatic, hydrogen bonding, non-polar
and polar atom solvation energy differences between bound and unbound states, Eint is the
ligand internal strain, ΔSTor is its conformational entropy loss upon binding, T = 300 K, and
αi are ligand- and receptor-independent constants.

Evaluation of the model screening performance using normalized square-root AUC
Benchmark compounds were docked into each model and ranked by their full-atom score. To
build the compound recognition curve, for each compound rank i, the fraction of true positive
among i top-scoring compounds in the list was plotted against Sqrt(i)/n, where n is the number
of false positive compounds in the list. The area under curve was calculated and normalized
to the range of 0 to 100 to obtain the Normalized Square Root Area Under Curve, or NSQ_AUC.
Calculated as described, NSQ_AUC mildly emphasizes the initial enrichment in small
molecule screening which makes it a suitable objective function for pocket optimization37.

Results and Discussion
Docking and virtual ligand screening for A2A subtype identifies core ligand-pocket
interactions

We first evaluated the ability of the A2AAR crystal structure-based models14 to accommodate
known A2AAR specific antagonists and recognize them in a set of random drug-like decoys.
A benchmark compound set included 22 selective A2AAR antagonists and 1000 decoys (see
Methods section). In Figure 2A, the predicted binding poses are shown for seven A2A
antagonists that were found among 12 highest-scoring compounds, as well as for compound
#8 (CSC12), which is the highest scoring xanthine-like compound.

The predicted docking poses for known A2AAR-selective antagonists suggest that these
chemically diverse compounds bind similarly to the ZM241385 antagonist in the published
crystal structure14. The common core interaction for all ligands involves aromatic stacking
with the conserved Phe168(5.29) of the receptor and additional hydrophobic interactions with
the conserved Ile274(7.39) and Leu249(6.51) side chains. Strong polar interactions are formed
with the side-chain of the conserved Asn253(6.55), where the role of the hydrogen bond donor
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in most high-affinity ligands is played by the exocyclic amine group, with a notable exception
of methylxanthine analogues (e.g. compound #8) that lack this group. The exocyclic amine
group also forms a hydrogen bond to Glu169(5.30) side chain in the EL2, which is present in
subtypes A2A, A2B and A1, but replaced by Val in the A3AR. Most of the A2A ligands also
have an acceptor for H-bonding with Asn253(6.55) amide donor. This interaction pattern is
consistent with the previous mutation data summarized in ref.38 and19 showing loss of affinity
for Asn253(6.55) and Ile274(7.39) mutants, as well as with recent mutagenesis data18 showing
the critical role of Phe168(5.29) and Leu249(6.51) for both agonist and antagonist binding.

The results of benchmark screening with the A2AAR crystal structure model, illustrated in
Figure 2B,C shows very favorable binding scores for most A2AAR antagonists and high
efficiency of the model in separating those antagonists from decoy compounds. As mentioned
above, seven out of twelve top- ranking compounds are A2AAR antagonists. Only 6 out of 22
A2AAR ligands in the set were not predicted as A2AAR ligands based on their ICM binding
score >-32.0 kJ/mol, including two xanthine analogues and two other compounds lacking the
exocyclic amine.

Initial modeling of A1, A2B, and A3 adenosine receptor subtypes
The initial models of AR subtypes A1, A2B, and A3 were generated with standard homology
modeling tools using sequence alignments shown in Figure SM1. The alignment demonstrates
the high variability of the EL2 part between residues Leu141(4.62) and Cys166(5.27). The
length and the disulfide bonding patterns in this region differ between the AR subtypes;
moreover, this region is partially disordered in A2AAR crystal structure. Because this
ambiguous portion of the EL2 is located far from the binding pocket and is unlikely to make
a significant contribution to orthosteric ligand binding, it was excluded from the models. In
contrast, the short extracellular loop EL3, ranging from 9 amino acid length in A2BAR to just
5 amino acids in A3AR, can be involved in subtype-specific binding properties, at least
indirectly via a hydrogen bonding network with the side-chain of E169(5.30), as seen in the
crystal structure14. To account for possible effects of EL3, the conformation of EL3 backbone
and side chains was predicted using ICM global optimization algorithm. The standard
homology building procedure also included the initial refinement of the modified side chains
through their global energy optimization39.

The initial models were tested for their ability to discriminate between known subtype-selective
compounds and decoys in the ligand benchmark (see Materials and Methods). The initial A2A
model derived from the high-resolution crystal structure, demonstrated high compound
recognition with AUC of 90% (NSQ_AUC=75). In stark contrast to A2A, the initial models of
other subtypes had very poor performance. In particular, the model of the most distant subtype,
A3, had a pronounced negative selectivity (NSQ_AUC = −11), suggesting some steric
hindrance for ligand binding. Our analysis showed that this hindrance was associated with a
specific rotamer state of the Val(5.30) side chain in the initial model.

Ligand-Guided Optimization of adenosine receptor subtype models
The initial models of the AR subtypes were subsequently optimized using an automated
LiBERO algorithm as described previously for A2AAR15, see Methods. In each iteration step
of the procedure, at least 100 distinct conformations of the binding pocket were generated with
a stochastic sampling procedure (see Methods). The performance of each conformational
model in separating the subtype selective ligands from decoy compounds was assessed by
calculating ROC curves and corresponding values of linear AUC (ROC_AUC), normalized
square root AUC (NSQ_AUC) and initial enrichment factors (EF1%).
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Figure 3 presents the results of the optimization procedure for A1, A3 and A2B adenosine
receptor subtypes. For the A2A optimization, which started with the high-performing crystal
structure model, the procedure did not affect the ROC_AUC value and only modestly improved
NSQ_AUC and initial enrichment EF(1%) after two optimization steps. In contrast, for A3, a
change of the Val5.30 rotamer in the first iteration models led to a dramatic rise in the screening
performance. The iterative improvement of VLS performance for A1 and A2B subtypes was
more gradual, suggesting more complicated adjustments in the binding pocket involving
multiple side chain movements and minor backbone adjustments. After four iterations
sampling the total of 400 binding pocket conformations the screening performance apparently
reached a plateau for all AR subtypes. The best optimized models represented by red ROC
curves in Figure 3 show reasonable performance for A1 and A3 subtype screening models,
which is on par with the X-ray-based A2A model. The lower performance of the A2B model
may be explained by the fact that the A2B selective ligand set was comprised of xanthine
derivatives that generally have less favorable scores in screening benchmarks (compare
compound 8 in Figure 2).

Note, that such distinct behavior of the optimization procedure for different AR subtypes
reflects not only differences in the receptor structures, but also composition of the
corresponding ligand sets, some of which are less diverse than others. For example, most of
the A3 selective ligands in our set are based on the pyrazolo-triazolo-pyrimidine scaffold
{Baraldi, 2003 #1728}, and therefore applicability of the optimized A3 model may be limited
to this and some similar chemotypes. On the other hand, such single-scaffold optimized models
can be especially useful in structure based SAR analysis and lead optimization for this specific
scaffold, as they may reflect scaffold-specific induced fit in the binding pocket. One may also
find that some of the compounds most dissimilar to the major chemotypes (e.g. mantri_l,
mantri_r, veld_3 in our sets), which probably represent alternative binding modes or allosteric
sites, and their presence in the training set does not improve the overall model quality. The
construction of ligand sets therefore should be guided on practice not only by availability and
quality of the ligand binding data, but also by the intended application of the optimized models
in a specific drug discovery project.

Subtype Selectivity Profiles for the optimized AR models
Ligand selectivity profiles were generated by docking a set of all 88 AR ligands from Figure
SM1 into the optimized models A1, A2A, A2B and A3 adenosine receptor subtypes. Figure 4
shows individual selectivity ROC curves for these benchmarks. The ROC curves were
calculated for each subtype model and for each subset of selective ligands. For example, the
red curve in A1 model panel of Figure 4 uses the subset of A1 selective ligands as “positives”
and the other 66 ligands as “negatives”. High ROC_AUC and NSQ_AUC values for this curve,
shown in bold type, suggest that the optimized A1AR model is highly efficient in discriminating
selective A1 antagonists from other adenosine receptor binders.

Analysis of individual curves suggests a specific pattern of selectivity between the individual
subtypes. For example, in both A2A and A2B panels, the separation between A2A and A2B
ligand sets (yellow and green curves respectively), though still significant, is the smallest as
compared to other subtypes. This is likely to reflect the fact that A2A and A2B receptor subtypes
have the highest level of sequence conservation, especially in the binding pocket. This
“convergence” of selectivity for A2A and A2B binding models was observed even despite the
fact that ligand set for A2A and A2B (Figure SM1) are quite dissimilar chemically.

3D models suggest insight into structural basis of ligand subtype selectivity
The optimized models of four human AR subtypes with representative subtype-selective
ligands are illustrated by Figure 5. Similar to the A2AAR models, all subtypes share core
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interactions with residues conserved across ARs, including aromatic stacking with Phe(5.29),
hydrophobic interactions with conserved Ile(7.39) and Leu(6.51) side chains and strong
hydrogen bonding with Asn(6.55). At the same time, model comparison suggests some subtype
specific interactions that may serve as key selectivity determinants for individual AR subtypes.

The A3 subtype is the most divergent from other ARs, with 10 out of 20 side chains in the
ligand binding pocket unique for this subtype. The most important difference is a valine in
position 5.30: in all other subtypes this position is occupied by a glutamate that plays an
important role in high affinity ligand binding by forming a hydrogen bond with the
unsubstituted exocyclic amine. With Val in this position, the A3AR loses this interaction and
therefore allows bulky amine substitutions protruding towards the extracellular opening of the
pocket. As mentioned before, some Val rotamer conformations can also partially block this
opening, so conformational optimization is required to adequately represent specific ligand
binding in A3. Importantly, there are two other mutations deeper in the pocket, H(6.52)S and
N(5.42)S, in both cases to the smaller Ser side chain. These substitutions create an additional
subpocket in A3 that can be exploited in the design of selective inhibitors. However, none of
the A3 selective ligands in our set seem to take advantage of this sub-pocket, as they have a
furan group similar to many other AR ligands.

The A1 subtype has a much closer homology to A2A and A2B subtypes, with only 4 side chain
substitutions on the periphery of the binding pocket. The change in one of these positions, from
Met(7.35) to a smaller Thr, apparently creates an additional sub-pocket in the loop region. This
mutation, combined with slightly shifted conformation of E(5.30) in the optimized A1AR
model makes possible accommodation of relatively small aliphatic and aromatic substitutions
at exocyclic amine, which are characteristic of most A1-selective ligands. Interestingly, the
shift in E(5.30) positions is absolutely required for binding of N-substituted compounds, but
is not directly guided by amino acid differences between A1 and A2A pockets. One possible
indirect explanation is in the modified EL3 loop, which is one amino acid shorter in A1 than
in A2A; this difference may impose modified preferences for the position of His(6.66) side
chain which plays a key role in stabilizing E(5.30). Other variations in the extracellular loops
of the A1 sequence, M(5.28)E and L(7.32)S, are not predicted to be involved in binding of
known A1 selective ligands. The engagement of these groups would require ligands that have
additional hydrophilic extensions. This limited number of “reachable” mutations may explain
why A1 selectivity is usually much harder to achieve than A3 selectivity.

The A2B subtype has only two deviations from A2A in the proximity of the ligand binding
pocket. One of them is H(6.66)N in loop EL3, which leads to less stable conformation of E
(5.30) in EL2 and thus reduced importance of an unsubstituted exocyclic amine in the ligands.
Indeed, most ligands with A2B vs. A2A selectivity are based on chemical scaffolds that lack
this amino group. The second residue substitution is L(7.32)K at the extracellular opening of
the pocket. In the optimized model of A2B the basic Lys side chain is posed to interact with
the acidic groups of the ligands. Some examples of such groups in known A2B-selective ligands
are oxygen in the carbamoyl-methoxy-phenyl moiety of the antagonists40 or in sulphonyl
moiety41. Interestingly, the same substituted carbamoyl-methoxy-phenyl motif was also found
to confer A2B selectivity in agonists based on a different adenine-like scaffold42, which
suggests general importance of this interaction for A2B ligand selectivity.

Conclusions
While high resolution 3D structure of adenosine A2A receptor represents an excellent template
for virtual ligand screening for A2A antagonists, its utility in discovery and optimization of
subtype selective adenosine receptor antagonists has yet to be shown. Our results suggest that
AR subtype models directly built by homology with A2AAR crystal structure do not
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automatically guarantee recognition of subtype specific ligands and may have poor VLS
performance. However, optimization of the models with the ligand-guided receptor
optimization (LiBERO) methodology improves their VLS performance to the level comparable
to that of the crystal structure. The analysis of the optimized models points to some of the non-
conserved residues in the extracellular loop region which serve as determinants of ligand
selectivity exploited by previously discovered subtype-selective ligands. The resulting models
may serve as 3D selectivity panels to predict subtype selectivity of novel AR antagonists, or
as structural templates for direct rational design of novel chemotypes of subtype selective AR
ligands. The method can be applied to other families of closely related receptor subtypes, for
which new 3D information is emerging from the structural genomics initiatives. The only
intrinsic limitation of the technique is availability of quality ligand sets, which ideally have to
comprise high affinity and high selectivity compounds, and be sufficiently diverse to avoid
model overtraining. Fortunately, such ligand sets can be readily constructed for many clinically
relevant GPCR targets, making the methodology applicable to rational structure-based design
of subtype selective tools compounds and drug candidates.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

GPCR G protein-coupled receptor

AR adenosine receptor

A2AAR subtype A2A

TM transmembrane

EL2 extracellular loop 2

VLS virtual ligands screening

PDB protein databank

RMSD root mean square deviation

ROC receiver operating characteristic

AUC area under ROC curve

NSQ_AUC normalized square root AUC

BPMC biased probability Monte Carlo method
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Figure 1.
Residue variations in the ligand binding pocket between four human adenosine receptor
subtypes. (A) In the 3D structure of the AA2AR binding pocket, residue numbers are shown
for AA2 subtype (number in brackets as in ref14, based on Ballesteros-Weinstein GPCR
numbering)17. Side chain carbons are colored according to their conservation: green – fully
identical in all 4 subtypes, cyan – in 3 subtypes, yellow – in 2 subtypes, orange - in only one
subtype. Binding pocket residue alignment (B) uses the same color coding. Residues that vary
between clinically relevant species (human, rat, mouse, dog) in the same subtype are marked
with a red box.
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Figure 2.
Virtual screening with a crystal structure of adenosine A2A receptor. A) Examples of the
binding modes for the top seven ranked ligands (in order of their ranking), as well as for the
top ranked xanthine-based compound 8. Ligands are shown with yellow carbon atoms, while
receptor side chains carbons are white. Ligand-receptor hydrogen bonds are indicated by green
spheres. The A2AAR binding pocket is illustrated by molecular skin colored by properties
(green – hydrophobic, red and blue – hydrogen bond acceptor and donor respectively). (B)
Binding Scores and ranking for these compounds. C) Scatter plot of ICM binding scores for
the whole benchmark set, with the experimentally validated ligands shown by larger red dots
and decoys with small purple dots. The Y axis shows distribution of compound size as a number
of heavy atoms.
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Figure 3.
Ligand guided optimization of AR subtype models. Progression of VLS selectivity from an
initial homology model through four iterations of the procedure is shown for each of the AR
subtypes (only 2 iterations for A2AAR model). Tables show three different metrics of VLS
performance of the models: linear ROC_AUC, normalized square root NSQ_AUC and
enrichment factor at 1% dataset cutoff, EF(1%).
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Figure 4.
Selectivity profiles for all four AR subtypes. Each ROC curve represents performance of an
optimized conformation model of an AR subtype in discriminating subtype-selective
antagonists from all other AR antagonists in the set. Tables show linear ROC_AUC and
normalized square root NSQ_AUC for each of the curves, with results for each matching
model-ligand subset shown in bold font.
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Figure 5.
Predicted binding modes of subtype-specific antagonists in the corresponding optimized
models of the AR subtypes. Residues critical for subtype selectivity are labeled in bold font.
Side chain carbons are colored as in Figure 1. PDB files for all optimized models in complex
with antagonists can be found in Supplementary Materials.
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