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Discovery of Entry Inhibitors for HIV-1 via a New De Novo Protein Design
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†Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey; and ‡Department of Pharmacology and
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ABSTRACT A new (to our knowledge) de novo design framework with a ranking metric based on approximate binding affinity
calculations is introduced and applied to the discovery of what we believe are novel HIV-1 entry inhibitors. The framework
consists of two stages: a sequence selection stage and a validation stage. The sequence selection stage produces a rank-
ordered list of amino-acid sequences by solving an integer programming sequence selection model. The validation stage
consists of fold specificity and approximate binding affinity calculations. The designed peptidic inhibitors are 12-amino-acids-
long and target the hydrophobic core of gp41. A number of the best-predicted sequences were synthesized and their inhibition
of HIV-1 was tested in cell culture. All peptides examined showed inhibitory activity when compared with no drug present, and
the novel peptide sequences outperformed the native template sequence used for the design. The best sequence showed
micromolar inhibition, which is a 3–15-fold improvement over the native sequence, depending on the donor. In addition, the
best sequence equally inhibited wild-type and Enfuvirtide-resistant virus strains.
INTRODUCTION
Worldwide, as of 2007, an estimated 33,000,000 people are
living with HIV, and the annual number of new HIV infec-
tions is estimated at ~2,700,000 (1). Recent work (2,3) has
outlined the progress and setbacks that have occurred in
the pursuit of an HIV vaccine and the advances and options
for controlling HIV. One of the reasons stated for the limited
progress and the setbacks is that many of the vaccine candi-
dates are based upon empirical trials, as opposed to predic-
tive, scientifically based trials. In contrast, excitement has
been generated for the development of entry and fusion
inhibitors that prevent infection of susceptible cells.

The infection of host cells by HIV-1 is a multistep process
which begins with the proteolytic cleavage of gp160 into
two subunits by a cellular protease. The resulting subunits
consist of a surface subunit (gp120) and a transmembrane
subunit (gp41) (4). The surface subunit gp120 binds to the
host cell receptor CD4, which leads to a conformational
change in gp120, causing the extension of the V3 loop of
gp120 which then binds to chemokine receptor CCR5 or
CXCR4 or both. This latter binding leads to the exposure
of the fusion domain of the transmembrane subunit, gp41.
The transmembrane subunit gp41 is considered a class I
membrane fusion protein and can be divided into the
following domains: extracellular, transmembrane, and cyto-
plasmic (5). The extracellular domain can be further divided
into four functional domains: fusion peptide, N-terminal
heptad repeat (NHR or HR1), C-terminal heptad repeat
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(CHR or HR2), and a tryptophan-rich region (5). Both
NHR and CHR contain a number of 4-3 heptad repeats,
and these repeats generally form coiled-coil structures (6).
After gp41 has been exposed, the NHR and CHR come
together to form a six-helix bundle. Once the six-helix
bundle is formed, the viral and cell membranes fuse.

The first U.S. Food and Drug Administration (FDA)-
approved HIV fusion inhibitor, Enfuvirtide (IC50 ¼ 36 nM
(7)), was developed by Roche (Hoffmann-La Roche, Nutley,
NJ) and Trimeris (Morrisville, NC), and has been in use
since 2003. Enfuvirtide’s sequence is based on the sequence
of gp41 CHR and targets gp41 NHR. Despite its success as
an inhibitor, it is a 36-amino-acid helical peptide and its
length makes the drug difficult and costly to manufacture.
As a result, it has three weaknesses:

1. It can be easily degraded by proteolytic enzymes in the
blood, leading to short lifetimes of 2 h in vivo.

2. It has a high cost of production due to its size.
3. It lacks oral bioavailability, resulting in inconvenient

dosage form and schedule (90 mg twice daily).

The other fusion inhibitor on the market, Maraviroc (IC50

of 0.40 nM (8)), was developed by Pfizer (New York, NY)
and was approved in 2007. As with Enfuvirtide, it is used
in patients that have developed resistance to standard HIV
treatments. Maraviroc differs from Enfuvirtide in that it is
a small molecule and not a peptide and it targets gp120 as
opposed to gp41. Maraviroc binds to CCR5, one of the
chemokine receptors needed in the infection process. It is
available in tablet form, making it a more convenient drug
to take (150 mg and 300 mg doses twice daily). It has one
weakness, however. Maraviroc is only effective in patients
whose virus populations utilize the CCR5 receptor. The
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FIGURE 1 Overview of the de novo design framework.
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drug has limited activity in patients whose virus population
has evolved the ability to utilize the CXCR4 receptor or both
receptors.

In addition to the two FDA-approved fusion inhibitors,
there are many more that have been published in the open
literature. Welch et al. (9) presented a very potent peptide
(IC50 ¼ 0.25 nM) of length 45, whereas in contrast Sia
et al. (10) tested a number of shorter peptides (14-amino-
acids long), with the best obtaining an IC50 of 35 mM. Other
work has also focused on finding peptidic inhibitors of
Enfuvirtide-resistant HIV strains (11–13), which have
developed due to the increased use of Enfuvirtide. Third-
generation fusion inhibitors such as T-2635 (38-amino-acids
long) (14) and Sifuvirtide (36-amino-acids long) (15) are
peptides based upon the original Enfuvirtide sequence that
have been improved using rational design. Sifuvirtide
showed a sixfold improvement over Enfuvirtide whereas
T-2635 showed up to 3600-fold improvement against
Enfuvirtide-resistant viruses. In addition, various small
molecules are being investigated to find new HIV-1 inhibi-
tors that may have increased bioavailability and reduced
cost of production over peptidic inhibitors (5,16–20). There
have also been studies that add sugar or cholesterol groups
to peptides to increase inhibitory potencies and make the
peptidic inhibitors more druglike (5,21,22).

De novo protein design has been applied to a number of
systems, including HIV-1 (23,24). The goal is to determine
a specific amino-acid sequence that will fold into a given
rigid or flexible three-dimensional backbone template.
Reviews by Fung et al. (25), Floudas et al. (26), Kortemme
and Baker (27), and Kuhlman and Baker (28) highlight the
methodologies and successes in the field. Some examples of
protein design methods include dead-end elimination
(29–31), self-consistent mean field (32,33), Monte Carlo
(34–37), and methods that use flexible backbone templates
(38–40).
METHODS AND MATERIALS

De novo design framework

What we believe are novel inhibitors of fusion were designed using a de

novo protein design framework. An overview of the de novo design frame-

work is presented in Fig. 1.
FIGURE 2 Crystal structure of C14linkmid in complex with the hydro-

phobic core of gp41, PDB code: 1GZL. The diaminoalkane crosslinker

and the hydrophobic core of gp41, consisting of residues Leu29, Leu30,

Leu32, Thr33, Val34, Trp35, Gly36, Ile37, Lys38, Leu40, and Gln41are colored

blue (the residues are numbered according to their position in 1GZL).

Figure created using PyMOL v0.99 (73).
Design template

The design template for entry inhibitors is the crystal structure of C14link-

mid, a 14-residue crosslinked peptide, in complex with the hydrophobic

core of gp41 (PDB code: 1GZL). The hydrophobic core of gp41 consists

of residues Leu29, Leu30, Leu32, Thr33, Val34, Trp35, Gly36, Ile37, Lys38,

Leu40, and Gln41 (numbered using positions in 1GZL) and has been shown

to be a viable drug target (41–44). C14linkmid was confirmed by Sia et al.

(10) to be a highly potent inhibitor to gp41 with an IC50 value of 35 mM for

cell-cell fusion. For the design, the crosslinker was not incorporated. Sia

et al. (10) reported an IC50 for the unlinked peptide (C14unlinkmid) of

>500 mM. Because the PDB file contained two identical monomer units
Biophysical Journal 99(10) 3445–3453
(A-C and B-D), only chains A and C were used for the design template.

The crystal structure of the complex is shown in Fig. 2.
Mutation set and biological constraints

Although the original sequences of C14linkmid and C14unlinkmid are 14-

residues long, only 12 of the residues were present in the crystal structure

W628EEWDREIENYT639:

All positions were varied according to solvent-accessible surface area

(SASA) patterning, which was also employed in the full-sequence design

of human b-defensin-2 (45). If the residue in the crystal structure has

a SASA >50%, a set of hydrophilic amino acids are allowed. If the residue
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has a SASA<20%, a set of hydrophobic residues are allowed. If the residue

has an SASA in between, then all residues are allowed. Proline was not al-

lowed, because it creates kinks or it breaks an a-helix, which is the structure

of C14linkmid. Positions 628, 631, 635, and 638 were allowed to mutate to

the hydrophobic set

A; L; I; M; F; W; Y; V:

Position 629 was allowed to mutate to the hydrophobic set

A; C; I; L; M; F; W; Y; V:

Positions 630, 632, 634, 637, and 639 were allowed to mutate to all amino

acids except Cys and Pro. Positions 633 and 636 were allowed to mutate to

all amino acids except Pro. No residues of the hydrophobic core of gp41

were allowed to mutate, as this is the target protein we wish to inhibit.

This mutation set leads to a problem complexity of 2.51 � 1013.

In addition, the charge of the section of the peptidic inhibitor from posi-

tion 630 to position 636 was fixed to be within plus- or minus-one from the

native charge of �3.
Force field

The force field used was derived by solving a linear programming param-

eter estimation problem which requires the low energy high-resolution

decoys for a large training set of proteins to be energetically less favorable

than their native conformations (46–48). In the de novo design of entry

inhibitors for HIV-1, we used the high-resolution centroid-centroid force

field (47) because, based on our previous studies on human b-defensin-2

(45), it was more accurate than the Ca-Ca force field (46).
Sequence selection

Because the design template is a single crystal structure, the basic model for

sequence selection was used in the sequence selection stage; see Eq. 1

below (for the formulations of the flexible template models, the reader is

referred to (40,45)):

min
y
j
i
;yl
k

Xn�1

i¼ 1

Xmi

j¼ 1

Xn

k¼ iþ 1

Xmk

l¼ 1

Ejl
ikðxi; xkÞwjl

ik

subject to

Pmi

j¼ 1

yji ¼ 1ci
Pmi

j¼ 1

wjl
ik ¼ ylkci;

k > i; l
Pmk

l¼ 1

wjl
ik ¼ yji c i; k > i; j;

yji; y
l
kw

jl
ik˛f0; 1g c i; j; k > i; l:

(1)

The set i ¼ 1,.,n defines the number of amino-acid positions along the

backbone of the design template. Set j{i} ¼ 1,.,mi defines the mutations

that are allowed at each position i, with, for the general case, mi ¼ 20 c i.

The sets k and l are equivalent to the sets i and j, respectively. In the objec-

tive function,

Ejl
ikðxi; xkÞ

is the pairwise energy parameter (force field). It is dependent upon the

distance between residues i and k, (xi, xk); the type of amino acid j at position

i; and the type of amino acid l at position k. Two binary variables are intro-

duced, yji and y
l
k, which take the value of one if amino acid j (or l) is selected

at position i (or k) and zero otherwise. The final binary variable, wjl
ik, is an
interaction variable and is defined as the product of yji and y
l
k. It is 1 if amino

acid j is selected at position i and amino acid l is selected at position k.

Using Eq. 1, we generated 500 low-energy sequences for which we

calculated the fold specificities.
Fold specificity calculations

Fold specificity calculations are used to rank the sequences from the

sequence selection stage based upon a measure of how well the sequence

folds into the design template. As seen in Fig. 1, the fold specificity calcu-

lations can take on one of two approaches: the ASTRO-FOLD approach and

the Tinker/CYANA approach. For this study, the Tinker/CYANA approach

was used. For details about the ASTRO-FOLD approach, the reader is

referred to Klepeis et al. (49–53) and the review by C. A. Floudas (54).

Fung et al. (45) proposed an approximate method for fold specificity

calculation which is computationally efficient. First, a flexible template is

defined based on the upper and lower bounds on both the distances between

a-carbons and the f- and j-angles between residues. An ensemble of

hundreds of random conformers is then generated within the confines of

the flexible template using the CYANA 2.1 software package for NMR

structure refinement (55,56). For each structure in the ensemble, local mini-

mizations are then performed by the TINKER package (57) as directed by

gradients in the fully atomistic force field AMBER (58). AMBER is used to

evaluate the potential energy of the structure. These ensembles are gener-

ated for the native sequence of the fold and for each candidate mutant

sequence. The specificity of each mutant sequence (set novel) to the target

fold is then calculated relative to the native sequence (set native) using the

Boltzmann distribution from statistical mechanics (Eq. 2), where

b ¼ 1

kBT
:

Both the predicted energy of each conformer and its root mean-square

deviation from the template structure are used in this calculation:

fspecificity ¼
P

i˛novel
exp½�bEi�

P
i˛native

exp½�bEi�: (2)

Fold specificity calculations using the Tinker/CYANA approach were

performed on all 500 sequences from the sequence selection stage, and

the 30 top-ranked sequences were used in the approximate binding affinity

stage.
Approximate binding affinity calculations

Bellows et al. (59) recently presented what they consider a novel protein

design framework based upon approximate binding affinity calculations.

The approximate binding affinity calculations are used to rank the designed

sequences that are in complex with a target protein. These calculations can

be done on the sequences directly from the sequence selection stage, or can

be performed on the high fold specificity sequences obtained from the fold

specificity stage. Because this stage is computationally demanding, approx-

imate binding affinity calculations are not done on all 500 sequences, but

rather a smaller subset. In this case, the 30 top-ranked sequences based

upon fold specificity were sent to this stage.

Lilien et al. (60) proposed an approach for the calculation of approximate

binding affinities of protein-ligand complexes. It is based on generating ro-

tamerically based ensembles of the protein, the ligand, and the protein-

ligand complex and using those ensembles to calculate partition functions.

This approximate binding affinity is denoted as K* and is defined by

K� ¼ qPL
qPqL

: (3)
Biophysical Journal 99(10) 3445–3453
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In Eq. 3, qPL is the partition function of the protein-ligand complex, qP is the

partition function of the free protein, and qL is the partition function of the

free ligand. The partition functions are defined in Eq. 4, where the sets B, F,

and L contain the rotamerically based conformations of the bound protein-

ligand complex, the free protein, and the free ligand, respectively. En is the

energy of conformation n, R is the gas constant, and T is the temperature:

qPL ¼ P
b˛B

e
�Eb
RT ;

qP ¼ P
f˛F

e
�Ef
RT ;

qL ¼ P
‘˛L

e
�E‘
RT :

(4)

K* is an approximation of the true binding affinity (KA) because of the

approximation of the partition functions. Because K* uses the Boltzmann

probability distribution, it satisfies the Ergodic hypothesis and can be

proved to approximate KA (see Lilien et al. (60) and Bellows et al. (59)

for derivation). If the partition functions are exactly calculated, K* ¼ KA.

Because enumerating all possible conformers of complex molecular species

is computationally demanding, K* is approximate.

The rotamerically based conformation ensembles (sets B, F, and L) are

generated using the Rosettaþþ software package and OREO, a clustering

algorithm. An ensemble of 1000 structures is predicted for each sequence

using RosettaAbinitio (61–63). The 1000 structures are clustered based

upon their f- and j-angles using OREO (64,65), giving 11 representative

backbone structures for each peptide sequence. These 11 structures are

docked to the target protein using RosettaDock (66–68), generating 1000

complexes for each peptide structure. The final rotamerically based confor-
� ðY=WÞ628�ðC=A=M=W=V=L=IÞ629�ðE=DÞ630�ðY=WÞ631�ðD=R=EÞ632�ðD=E=RÞ633

� ðR=EÞ634�ðY=W=IÞ635�ðD=EÞ636�R637 � ðW=YÞ638�R639 � :
mation ensembles are generated using RosettaDesign (69). For the peptide

and complex ensembles, 110 starting structures from the structure predic-

tion ensemble and the docking ensemble are selected and expanded for final

ensembles of 22,000 conformers each. For the protein ensemble, one start-

ing structure is used for a final ensemble of 2000 conformers. Details on

ensemble generation are provided in the Supporting Material.
Single round infectivity assay

The single-round infectivity assay is carried out at The Johns Hopkins

University School of Medicine (laboratory of Professor R. F. Silicianos).

It is based on an assay developed by Zhang et al. (70) and further modified

by Shen et al. (7). Briefly, pseudotyped virus capable of single-round infec-

tion is prepared by transfecting HEK293T cells with a GFP-tagged, enve-

lope-defective HIV-1 vector (pNL43-DE-EGFP) along with an envelope

expression vector carrying either HIV-1 CXCR4 or envelope protein G of

vesicular stomatitis virus (VSVG) using Lipofectamine 2000 (Invitrogen,

Carlsbad, CA) according to the manufacturers protocol. Resistance muta-

tion gp41 N43D was made by site-directed mutagenesis (Stratagene, La

Jolla, CA). At 48 h after transfection, cell debris is cleared and virus

particles are isolated by ultracentrifugation as described previously. Virus

amounts are standardized by p24 using an ELISA (PerkinElmer, Norwalk,

CT). Peripheral blood mononuclear cells are obtained from healthy blood

donors by Hypaque-Ficoll gradient centrifugation and then activated with

phytohemagglutinin (0.5 mg/mL) and interleukin-2 (100 U/mL) for three
Biophysical Journal 99(10) 3445–3453
days. CD4þ T cells are selected by magnetic beads (Miltenyi Biotec, Ber-

gisch Gladbach, Germany) and seeded in a 96-well plate at 105 cells per

well in RPMI1640 supplemented with 10% fetal bovine serum, inter-

leukin-2 (100 U/mL), and cytokine-rich supernatant. Drugs are added at

this step, and then infection with recombinant virus is carried out by spino-

culation at 1200g, 30 1C for 2 h.

Infected cells are incubated at 37�C for three days, washed, and then

fixed in 2% formaldehyde. Infectivity is quantified as the percentage of

GFPþ cells by FACS analysis (BD Biosciences, San Jose, CA). Viability

is approximated by cell morphology as measured by forward and side

scatter. Initial screening experiments were done in duplicate with cells

from two different donors. Envelope specificity experiments were done in

duplicate with cells from one donor. Followup screening of SQ435 against

wild-type and N43D resistant virus was done in triplicate with cells from

three different donors, and measurements with Enfuvirtide were done in

triplicate with cells from two donors. All healthy blood donors gave their

informed consent, and the study was approved by the Institutional Review

Board of The Johns Hopkins University.
RESULTS

Computational results

Table 1 shows the top 10 sequences ranked based upon
approximate binding affinity. Included in this set is the
native sequence of C14unlinkmid. The sequences show
some remarkable conservation in certain positions. The
overall mutation pattern obtained from the 10 sequences is
Positions 637 and 639 consistently mutated to Arg and posi-
tions 628, 630, 631, 634, 636, and 638 always mutated to
one of two amino acids, with one of the choices often being
the native amino acid. Only position 629 showed much vari-
ability. In addition, there was a strong prevalence for Trp or
Tyr selection, seen in positions 628, 631, 635, and 638. The
native sequence has only two Trp and one Tyr, yet a number
of the mutant sequences have a combination of Trp and Tyr
up to five. Six of the 30 sequences are predicted to be better
binders than the native.
Experimental results

The five top-ranked sequences based on approximate
binding affinities plus the native sequence itself were
selected for synthesis and tested using a single round infec-
tivity assay. Peptide synthesis was performed by GenScript
(Piscataway, NJ). The peptides were ordered in quantities of
1–4 mg at >95% purity. The N-termini were acetylated and
the C-termini were amidated. We then verified peptide
molecular weights and checked for side products by



TABLE 1 Computational results for the design of novel HIV-1 fusion inhibitors

Name

Sequence selection

rank

Fold specificity

rank

Approximate binding

affinity rank

Sequence

628 639

SQ044 44 29 1 Y CDYEDRYERW R

SQ435 435 15 2 W CDWRDEWERY R

SQ175 175 11 3 W ADWRDEWERY R

SQ486 486 20 4 Y MEYDERYDRW R

SQ323 323 17 5 Y WEYDDRYDRW R

SQ318 318 3 6 Y VEYDDRYDRW R

Native n/a n/a 7 W EEWDREIENY T

SQ321 321 2 8 Y LEYDDRYDRW R

SQ322 322 6 9 Y IEYDDRYDRW R

SQ457 457 1 10 W ADWRDEWDRY R
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matrix-assisted laser desorption/ionization mass spectrom-
etry. All peptides were found to be as expected.

Fig. 3 shows the experimental results for the initial
peptide screen. Every mutant sequence except SQ044
showed experimental inhibitory activity better than the
native sequence, as was predicted by the de novo protein
design approach. SQ435 was shown to be the most potent
inhibitor, with a viral replication (% of control) of 0.05–
1.12% at 500 mM and 20–35% at 50 mM. The IC50 of
SQ435 was then determined against cells from two addi-
tional donors in duplicate and found to be 29.7 mM
(Fig. 4 A, experiment 140). In addition, almost all the
peptides showed minimal toxicity, with >90% viability at
a concentration of 500 mM. Fig. S1 in the Supporting Mate-
rial shows the viability of the cells treated with each peptide
at two concentrations, 50 mM and 500 mM.

To determine whether the inhibition of HIV-1 replication
is, in fact, at the entry stage, sequences SQ435 and SQ175
were selected for testing against HIV pseudoviruses
carrying either HIV-1 envelope or envelope protein G of
FIGURE 3 Inhibition of entry of wild-typeHIVinto primaryCD4þT cells

by the top fivemutant sequences and the native sequence. Experiments were

done in duplicate with cells from two donors and at two peptide concentra-

tions, 50 mM and 500 mM. Replication (% of control) was determined by

single-round infectivity assay with GFP-encoding recombinant HIV. (Error

bars) Span of values obtained.
VSVG (Fig. S2). Although SQ435 and SQ175 do not
show as great an inhibitory effect in this experiment as
compared to the two donors in Fig. 3, there is still an effect
at a concentration of 500 mM with a viral replication (% of
control) for SQ435 of 0.25% and for SQ175 of 6%. In
comparison, there is no effect when the VSVG envelope is
used, with viral replication (% of control) close to 100%
for both peptides. This shows that the peptides are HIV-1-
envelope-specific.

We then selected peptide SQ435 for more rigorous IC50

measurement and also tested it against virus bearing the
FIGURE 4 Inhibition of entry of wild-type and gp41 N43D mutant HIV

into primary CD4þ T cells by SQ435 (A and B) and Enfuvirtide (C). Repli-

cation (% of control) was determined by single-round infectivity assay with

GFP-encoding recombinant HIV. Individual donors illustrated with unique

symbols and separate curves to illustrate the donor-to-donor variability in

potency. (Solid symbol) Wild-type virus. (Open symbol) N43D mutant.

(Dashed lines) Aggregate IC50 curve across all donors, and two different

dash styles distinguish the two viruses used.

Biophysical Journal 99(10) 3445–3453



TABLE 2 Experimental IC50 values for SQ435 and Enfuvirtide

against both wild-type HIV-1 and the N43D mutant

Donor

IC50 SQ435 (mM) IC50 Enfuvirtide (nM)

Wild-type N43D Wild-type N43D

140 29

187 253 172 14.0 122.9

188 109 46

189 6.1 234.6

190 229 176

All data 162 5 28 112 5 20 8.8 5 1.3 167.8 5 15.8

FIGURE 5 Inhibition of entry of HIV bearing five different envelopes

into primary CD4þ T cells by SQ435 (A) and Enfuvirtide (B). Envelopes

tested include CXCR4-tropic HXB2, two CCR5-tropic reference

envelopes YU-2 and SF162, and two clinically isolated CCR5-tropic enve-

lopes C98v1e4 and C109v1e4. Replication (% of control) was determined

by a single-round infectivity assay with GFP-encoding recombinant HIV.

Each envelope isolate is illustrated with a unique symbol and separate

curve. (Dashed lines) Aggregate IC50 curve across all clinical isolates.
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well-knownEnfuvirtide resistancemutation gp41N43D (71).
Enfuvirtide (Hoffmann-La Roche) was used as a control.
A new batch of peptide (100 mg) was purchased from Gen-
Script, dissolved to 5 mM, and confirmed by matrix-assisted
laser desorption/ionization mass spectrometry. The results
show high donor-to-donor variability in potency against
both wild-type virus (Fig. 4 A and Table 2, 29–253 mM) and
N43D virus (Fig. 4 B and Table 2, 46–176 mM). Interestingly,
theN43Dmutation causes no change in susceptibility to entry
inhibition by SQ435, with IC50 calculated across all experi-
ments of 162 mM and 112 mM for wild-type and N43D virus,
respectively. In fact, the mutation causes a very slight
increased susceptibility to inhibition by SQ435. In contrast,
this mutation causes a 19-fold increase in the IC50 of Enfuvir-
tide, with IC50 8.8 nM versus wild-type virus and 167 nM
versus N43D virus (Fig. 4 C).

To further test the efficacy of what we consider a novel de
novo protein design framework, we calculated the approxi-
mate binding affinity between gp41 and SQ435 both with
and without the N43D resistance mutation. We made the
assumption that the mutation causes no change in the overall
fold of gp41. The model predicts very little change in the
approximate binding affinity of SQ435, with values of
2.74 � 10�01 for gp41 N43D and 2.52 � 10�01 for wild-
type, correlating well with the experimental results.

To ensure that the effects of SQ435were not specific to our
standard laboratory strain NL4-3 carrying CXCR4-tropic
envelope HXB2, entry inhibition by SQ435 and Enfuvirtide
was analyzed against virus bearing four different envelopes.
Two CCR5-tropic reference sequences YU-2 and SF162
and two clinically isolated CCR5-tropic sequences,
C98v1e4 and C109v1e4, were selected (72), and HXB2 was
included as a control. The data are shown in Fig. 5 and IC50
TABLE 3 Experimental IC50 values for SQ435 and Enfuvirtide again

Envelope

IC50 SQ435 (mM)

Donor 195 Donor 196 All d

HXB2 193 156 174

SF162 198 167 180

YU-2 148 73 103

C98v1e4 237 199 215

C109v1e4 195 257 227

All env 188 5 11 158 5 15 172 5

Biophysical Journal 99(10) 3445–3453
values are reported in Table 3. The results show that SQ435
is active against all envelopes tested with similar potency,
and the IC50 of 172 mM across all envelopes is comparable
to 162 mMmeasured previously against HXB2. Interestingly,
viruswith envelope fromCCR5-tropic strainYU-2was found
to be approximately twofold more sensitive to SQ435 than
virus with HXB2, whereas Enfuvirtide was found to be
~3–10-fold less potent against all CCR5-tropic envelopes.

Finally, due to the success of SQ435, five new sequences
were designed based on the sequence of SQ435. Table 4
provides the new sequences along with their corresponding
approximate binding affinity rank. NS-1 simply replaces the
Tyr in position 638 of SQ435 with Trp. NS-2 swaps the
amino acids at positions 637 and 638 of NS-1. NS-3, NS-4,
and NS-5 are truncated versions of NS-1 and NS-2. Only
the sequences with length 12 are predicted to bind better
than the native. All five new sequences were synthesized
and tested. Fig. S3 shows the inhibition results of the
new sequences. NS-1 and NS-2 showed some activity at
500 mM; however NS-3, NS-4, and NS-5 showed almost
no activity even at the higher concentration, which validates
the approximate binding affinity prediction. This indicates
st five clinical isolates of HIV-1 envelope

IC50 Enfuvirtide (nM)

ata Donor 195 Donor 196 All data

4.3 14.4 7.5

48 75 63

37 49 42

64 59 62

17 39 35

10 23 5 5 66 5 11 40 5 6



TABLE 4 New peptide sequences based upon the sequence

of SQ435

Name Length

Approximate binding

affinity rank

Sequence

628 639

NS-1 12 1 W CDWRDEWE RWR

NS-2 12 2 W CDWRDEWE WRR

Native 12 3 W EEWDREIE NYT

NS-4 9 4 W CDWRDEWE

NS-3 10 5 W CDWRDEWE R

NS-5 9 6 W CDWRDEWR
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that either the peptide length is too short to be able to effec-
tively bind to gp41 or that the amino acids at positions 638
and 639 in particular are important for binding.
DISCUSSION

To our knowledge, in this article a novel method for de novo
protein design is applied to the discovery of new HIV-1
entry inhibitors. The method consists of two main stages:
a sequence selection stage and a validation stage. The vali-
dation stage can consist of either fold specificity calcula-
tions or approximate binding affinity calculations—or
both. The sequence selection stage produced a lowest-
energy, rank-ordered list of peptide sequences based upon
the design template of a small peptide bound to gp41. The
sequences were reranked based upon fold specificity calcu-
lations and then approximate binding affinity calculations.
This provided a list of six mutant sequences that were pre-
dicted to be better binders than the native sequence.

Five of the mutant sequences plus the native sequence
were selected for synthesis and testing in cell culture.
Four out of the five mutant sequences (SQ435, SQ175,
SQ486, and SQ323) showed inhibitory activity better than
the native sequence, with SQ435 being the most potent. In
addition, all of the peptide sequences were shown to be
nontoxic to cells at concentrations up to 500 mM and were
shown to be targeting the HIV-1 envelope. The effect of
SQ435 was not limited to one reference isolate, and similar
potency was shown against virus bearing five different enve-
lopes. Finally, five new sequences were tested based upon
the results of SQ435. The results indicated that, at least in
this case, 12 residues were necessary to elicit an inhibitory
response.

The IC50 of SQ435 spanned a range of 29–253 mM,
showing donor variability. The IC50 calculated across all
experiments for SQ435 was determined to be 162 mM,
which is a 3–15-fold improvement over the native sequence
depending on the donor (from IC50 > 500 mM to 29–
253 mM). This is particularly exciting because SQ435 is
two-residues shorter than C14unlinkmid. One donor also
showed slight improvement in IC50 over the stapled version
of the native peptide, C14linkmid (29 mM vs. 35 mM). Addi-
tionally, there is no loss of activity of SQ435 against the En-
fuvirtide-resistant virus, whereas there is a 19-fold increase
in the IC50 of Enfuvirtide against the Enfuvirtide-resistant
virus. This may be because the mutation in the resistant
virus, N43D, is located away from the hydrophobic core
of gp41, which constitutes the binding pocket for this
design. Although the IC50 of SQ435 is still several orders
of magnitude greater than Enfuvirtide, the design is
a success because SQ435 shows some potency despite being
24-residues shorter than Enfuvirtide and is just as potent
against wild-type and Enfuvirtide-resistant strains. Incorpo-
rating nonnatural amino acids that would increase the
a-helical propensity of the sequence or incorporating a
carbon-chain staple that would constrain the peptide to be
helical are possible ways to lower the IC50 of SQ435 by
several orders of magnitude.

The de novo protein design framework successfully eluci-
dated a number of peptide sequences that inhibit HIV-1 cell-
cell fusion better than the native sequence, with the best
sequence having a 3–15-fold improvement in IC50 over
the native sequence, depending on the donor. This is
a good first step in discovering short peptides that can effec-
tively inhibit HIV-1 without the limitations of longer peptide
such as poor bioavailability, high production cost, and short
half-life.
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