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Abstract

Spirooxindole amides can be prepared by the intramolecular addition of functionalized indoles
into acyliminium ions that are accessed from nitriles by hydrozirconation and acylation. The
stereochemical outcome at the quaternary center was controlled by the steric bulk of the
substituent at the 2-position of the indole unit. The products are well-suited for diversification to
prepare libraries.

The spirooxindole unit is earning the status of “privileged structure” in synthetic and
medicinal chemistry, as evidenced by a number of recent reviews1 and the rapid
development of new methods for their synthesis.2 The biological activity that a number of
spirooxindoles exhibit has spawned library syntheses3 that led to the identification of potent
MDM2 inhibitors,4 adjuvants of the actin polymerization inhibitor latrunculin B,3a and
antimalarial agents.5 We have developed a new protocol for stereoselective spirooxindole
synthesis in accord with our interest in preparing structurally diverse amides through
nucleophilic addition reactions to acylimines. These acylimines derive from nitriles via a
sequence of nitrile hydrozirconation followed by acylation.6 The oxindole preparation
proceeds (Scheme 1) through the generation of indolyl acylimines (1) to form stereoisomeric
spirooxindoles 2 or 3 through a Friedel-Crafts alkylation reaction, with the configuration of
the quaternary stereocenter being controlled by the steric bulk of the substituent at the 2-
position of the indole. The products of this sequence are structurally unique and contain
multiple sites for diversification, making the route well-suited for applications in diversity-
oriented synthesis.

Chloroindoles, shown by Horne and co-workers7 to be effective oxindole enolate surrogates,
and silyloxyindoles served as the nucleophilic components for the cyclization reactions in
this study. A representative route for their preparation is shown in Scheme 2. Aldehyde 4,
prepared through a known8 periodate mediated cleavage of commercially-available 7-
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octene-1,2-diol, was converted to cyanohydrin ether 5 through a one-pot sequential
acetalization reaction with BnOTMS and BiBr3 followed by TMSCN addition.9 Ozonolysis
and Fischer indole synthesis with benzyl phenylhydrazine provided 6. Cyclization substrate
7 was prepared by chlorination with NCS. The corresponding silyloxyindole 8 was prepared
by oxidizing 6 with DMSO and HCl through a variation on an established10 protocol to
form the oxindole followed by silylation by TIPSOTf and Et3N.11

Spirooxindole formation was demonstrated (Scheme 3) by subjecting 7 to Cp2Zr(H)Cl12
followed by acylation with hydrocinnamyl chloride to form an acylimine13 that folds
preferentially into a reactive conformation (9) in which the benzyloxy and acylimine groups
adopt pseudoequatorial orientations and the C2-center of the indole occupies a pseudoaxial
orientation. The minor conformation (10) places the indole C2 in a pseudoequatorial
orientation. Addition at the 3-position of the indole followed by hydrolysis of the
chloroiminium ion intermediate provided spirooxindoles 11 and 12 in 73% and 10% yields
respectively. The structures of the products were assigned based on extensive analyses of
their NOESY spectra. This selectivity indicates that the aryl group is sterically more
demanding14 than the chlorine substituent in the transition states.

The scope of the reactions with the 2-chloroindoles is shown in Table 1. Aliphatic, branched
aliphatic, α, β-unsaturated, and heteroatom-functionalized acid chlorides serve as suitable
electrophiles for the transformation. N-Methoxymethylindoles are effective substrates
(entries 4–9), though they are less reactive than the N-benzylindoles and in some cases
require the addition of a Sc(OTf)3 to promote the cyclization (entries 6 and 7). This
reactivity difference can be ascribed to the inductive attenuation of indole nucleophilicity by
the methoxy group. When Sc(OTf)3 is used to promote the cyclization the stereoisomer that
has a cis-relationship between the amide and benzyloxy groups forms as a minor product,
presumably as a result of a competing chelation-controlled transition state. Aromatic acid
chlorides can be used as electrophiles for this transformation, though product yields were
<25% (not shown). Chlorination at the indole 4- and 6-positions, in anticipation of further
structural manipulations of the spirooxindole products, is compatible with the reaction
conditions (entries 8 and 9). These substrates reacted somewhat less efficiently than the
corresponding non-halogenated substrate due to inductive deactivation by the chloro group
and, in the case of 21, steric interactions in the transition state, but useful quantities of the
products could be isolated.

In accord with our interest15 in exploring the impact of stereochemical diversity16 in library
synthesis, we sought to devise a protocol for preparing spirooxindoles in which the
quaternary carbon is inverted. This can be achieved by changing the chloro substituent at the
2-position of the indole structure to a group that is more sterically demanding than the arene
ring. Utilizing silyloxyindole substrate 8 in the cyclization reactions accomplished this
objective (Table 2). Several issues related to these transformations are noteworthy. The
overall yield of spirooxindole products from these reactions is comparable to the yields from
the chloroindole substrates, indicating that the potentially labile enolsilane moiety is
compatible with the reaction conditions. The reactions of 8 are slower than the reactions of
the chloroindole substrates and require a full equivalent of Lewis acid despite the presence
strongly electron donating silyloxy group. We attribute this effect to the steric demands in
the cyclization transition states. Control of the quaternary center is good to excellent, though
the trans:cis ratio between the alkoxy and amide groups is lower than what was observed for
the chloroindole substrates. The trans and cis stereoisomers were readily separable by flash
chromatography, with the cis-isomer reproducibly being the less polar stereoisomer. Based
on the unusually downfield 1H NMR chemical shift of the C4 hydrogen in the cis-isomer,
we postulate that the polarity arises from a hydrogen bond between the oxygen and the arene
hydrogen. Changing the Lewis acid from Sc(OTf)3 to ZnCl2 results in the cis-isomer being
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the major product (entry 5) as a result of chelation between the acylimine and the benzyloxy
group.

The spirooxindole products have numerous points for structural diversification as a prelude
to library synthesis. Several of these opportunities are shown in Scheme 4. Benzyl ether
cleavage was effected through standard hydrogenolysis conditions to afford the
corresponding alcohol, which can undergo subsequent acylation as seen in the conversion of
17 to 29. The acrylamide products are very versatile, undergoing Heck reaction17 to form
30, thiolate addition18 to form 31, and cross metathesis19 to form 32. Regioselective
oxindole bromination can be achieved with NBS, and the resulting aryl bromide engages in
a Suzuki reaction,20 as seen in the preparation of 33 from 11.

We have shown that indolyl cyanohydrin ethers can be converted to spirooxindole amides
through a sequence of hydrozirconation, acylation, and intramolecular nucleophilic addition.
Three of the four possible relative stereochemical outcomes can be prepared as major
products through this process. The quaternary stereocenter can be controlled by adjusting the
steric bulk of the substituent at the 2-position of the indole, while the relative configuation
between the amide and benzyloxy groups can be influenced by choosing a chelating or non-
chelating Lewis acid to promote the cyclization. The capacity for stereochemical
diversification, the abundant opportunities for functionalizing the products, and the wide
range of biological activities that spirooxindoles effect make this method a very attractive
entry to library synthesis.
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Scheme 1.
Spirooxindole formation through acylimine addition.
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Scheme 2.
Substrate synthesis.
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Scheme 3.
Oxindole formation through nitrile hydrozirconation, acylation, and intramolecular addition.
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Scheme 4.
Spirooxindole functionalizations.
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