
Biophysical Journal Volume 99 November 2010 3119–3128 3119
Diffusion Anisotropy in Collagen Gels and Tumors: The Effect of Fiber
Network Orientation
Triantafyllos Stylianopoulos,†6 Benjamin Diop-Frimpong,†‡6 Lance L. Munn,† and Rakesh K. Jain†*
†Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston,
Massachusetts; and ‡Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts
ABSTRACT The interstitial matrix is comprised of cross-linked collagen fibers, generally arranged in nonisotropic orientations.
Spatial alignment of matrix components within the tissue can affect diffusion patterns of drugs. In this study, we developed
a methodology for the calculation of diffusion coefficients of macromolecules and nanoparticles in collagenous tissues. The
tissues are modeled as three-dimensional, stochastic, fiber networks with varying degrees of alignment. We employed a random
walk approach to simulate diffusion and a Stokesian dynamics method to account for hydrodynamic hindrance. We performed
our analysis for four different structures ranging from nearly isotropic to perfectly aligned. We showed that the overall diffusion
coefficient is not affected by the orientation of the network. However, structural anisotropy results in diffusion anisotropy, which
becomesmore significant with increase in the degree of alignment, the size of the diffusing particle, and the fiber volume fraction.
To test our model predictions we performed diffusion measurements in reconstituted collagen gels and tumor xenografts. We
measured fiber alignment and diffusion with second harmonic generation and multiphoton fluorescent recovery after photo-
bleaching techniques, respectively. The results showed for the first time in tumors that the structure and orientation of collagen
fibers in the extracellular space leads to diffusion anisotropy.
INTRODUCTION
The diffusion of macromolecules and nanoparticles through
fibrous media is important in many fields of biological
science. The phenomenon is relevant to separation processes
such as electrophoresis and size exclusion chromatography,
to therapeutic devices, and to delivery of drugs and naturally
occurring macromolecules in normal and tumor tissues.
The transport of these particles depends on their properties
(size, charge, and configuration) as well as the fiber volume
fraction and the structure of the tissue (1). Many experi-
mental studies have examined the dependence of the diffu-
sion coefficient on the fiber volume fraction both in vitro
(2–6) and in vivo (6–14). However, there are only a few
studies on the effect of tissue structure, and these reports
are contradictory. Specifically, Leddy et al. (14) measured
diffusion coefficients parallel and perpendicular to the
primary fiber direction of agarose gels, ligaments, and carti-
lage and found a significant anisotropy in highly aligned
tissues. In contrast, Erikson et al. (15) studied the diffusive
transport of macromolecules in collagen gels and found no
correlation between fiber network structure and macromol-
ecule diffusivity. In our study, we seek to investigate this
important issue with a mathematical model of diffusion
which explicitly includes tissue structure as well as with
direct measurements of the effect of tissue structure and
organization on diffusion in collagen gels and tumors.
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Mathematical modeling has been a valuable tool for
studying the transport of molecules and particles in porous
materials. Most models developed to date account only for
collisions between the diffusing particles and the fixed
obstacles of the medium (steric interactions) (e.g.,
(16–18)). These approaches use a random walk method,
where computer representations of the tissue microstructure
are generated and the trajectory of a large number of parti-
cles undergoing random walks is recorded for multiple time
steps (17–21). The diffusion coefficient is calculated from
the mean-square displacement of the particles, hMSDi,
according to the equation

D ¼ hMSDi
2nt

; (1)

where D is the overall diffusion coefficient, n is the spatial
dimension, and t is the time.

These models work well, particularly when the hydrody-
namic diameter of the diffusing molecule or nanoparticle is
small compared to the fiber diameter.When the particle diam-
eter is comparable or larger than the fiber diameter, the diffu-
sivity is affected by hydrodynamic interactions. These
interactions arise because the moving particle induces a
flow field, which is reflected by the fibers back to the particle.

There are three published approaches that account for
hydrodynamic interactions and have been used for the study
of diffusion in fibrous media. The effective medium theory
(22) provides the hydrodynamic hindrance as a function of
the hydraulic permeability of the medium. This approach
has been used extensively but its accuracy is not always
good and the calculation of hydraulic permeabilities is
generally challenging. In an alternative approach, Phillips
doi: 10.1016/j.bpj.2010.08.065
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et al. (22) also developed a two-dimensional methodology

for diffusion in parallel arrays of fibers. The fibers were

modeled as a set of spheres of the same diameter as the

fibers, the hydrodynamic hindrance was determined by the

solution of a Stokesian dynamics problem, and the overall

diffusion coefficient was calculated using the generalized

Taylor dispersion theory.
U ¼ 1
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Three-dimensional calculations of diffusion coefficients
in random isotropic media of noninteracting fibers have
been performed by Clague and Phillips (23). They repre-
sented the diffusing particle as a set of point singularities
and accounted for the fibers by using slender-body theory.
None of these mathematical models, however, focused on
the effect of fiber alignment on diffusion anisotropy.

Here, we present a mathematical framework for the diffu-
sion of macromolecules and nanoparticles in three-dimen-
sional networks of interconnecting fibers with varying
degrees of alignment. We employ a random walk approach
to simulate the diffusion of particles in computer-generated
stochastic fiber networks and extend the Stokesian
dynamics theory developed by Phillips et al. (22) to three
dimensions to account for hydrodynamic hindrance. We
use this model to study how the network structure affects
the directional components of the diffusion coefficient
tensor. Subsequently, we support our model predictions
with experimental measurements. Previous studies have
shown that diffusion of nanoparticles and macromolecules
in the interstitial space of tumors is hindered by collagen
fibers (11,12,24) and the removal or reorganization of these
fibers has been shown to improve interstitial transport
(11,25,26). We therefore investigate the effect of collagen
fiber alignment on diffusion anisotropy in reconstituted
collagen gels and tumors. We measure fiber alignment and
diffusion with second harmonic generation (SHG) and
multiphoton fluorescent recovery after photobleaching
(MP-FRAP) techniques, respectively (26,27). These results
show for the first time, in tumors, that the structure and
orientation of collagen fibers in the extracellular space leads
to diffusion anisotropy.
METHODS

Generation of fiber networks

We used the same network generation algorithm described previously for

the study of the mechanical properties (28–30) and the hydraulic permeabil-

ities of soft biological tissues (31). Nucleation sites were generated

randomly within a cubic space and allowed to grow segmentally in opposite

directions along a randomly chosen vector. The segments grew progres-

sively by a unit length until they collided with the network boundary or
Biophysical Journal 99(10) 3119–3128
with another segment. In the former case, a boundary cross-link was gener-

ated, and in the latter case, an interior cross-link was generated at the point

of collision. Collision between two segments was defined when their

distance was less than a prescribed fiber diameter. A fiber was defined as

the line between two cross-links associated with the same segment. Aligned

networks were generated by selecting the directional vectors from an aniso-

tropic distribution.

For the characterization of the degree of alignment, the second-order

fiber orientation tensor, U, was employed (29,32)
where li is the length of the i
th fiber, ltot is the total fiber length, and the sum

is over all fibers. The value a is the angle formed between the fiber axis and

the z axis, and w is the angle formed between the projection of the fiber on

the x-y plane and the x axis. The trace ofU is always one. For the isotropic

case,

Uxx ¼ Uyy ¼ Uzz ¼ 1=3;

while for aligned networks, the value of the diagonal components is

a measure of fiber alignment in the coordinate directions.
Description of the mathematical model

Particles were randomly distributed inside the three-dimensional fiber

network and they performed a random walk (Fig. 1 a). According to the

random walk method, the diffusing particle moved stepwise inside the fiber

medium and along a randomly chosen direction. At each elementary time

step Dt the displacement, d, of the particle in each coordinate direction, i,

was determined by

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DiiDt

p
;

where Dij is the local diffusion coefficient tensor.

The diffusion of the particle is hindered due to hydrodynamic interac-

tions and is determined by Stokesian dynamics. For the Stokesian dynamics

approach, a second computational domain was constructed where the fibers

were represented as a set of spheres (bead and string model in (22)) with the

same diameter as the diameter of the fibers. At each time step, the position

of the particle, xi, was mapped from the random walk domain to the Stoke-

sian dynamics domain. The Stokesian dynamics problem was solved (see

details in the next section), and the local diffusion coefficient tensor of

the particle, Dij, was determined based on the size of the particle and its

position inside the network (Fig. 1 a). The diffusion coefficient decreases

as the particle size increases or as the particle approaches the fibers. Finally,

the diffusion coefficient was returned to the random walk domain and the

particle was displaced to its new randomly chosen position.

At each time step, we checked whether the displacement resulted in colli-

sion with the fibers or crossing the boundary of the random walk domain. In

the first case, the displacement was rejected and the position of the particle

did not change, while in the second case periodic boundary conditions were

applied (17,18).

By tracking the trajectory of the particle for 10,000 time steps and taking

the average of 1000 particles, the overall diffusion coefficient, D, as well as

the components of the main diagonal of the overall diffusion coefficient

tensor (D*xx, D*yy, D*zz) were determined from Eq. 1 as

D¼hMSDi
6t

;D�
xx¼

hMSDxi
2t

;D�
yy¼

�
MSDy

�
2t

; and D�
zz¼

hMSDzi
2t

;

(3)
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FIGURE 1 (a) Formulation of the mathematical

model. Particles diffuse inside the fibrous medium

(Random Walk Domain). A second computational

domain is constructed for the calculation of hydro-

dynamic interactions (Stokesian Dynamics

Domain). At each time step of the random walk,

the position of the particle is mapped to the Stoke-

sian dynamics domain and its diffusion coefficient

is calculated by the solution of a Stokesian

dynamics problem. The diffusion coefficient is re-

turned to the random walk domain and the particle

moves to a new, randomly-chosen position. Peri-

odic boundary conditions are applied, and in the

case of collision with a fiber, the displacement is

rejected. (b) Typical fiber structures employed in

this study.

Diffusion Anisotropy in Collagenous Tissues 3121
while the mean-square displacements were calculated from

hMSDi ¼ 1
Pn �ðx ðtÞ � x ð0ÞÞ2
n
i¼ 1

i i

þðyiðtÞ � yið0ÞÞ2 þðziðtÞ � zið0ÞÞ2
�

hMSDxi ¼ 1
n

Pn
i¼ 1

ðxiðtÞ � xið0ÞÞ2
�
MSDy

� ¼ 1
n

Pn
i¼ 1

ðyiðtÞ � yið0ÞÞ2

hMSDzi ¼ 1
n

Pn
i¼ 1

ðziðtÞ � zið0ÞÞ2

(4)

where n is the total number of walkers (a thousand in our case) and xi, yi, zi
are the coordinate directions of the walker i. We determined the minimum

required number of time steps as follows: in test simulations, we calculated

the overall diffusion coefficient and its directional components (Eq. 3) at

each time step to identify the iteration at which they stopped fluctuating.

We found that by iteration 7000, changes in the overall diffusion coeffi-

cients were limited to 2–3%. Thus, the 10,000 time steps used for the

presented simulations were more than sufficient to reach a steady state.

Additionally, it was important that the particle be allowed to diffuse a suffi-

cient distance so that it sampled a representative amount of the system

geometry (i.e., it should diffuse for a distance much longer than the average
pore size of the fiber network). At 1% fiber volume fraction, the average

pore size of our networks ranged from 0.91 to 1.16 mm (Table S2 in the

Supporting Material). The typical diffusion distance of a 20-nm particle

after 10,000 time steps was 78 mm. Because the diffusion distance decreases

as the particle size increases due to steric and hydrodynamic interactions,

the diffusion distance of a 300-nm particle (the largest size in our study)

was 30 mm. At 5% fiber volume fraction, the average pore size ranged

from 0.37 to 0.48 mm. The diffusion distance of the 20-nm particle

remained 78 mm, but because of the decrease in the pore size the diffusion

distance of the 300-nm particle was 10 mm. For higher volume fractions,

only particles of sizes <50 nm were used. Thus, we ensured that the diffu-

sion distance was always more than an order-of-magnitude greater than the

pore size. To calculate deviations in the solution of our mathematical model

due to its stochastic nature, we repeated the simulations and found <3%

variation.

We applied our model to three different network structures: a nearly

isotropic network, a moderately aligned network, and a highly aligned

network. Additionally, to better study the effect of network orientation,

we also employed a spatially periodic square array of fibers (Fig. 1 b). If not

otherwise stated, we chose the fiber diameter to be 100 nm to represent the

diameter of a collagen fiber (28), while the diameter of the diffusing particle

varied from 5 to 300 nm. Depending on the size of the diffusing particle the

time step, Dt, was set in the range of 10�3–2 � 10�2 s. Fiber volume frac-

tions ranged from 1% to 40%, which are typical values of collagen content

in native and engineered tissues (3,11). Finally, because of the stochastic
Biophysical Journal 99(10) 3119–3128
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nature of the network generation procedure, four network structures were

generated for each set of conditions and values were averaged. Table S1

presents the diagonal components of the orientation tensor of the networks,

while Table S2 presents the average pore size of the networks for three fiber

volume fractions employed in the study.

Stokesian dynamics—calculation of local
diffusion coefficient

To calculate the local diffusion coefficient tensor of the particle accounting

for hydrodynamic hindrance, we applied the Stokesian dynamics method-

ology as described in Phillips et al. (Eqs. 6–10 in (22)). In a stagnant fluid,

neglecting interactions between the diffusing particles, the local diffusion

coefficient of each of the particles is given by

Dii ¼ kTðRiiÞ�1
; (5)

where k is the Boltzmann’s constant, T is the absolute temperature, and Rii is

the resistance matrix of the particle. For free diffusion in a solution, the

diagonal components of the resistant matrix are equivalent and are deter-

mined from the well-known Stokes-Einstein relationship as 6pmrs,

where m is the fluid viscosity, and rs the radius of the particle.

In a fiber network, the resistant matrix is determined by short-range and

long-range hydrodynamic interactions between the particle and the fibers.

To calculate the resistant matrix we represented the fibers as lines of

adjacent spheres and used theories developed for sphere-sphere interac-

tions. For the long-range interactions, we employed the Ewald sum of the

Rotne-Prager tensor (33) accounting only for the translational velocity

of the particles. To incorporate short-range (lubrication) forces, we calcu-

lated the interaction between the particle and each of the spheres separately

using the exact two-sphere results from the literature (34,35). Therefore,

lubrication interactions were calculated in a pairwise additive fashion under

the assumption that the other spheres in the periodic unit cell are negligible.

This approach of including lubrication has been tested previously for

ordered and disordered arrays of spheres and has been found to agree

well with published theoretical and experimental studies (36–38). Addition

of long-range and short-range interactions gives the complete approxima-

tion to the resistance matrix, Rij. For these calculations, the fluid viscosity

was taken to be that of water at 20�C.
The incorporation of hydrodynamic forces increased the computational

cost dramatically. To make the computations feasible we parallelized the

algorithm, allowing the simulations to complete in ~1 h using 28 processors.

Animal and collagen hydrogel models

Severe combined immunodeficient mice were used for all animal studies.

Mice were implanted with human fibrosarcoma tumors (HSTS26T) in

dorsal skin fold chambers. Imaging studies and diffusion measurements

were done three weeks after tumor implantation to allow for adequate tumor

progression and extracellular matrix production. All animal studies were

done with approval from the Institutional Animal Care and Use Committee.

Collagen gels were prepared by reconstituting acid-soluble rat tail

collagen (BD Biosciences, San Jose, CA) using previously described proto-

cols (39). Gels were suspended on glass cover slides and incubated for 24 h

at 37�C before imaging.

Second harmonic generation imaging
and analysis

Second harmonic generation (SHG) imaging was done in dorsal chamber

tumors and collagen gels with a custom-built multiphoton laser-scanning

microscope (26). For SHG imaging, polarized light from a Ti:Sapphire laser

(Mai-Tai Broadband; Spectra-Physics, Mountain View, CA) was converted

to circularly polarized light with a zero-order quarter wave plate (Newport,

Irvine, CA). The quarter wave plate was removed from the beam path

during MP-FRAP measurements. An excitation wavelength of 810 nm
Biophysical Journal 99(10) 3119–3128
was used and SHG signal was detected at 405 nm. SHG images were

analyzed with custom-built MATLAB (The MathWorks, Natick, MA)

code, which determined the volume fraction and alignment of the imaged

collagen fibers. Fiber area fraction was determined by applying a threshold

intensity to the SHG image and finding the fraction of pixels with intensity

above the set threshold. The threshold was set as the median intensity of all

the images in the experiment. Orientation/angle of collagen fibers was

determined by performing a two-dimensional fast-Fourier transform on

the SHG image. The fiber orientation was extracted from the phase compo-

nent of the fast-Fourier transform.

Diffusion measurements

Single point multiphoton fluorescence recovery after photobleaching

(MP-FRAP)measurements were made using 2M fluorescein isothiocyanate

(FITC)-conjugated dextran molecules (hydrodynamic radius: 20 nm) with

previously described protocols (27). FITC dextran molecules were

introduced into the tumor by intratumoral injection (1 mL of 1 mg/mL) using

an already established protocol (27). We therefore avoid the uncertainty of

concentration that occurs with intravenous injections. FRAP measurements

were performed with a laser excitation wavelength of 810 nm.Wemeasured

a grid of 20 � 20 MP-FRAP points overlaid on the SHG image of the area

under study (see Fig. 7 later in article). We obtained the relative diffusion

coefficient for the bleached spot (D/Do) where D is the diffusion coefficient

obtained at the spot from MP-FRAP analysis and Do is the diffusion coef-

ficient of the bleached fluorophore in solution. We then compared the rela-

tive diffusion coefficient (D/Do) obtained by single point MP-FRAP with

collagen network volume fraction and alignment. It should be noted that

D/Do is a measure of the overall diffusion and does not contain any infor-

mation on the directional components of it.

To obtain information on diffusion anisotropy, we made line FRAP

measurements overlaid on SHG images of aligned collagen networks

in vivo (see Fig. 8 later in article) also using 2 M FITC-conjugated dextran

molecules. We modified a previously described confocal laser scanning line

FRAP model (9,40,41) for multiphoton FRAP. According to Meyvis et al.

(42), the characteristic diffusion time should be at least 15� the bleached

time to avoid diffusion during bleaching. We bleached the line for

80.56 ms. This is well below the characteristic diffusion time of 1.7 s for

our experimental system. We approximated the bleached volume as a cylin-

drical tube. We also assumed the recovery kinetics to be similar to those

expected for diffusion from a well-stirred limited volume into the cylin-

drical tube (43) and a linear relationship between the intensity of the fluo-

rescent signal and the total amount of fluorophore in the cylinder. These

approximations were tested by verifying that the diffusion of 2 M FITC

dextran in free solution and in tumors agreed with previously obtained

values (4,26). We fit the recovery curve using (43):

F

F0

¼ 1�
XN

n¼ 1

4að1 þ aÞ
4 þ 4a þ a2q2n

exp
�� Dþ q2nt=a

2
�
; (6)

where acJ0(qn) þ J1(qn) ¼ 0, and a ¼ A/pa2. The values F0 and F are the

prebleach and postbleach fluorescent intensity values. Dþ is the diffusion

coefficient orthogonal to the bleached line. J0 and J1 are the Bessel func-

tions of the first kind of order zero and order one, respectively, qn is ob-

tained from the roots of the Bessel function relation in Eq. 6, A is the

average cross-sectional area of the pores within the collagen network and

a is the radius of the bleached cylinder. The dimensions of a and A are

1 mm and 5 mm, respectively. We obtained the apparent hindrance to diffu-

sion (Dþ/D0), where D0 is the diffusion coefficient in free solution.
RESULTS

Validation of the mathematical model

To test the validity of our model, we first accounted only
for the random walk simulations (steric interactions) and
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were omitted. D0 is the diffusion coefficient in solution.
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compared our results with the data of Johansson and Lofroth
(see their Fig. 3in (17)) for three different values of the fiber
volume fraction, 4. Johansson and Lofroth used a similar
random walk approach to study the diffusion of particles
in polymer networks and Fig. S1 shows that our model
agrees with the results they reported.

Subsequently, we included the Stokesian dynamics
domain and tested the model prediction with a theory devel-
oped for isotropic fiber networks and has been successfully
used to predict the diffusivity of macromolecules in fiber
media (44). According to that theory, diffusivity in a fiber
network is given by the product of hydrodynamic, F, and
steric, S, interactions, as

D

D0

¼ F , S ¼ e�afb , e�0:84f 1:09 ; (7)

where D/ D0 is the ratio of the diffusivity in the gel to that in
solution, and f is an adjusted volume fraction given as a func-
tion of the fiber volume fraction, 4, and the ratio of the
solute diameter to the fiber diameter, l (i.e., f ¼ (1 þ
l)24). The stretched exponential expressions for F and S
were derived by Clague and Phillips (23), and Johansson
and Lofroth (17), respectively, while corrected values of
a and b are given in Amsden (45) as: a ¼ p, and b ¼
0.174 ln(59.6/l). Fig. S2 shows the good agreement of our
model with Eq. 7.
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radius over the fiber radius for the fiber structures employed in the study and

for two fiber volume fractions: (a) 0.01, and (b) 0.05. Dparallel is the diffu-

sion coefficient parallel to the preferred fiber direction (Dzz) andDtransverse is

the diffusion coefficient transverse to the preferred fiber direction (average

value of Dxx and Dzz). The value of the fiber networks is the average of four

realizations. Standard deviations were too small to be distinguished in the

plot and were omitted.
Network orientation affects diffusion anisotropy
but not overall diffusion coefficient

To study the effect of fiber alignment on the overall diffu-
sion coefficient, we performed our analysis on the four
different network structures shown in Fig. 1 b. As shown
in Table S2, increase in fiber orientation also resulted in
an increase in the pore size of the networks. The results of
our simulations are depicted in Fig. 2 for fiber volume frac-
tions of 0.01, 0.03, and 0.05. We see that the overall diffu-
sion coefficient is independent of the network orientation
and pore size distribution.

In Fig. 3 we plot the ratio of the diffusion coefficient
parallel to the preferred fiber direction (Dparallel h D*zz)
over the diffusion coefficient transverse to the preferred fiber
direction (Dtransverse is the average value of D*xx and D*yy,
D*xx z D*yy for all simulations) for fiber volume fractions
of 0.01 and 0.05. We observe that particles diffuse faster
in the preferred fiber direction and this becomes more
significant with an increase in network alignment, particle
size, or fiber volume fraction. When the diffusing particle
is smaller than the fiber, the diffusion anisotropy ratio
(Dparallel/Dtransverse) is the same for themoderately and highly
aligned networks and does not depend on particle size. For
larger particles, however, the diffusion anisotropy depends
on network orientation, and, for small volume fractions,
scales linearly with particle size. At the high volume fraction
of 0.05 (Fig. 3 b), the diffusion anisotropy ratio reaches
a plateau for large particles. The pore size decreases with
increase in the fiber volume fraction and restricts the trans-
port of large particles even in the preferred fiber directions.
Finally, we see that the anisotropy is always higher for the
Biophysical Journal 99(10) 3119–3128
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perfectly aligned array, providing an upper bound for the
networks.

In our analysis so far, we kept the fiber volume frac-
tion <0.05. As shown in Table S2, for higher volume frac-
tions the pore size becomes smaller than the size of the
largest particles (300 nm) used in the study; thus, they can
no longer diffuse. The low volume fraction range (<0.05)
is representative of engineered matrices and many native
tissues, but not tissues like cartilage, tendons, and tumors
(3,11). Fig. 4 presents the diffusion anisotropy of diffusing
particles with sizes ranging from 5 to 50 nm in highly aligned
networks. The fiber volume fraction was up to 0.4. We see
that particles of smaller size still exhibit the same range of
diffusion anisotropy, but at higher volume fractions.
FIGURE 5 Effect of steric and hydrodynamic interactions on the overall

diffusion coefficient, D, as a function of the fiber volume fraction. We

consider 1), only steric interactions; 2), steric interactions plus long-range

hydrodynamic interactions; and 3), steric and hydrodynamic interaction

plus the correction for short-range (lubrication) effects. The ratio l of the

particle radius over the fiber radius is 0.2 and 3.0.
Steric versus hydrodynamic interactions

To study the contribution of steric and hydrodynamic inter-
actions to the diffusion coefficient, we plot in Fig. 5 the
hindered diffusion accounting 1), only for steric interac-
tions; 2), for steric interactions plus the incorporation of
long-range hydrodynamic interactions; and 3), for steric
and hydrodynamic interaction, taking into account the
correction for short-range (lubrication) effects. Fig. 5 shows
the results for two different sizes of particles. The ratio of
particle radius/fiber radius, l, is 0.2 and 3.0. Incorporation
of only steric hindrance overpredicts the diffusion coeffi-
cient, particularly for large particles. Lubrication interac-
tions provide an up to 5% correction to hydrodynamic
hindrance.

To determine whether the diffusion anisotropy is a result
of steric or hydrodynamic interactions, we plot in Fig. 6 the
diffusion anisotropy ratio accounting only for steric
hindrance and for steric plus hydrodynamic hindrance.
The fiber volume fraction is 0.05. The difference in the
diffusion anisotropy with and without hydrodynamic inter-
actions is small, and does not exceed 5%.
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FIGURE 4 Diffusion anisotropy as a function of the fiber volume frac-

tion for highly aligned networks and for particles of three different sizes.

The ratio l of the particle radius over the fiber radius is 0.05, 0.2, and 0.5.

Biophysical Journal 99(10) 3119–3128
Experimental validation of model predictions
in collagen gels and tumors

To support the model predictions, we performed diffusion
measurements in collagen gels and in an in vivo tumor
model. To prove that the overall diffusivity of nanoparticles
and macromolecules is independent of the network struc-
ture, we employed a heterogeneous collagen gel, whose
collagen fraction and orientation can be easily controlled
and measured. Fig. 7 shows the dependence of diffusion
on collagen fiber orientation and area fraction. The top panel
shows an SHG image of a collagen gel with the overlaid red
circles representing the locations at which single spot
MP-FRAP measurements were made. The bottom-right
panel shows the relationship between the hindered diffu-
sivity (D/D0) and fiber area fraction. Our data shows that
there is a strong, statistically significant relationship
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FIGURE 6 Effect of steric and hydrodynamic interactions on the diffu-

sion anisotropy of moderately, highly, and perfectly aligned networks.



FIGURE 7 Effects of area fraction and fiber alignment on overall diffu-

sion measured in collagen gels. The top panel shows an SHG image of the

collagen gel overlaid with the points at which overall diffusion was

measured. It also shows the regions that were sampled for fiber alignment

studies. The histograms on the middle panel show the relative alignment of

fibers in Regions A and B. The bottom-right panel shows the strong corre-

lation between fiber area fraction and overall diffusion. The bottom-left

panel shows that there is no significant difference between overall diffusion

measurements obtained from the highly aligned Region A compared to the

unaligned Region B.

FIGURE 8 In vivo evidence of diffusion anisotropy in tumors. The top-left

panel shows an SHG image of the tumor interstitium. Collagen fibers are

visible in gray. The red dashed lines show the planes along which line

FRAP measurements were taken. The bottom-left panel shows a histogram

of the relative alignment of collagen fibers in the network. The histogram

shows thatmostfibers are alignedat 100 � to the horizontal.The top-right panel
shows a recovery curve obtained from line FRAPmeasurements. The bottom-

right panel shows the relative diffusivities obtained from line FRAP.Diffusion

coefficients at 100 � (parallel to the collagen fibers) are 1.5 times larger than

those performed at 190 � (orthogonal to the collagen fiber alignment).
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between area fraction and D/D0, where D/D0 decreases with
increasing area fraction. We also investigated the
relationship between D/D0 and fiber alignment. We selected
two regions (A and B) which had highly aligned fibers
(Region A) and unaligned fibers (Region B) but the same
area fraction to investigate this relationship. In accordance
with the model predictions, our analysis shows no correla-
tion between D/D0 and fiber alignment.

Because the point MP-FRAP measurements of D/D0 do
not give any information on component diffusion, we chose
to use line-FRAP measurements instead to investigate the
effect of fiber alignment on diffusion anisotropy. To measure
diffusion anisotropy, we employed the highly desmoplastic
soft tissue sarcoma HSTS26T model. To our knowledge,
diffusion anisotropy in the interstitial space of tumors has
been never measured, despite its importance to drug
delivery (1,12,24,25). Fig. 8 shows an SHG image of the
highly organized and dense collagen fibers in the tumor
interstitial space. The red dashed lines depict the region in
which line FRAP measurements were made. We found
that in the extracellular matrix of tumors with highly aligned
collagen fibers, the diffusion coefficient parallel to the fiber
direction (Dþ/D0 ¼ 0.18) was 1.5 times higher than the
diffusion coefficient in a direction perpendicular to the fiber
direction (Dþ/D0 ¼ 0.12). It is also interesting to note that
the diffusion coefficient at 45� to the fiber direction
(Dþ/D0 ¼ 0.17) was higher than the value perpendicular
to the fiber direction but lower than that obtained parallel
to the fiber direction. As we have mentioned, the soft tissue
sarcoma xenograft that we used in this study is a desmoplas-
tic tumor with fiber volume fraction up to 40% (11). In
Fig. 4, we see that the model predictions for particles of
the size of 2 M FITC Dextran (l ¼ 0.4) are 1.25 for 20%
volume fraction and 1.55 for 40% volume fraction, in
good agreement with the experimental measurements.
Biophysical Journal 99(10) 3119–3128
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DISCUSSION

Here, we developed a mathematical model for the diffusive
transport of macromolecules and nanoparticles in collage-
nous tissues. The model accounted for steric and hydrody-
namic interactions and was applied to fiber networks with
varying degrees of alignment. We showed that even though
the overall diffusion coefficient is not affected by network
structure, the directional components of the diffusion coef-
ficient matrix might vary considerably depending on
network orientation, particle size, and fiber volume fraction.
The results of our study agree with the experimental data of
Leddy et al. (14), who measured diffusion coefficients
parallel and transverse to the preferred fiber direction of
ligaments, cartilage, and agarose gels for a small (3 kDa
Dextran) and a large (500 kDa Dextran) molecule. Addition-
ally, the plateau observed in Fig. 3 b has been shown exper-
imentally in diffusion measurements in the highly aligned
extracellular space of the brain (46).

Our own experiments in collagen gels and in human
xenograft tumor models also support these findings. We pre-
sented evidence that diffusion anisotropy exists in mouse
models of human tumors and the degree of anisotropy in
the tumors matches the results obtained from our simula-
tions. We believe that the diffusion anisotropy in tumors is
particularly high because of the high volume fraction of
the fibers in the dense collagen network and the highly
organized nature of the fibers caused by the remodeling
activities of tumor fibroblast cells. These findings are impor-
tant for tumor drug delivery because they could help provide
insight into geometrical and steric constraints in the devel-
opment of antitumor therapeutics (24).

Our results potentially explain a discrepancy between
Leddy et al. (14) and Erikson et al. (15), who measured
the diffusivity of 2 M Dextran in collagen gels with varying
orientations. In agreement with our model prediction
(Fig. 2), Erikson et al. (15) found that the overall diffusion
coefficient was not affected by the network orientation but
only by the fiber volume fraction. However, in contrast to
Leddy et al. (14), they also noticed that collagen alignment
did not result in diffusion anisotropy. We provide two
possible explanations to this discrepancy.

First, the hydrodynamic radius of 2 M Dextran (used by
Erikson et al. (15)) is 20 nm, while the fibers in their gels
were very thick (~800 nm). According to our model (Figs.
3 and 4), the very small ratio of particle radius compared
to the fiber radius in combination with the low collagen
volume fraction of the gel may explain the absence of diffu-
sion anisotropy in their study.

Second, Erikson et al. (15) measured diffusion in
circular regions—more likely to provide overall diffusion
values. Our data show that overall diffusion values do not
provide the component diffusion information required to
probe the relationship between fiber orientation and diffu-
sion anisotropy. Leddy et al. (14) on the other hand measure
Biophysical Journal 99(10) 3119–3128
diffusion using an indirect method that allows them to
obtain component diffusion information and successfully
explore the relationship between fiber orientation and diffu-
sion anisotropy.

We also used our mathematical approach to separate the
effects of steric and hydrodynamic interactions (Figs. 5
and 6). We found that when we account only for steric
hindrance the overall diffusion coefficient is overpredicted
and it might be up to three times higher than the diffusion
coefficient that includes hydrodynamic hindrance (Fig. 5).
On the other hand, the incorporation of lubrication forces
provided a small, up to 5%, correction to the diffusivity.
Interestingly, when we accounted only for steric interactions
the diffusion anisotropy did not change (Fig. 6). This finding
is explained by the fact that hydrodynamic interactions slow
down the mobility of the particle but they do not affect the
direction in which particles will move.

The main advantage of our methodology over other
random walk approaches is that it accounts not only for
steric but also for hydrodynamic interactions in a com-
putationally tractable way. In addition, the model accounts
directly for the tissue microstructure and can easily incorpo-
rate tissues with different degrees of alignment. Our mathe-
matical framework is general and can be extended to
incorporate other types of interactions such as electrostatic,
once we have a method to describe the electrostatic energy
of a particle in a fiber medium. Currently, such a method
exists only for the interaction between a particle and a single
fiber or a spatially periodic array of fibers (47,48). The
model can also be extended to incorporate multiple families
of fibers to better-represent the structure of native tissues.
Finally, the presented methodology of network generation
and diffusion simulation can be combined with imaging
techniques for the prediction of diffusion coefficients in
tissues. This type of information is critical to optimize the
properties of nanoparticles for improved delivery in
tumors (24).
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