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Abstract
As public availability of gene expression profiling data increases, it is natural to ask how these data
can be used by neuroscientists. Here we review the public availability of high-throughput expression
data in neuroscience and how it has been re-used, and tools that have been developed to facilitate re-
use. There is increasing interest in making expression data re-use a routine part of the neuroscience
tool-kit, but there are a number of challenges. Data must become more readily available in public
databases; efforts to encourage investigators to make data available are important, as is education on
the benefits of public data release. Once released, data must be better-annotated. Techniques and
tools for data re-use are also in need of improvement. Integration of expression profiling data with
neuroscience-specific resources such as anatomical atlases will further increase the value of
expression data.
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Introduction
Science as a human endeavor is founded on the principle of sharing experimental findings. The
concept of sharing the raw data underlying the findings is less familiar. Most researchers are
content to publish and examine the “exemplar” photographs, the summary graphs and the tables
that make up the typical results section of a journal article. The desire and need to release or
look at the primary data are more rarely expressed. Publishing raw data requires a mechanism
to do so; utilizing the raw data requires sufficient motivation. Modern biology and
communications now provide both the means (the Internet and powerful computers to enable
re-analysis of large amounts of data) and the motivation (too much complex data to
exhaustively analyze in a single study). There are massive challenges, both technical and
cultural, to making data sharing (and therefore re-use) wide-spread in neuroscience but also
great potential benefit (Eckersley et al., 2003; Koslow, 2000).

High-throughput gene expression data (the topic of this review) is frequently put forward as
an example motivating the need to improve data sharing, but there are more mature success

*Correspondence to: Paul Pavlidis, PhD, Assistant Professor of Psychiatry, UBC Bioinformatics Centre (UBiC), 177 Michael Smith
Laboratories, 2185 East Mall, University of British Columbia, Vancouver BC V6T1Z4, voice: 604 827 4157, fax: 604 608 2964,
paul@bioinformatics.ubc.ca, http://bioinformatics.ubc.ca/pavlidis/.
Information Sharing Statement
Supplemental information mentioned in this article is available at http://www.bioinformatics.ubc.ca/pavlidis/lab/reuse. Gemma is an
open source project and is available at http://www.bioinformatics.ubc.ca/Gemma.

NIH Public Access
Author Manuscript
Neuroinformatics. Author manuscript; available in PMC 2010 November 13.

Published in final edited form as:
Neuroinformatics. 2007 ; 5(3): 161–175.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://bioinformatics.ubc.ca/pavlidis/
http://www.bioinformatics.ubc.ca/pavlidis/lab/reuse
http://www.bioinformatics.ubc.ca/Gemma


stories in other areas of genomics. The wide-spread availability of nucleotide and protein
sequence data, which started decades ago, has reaped enormous benefits, many of which would
not have been realized if the community had not decided that sequence submission was a
requirement for publication, and that supporting sequence databases was worthwhile. The
publishing of biomolecule structure coordinates in PDB starting in the early 1970s has been
essential to making the structures useful (Berman et al., 2007). The essential difference between
these types of data and expression data is that a gene sequence or a protein structure is
“canonical” – it is not tied to a specific individual (an important exception being sequence
polymorphisms, which are submitted to distinct databases such as dbSNP). In a sense that is
not always true of other primary data types, sequence or structure data can be the primary
“finding” of a study without further processing or interpretation. Sequence and structure data
are also relatively (an important qualifier!) simple, with a small, well-defined alphabet of
entities to store (nucleotides or amino acids in the case of primary sequence data; 3-D
coordinates of atoms in the case of crystal structures).

In contrast to sequences and structures, most primary data in neuroscience are both individual
(involving the analysis of a specific person or biological sample in a specific laboratory, which
can never be exactly reproduced) and complex (difficult to describe fully in a readily-
transmissible manner). Sharing primary data on a large scale requires data that are less
individual and/or less complex. Along the data complexity axis, expression data stands out as,
in practice, as being tractable. It is stored digitally from the outset, and standards have been
developed for transmission (The Microarray Gene Expression Markup Language, MAGE-ML,
for example) and description (Minimum information about a microarray experiment, or
MIAME) (Brazma et al., 2001; Spellman et al., 2002). Many journal editors have embraced
the concept that primary expression data should be made available on publication (see
http://www.mged.org).

Expression data also has the advantage of one type of reduced individuality: many of the same
genes are assayed in multiple studies. This means that for a given gene, it is possible to find
relevant expression data; in this way, microarray data are like sequence data. The task of
interpreting the data remains and is no less difficult than for other complex data (e.g.,
determining the relation of the expression patterns to some experimental parameter).

The efforts that have gone into making expression data an easily-sharable commodity have
paid off, and there are thousands of studies available on the Internet (Barrett et al., 2007;
Parkinson et al., 2007). The rest of this review focuses on the re-use of expression data in the
neurosciences, both in practice and in principle, and uses some of our experiences in building
expression data re-analysis tools as a backdrop to a discussion of existing challenges and
opportunities. Table 1 summarizes web-accessible resources relevant to the sharing and
comparing of gene expression data in neuroscience. To illustrate the application of some of
the ideas presented in this review, a data re-use case study is presented as a supplement
(http://www.bioinformatics.ubc.ca/pavlidis/lab/reuse).

Modes of re-use
There are a number of ways that published expression data can be used by others. At the most
basic level, the results can be referred to or compared to new results (not necessarily from
microarray data) in an anecdotal fashion. If detailed analysis results are available, it is possible
to compare published results systematically. At the next level of complexity, the raw data can
be accessed and re-analyzed, either to revisit the original conclusions of the data generators,
or to ask new or modified questions of the data. These relatively straightforward types of re-
use are bound to be common when researchers want to compare their own data to existing
results in more detail than is afforded simply by reading the paper.
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The “comparison” approach to re-use can be facilitated by providing tools that make the data
available in specialized ways. Integration with other types of data can be an important way to
increase the value and interpretability of expression profiling data, and this is likely to be critical
for re-use in neuroscience. For example, differences in expression patterns between brain
regions and types of neurons are a potentially rich source of information about function and
its modulation, but because expression profiling studies tend to have low spatial resolution
(and often low cell-type resolution), the clues obtained from profiling have to be bolstered with
data taking the precise site of expression into account. The approach of “genetical genomics”
is a way of connecting genetic variation and phenotypes at the organismal level (e.g., behavior)
to molecular networks (Schadt et al., 2005; Williams, 2006). In addition, detailed databases of
neuronal function in terms of electrophysiology and pharmacology (Crasto et al., 2007) and
connectivity (Bota et al., 2005) might offer further opportunities to help bridge the gaps
between molecular biology and behavior. As discussed in more detail below, and summarized
in Table 1, there are several tools and databases that offer ways of accessing and using
expression data over the web in ways that is increasingly integrative.

A special type of data re-use, of particular interest to us, is meta-analysis. Meta-analysis is
usually defined as the “analysis of analyses”, or the combination of independent analysis
results, but for our purposes it is useful to expand this definition to include the re-analysis of
raw data from multiple studies for the purpose of combining the results, or even the combining
of data sets into “mega-datasets”. The goal of a meta-analysis is often to attempt to provide a
more powerful test of a hypothesis than is provided by any individual study, thereby making
better use of studies which, taken alone, yielded results that were not considered statistically
significant. Another use of meta-analysis is to compare or contrast studies which differ in some
systematic way, to identify commonalities or differences. Multiple data sets can also be used
to identify novel patterns that were not sought by the original data producers. All of these types
of meta-analysis are relevant to expression studies. Meta-analysis is described in more detail
in the next section.

A final way data can be re-used is by researchers in statistics or computer science who are
trying to hone algorithms for expression analysis. In this case the data are generally used in a
cross-validation setting, often pitting one algorithm against another with relatively objective
measures of performance. Some data sets have become part of a standard repertoire that
computational biologists test their algorithms on, such as the “Golub Leukemia” data set
(Golub et al., 1999). While this use might seem of limited direct interest to biologists, it is
worthwhile to consider that if one wants a good algorithm for a particular type of data set, there
is hardly a better way to see that happen than to let the data loose on the hungry community of
algorithm researchers.

Meta analysis
Performing a traditional meta-analysis is challenging, with numerous pitfalls (Cooper and
Hedges, 1994; Hunter and Schmidt, 1990). Relevant studies must be identified, the data or
results must be extracted into a comparable form, and appropriate methods must be used to
compare or combine the results. The problem of varying study quality is important and difficult
to address, as is the problem of “missing studies” which are never published due to negative
findings (the “desk-drawer effect”), leading to over-optimistic meta-analysis results.
Statisticians have developed strategies for dealing with these problems, but it is often difficult
to get past the first step of identifying studies that are sufficiently comparable. Even if the same
hypothesis is being tested, the methodology often varies sufficiently to make comparison
challenging. In basic biological science identifying multiple comparable studies is particularly
problematic as laboratories tend not to be interested in exactly retesting a hypothesis that has
already been tested and published by someone else. In contrast, in clinical studies it is relatively

Wan and Pavlidis Page 3

Neuroinformatics. Author manuscript; available in PMC 2010 November 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



common, and even necessary, to ask the same (or nearly the same) question of multiple
independent samples.

For expression studies, there are some interesting ways around the problem of finding
comparable data sets. Most trivially, because quite a few microarray studies have a clinical
focus, there are indeed multiple studies which compare, for example, similar tumor types. This
fact has been exploited by a number of researchers (for reviews see (Larsson et al., 2006;
Moreau et al., 2003; Rhodes and Chinnaiyan, 2004)). Another way to approach the problem is
to recognize that related biological phenomena might yield related results. This encourages the
comparison of the same phenomena across species (such as aging (McCarroll et al., 2004)).
Biologists are often interested in finding the commonalities in these cases to identify basic
principles. One simply has to define a level of commonality that is relevant to a particular
question. In some cases this could involve any data from any organism, where one is interested
in identifying the most widespread, generic aspects of gene expression. In general we expect
that researchers have a “middle ground” level of data set commonality that addresses a specific
area of interest without being so restricted as to exclude all data from consideration (Figure 1).
It helps that expression data is often treated as “hypothesis-generating” or “exploratory” in the
sense that patterns that are found are likely to be used as the grist for new experiments, rather
than treated as an end in itself. However, even the analysis of data sets without considering
their experimental design can yield insights, though the patterns that emerge are more likely
to be related to functions that are not tissue or cell-type specific (Lee et al., 2004; Stuart et al.,
2003).

Once it has been determined that a meta-analysis involving the combination of multiple studies
is desirable, there are several methodological routes to take. Because the raw data are often
available, it makes sense in some cases to simply combine the data sets together into a “mega-
dataset”. To do this, the data must be carefully renormalized, especially if different types of
platforms are being combined. Forming mega-datasets seems more commonly performed when
the data were in fact collected by a single lab (Eisen et al., 1998) or at least from the same
platform. Depending on the aims of the study, it might be better to use a statistical model to
account for differences between studies, for example treating the experiment source as a
random effect in a mixed-effects model.

If forming a mega-dataset proves problematic, the meta-analysis literature offers up a menu of
options. First, one must determine what value will be used to represent the “result” of each
study. The choices generally break down into using p-values from a hypothesis test, or effect
sizes. P-values can be combined using a number of methods, of which the best known is
Fisher’s, which uses the fact that p-values are uniformly distributed under the null hypothesis
(Cooper and Hedges, 1994; Rhodes et al., 2002). Effects sizes (e.g., fold-changes or
correlations) can be combined under a number of different models which can be used to perform
hypothesis tests. In essence effects size techniques form a weighted average of the size of the
effect in each study and an estimate of the variance of the effects across the studies to form a
new test statistic. This statistic can be compared to a theoretical distribution to generate a new
p-value (Choi et al., 2003). A simpler but less sensitive option is to use a “vote-counting”
approach where each data set simply casts a vote as to whether an effect is observed, typically
based on significance tests on each data set. Vote counting has the advantage that is it not
necessary to assume that all the data sets should show an effect, which is an underlying
assumption of the effect size technique in the simple cases; alternatively one has explicitly
choose a model to account for differences between studies, which may not be justifiable. The
main difficulty with vote counting is determining how many votes are needed before
significance is achieved. In a simple meta-analysis, the number of positive votes under the null
hypothesis will follow a binomial distribution. However, gene expression studies are much
more complex, because many genes are tested and the same genes are not present in all studies.
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Therefore studies using vote-counting have to use other methods such as resampling to estimate
the significance of findings repeated across studies (Lee et al., 2004; Stuart et al., 2003).

Trends in public availability of expression data
To date published re-analyses of expression data overwhelmingly involve human tumors, and
examples of re-analysis in neuroscience are few (see discussion below). This suggests that
either neuroscience-related expression data is less available, or there are fewer researchers
interested in re-analyzing the available data. To gain some insight into this issue we examined
the rate of publications and data submissions to public databases, using admittedly crude
methodology. As shown in Figure 2, publications on expression profiling are far more
numerous for cancer than for brain, but the rate of growth is similar. These publications are of
limited use for re-analysis if the raw data are not available, so we searched a major repository
of expression data, the Gene Expression Omnibus database (GEO,
http://www.ncbi.nlm.nih.gov/geo/), for datasets that met the same criteria as our publication
search (Figure 3). We found that cancer-related submissions were again more numerous than
brain-related submissions. A comparison of Figure 2 and Figure 3 suggests that, if anything,
brain-related submissions to GEO are in fact more frequent given the number of publications.
This analysis is subject to a number of caveats, including the ability of the searches to identify
the relevant publications or data (though variant searches gave similar results) and that the data
in Figure 2 may include re-analyses as well as new data papers. There are also studies that
appear in both groups (brain tumor studies). Finally, data from a single publication can
sometimes be split into more than one GEO series (by the submitter), yielding an over-count
of expression data sets.

We tentatively conclude that there is little evidence to suggest a general unwillingness of
neuroscientists to make their data publicly available, and indeed most journals now require
public submission of expression data on publication. However, there are some important gaps
in the availability of neuroscience-related expression data. Data from studies using human brain
samples from studies examining experimental factors other than cancer are relatively rare in
public databases. This is despite many publications about expression patterns in schizophrenia,
bipolar disorder and other neuropsychiatric disorders (see (Mirnics and Pevsner, 2004) for
review). In GEO we identified 22 series that use human non-tumor brain samples, but these
actually correspond to only 15 different studies because some studies were broken up into
multiple series accessions. This includes three studies of Alzheimer’s disease but only one on
schizophrenia. In another major expression data resource, the European Bioinformatics
Institute (EBI) ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) we identified only one
human brain study relating to abnormal brain function or disease (E-AFMX-6, a study of
Huntington’s disease).

There are several factors likely to account for the under-representation of human brain
expression data in public databases. First, a number of published studies of schizophrenia or
bipolar disorder (Iwamoto et al., 2004b; Jurata et al., 2004; Polesskaya et al., 2003; Sokolov
et al., 2003; Tkachev et al., 2003) used samples which were obtained under license from the
Stanley Medical Research Institute; the terms of the license do not permit release of the raw
data to third parties (http://www.stanleyresearch.org/programs/brain_collection.asp). Second,
as it is considerably more difficult to get human brain samples (almost always obtained post-
mortem) than tumors (which are routinely biopsied), we find that investigators are sometimes
less willing to share their hard-won data. Finally, not all journals require data submission (for
example, Molecular Psychiatry (http://www.nature.com/mp/for_authors.html)), removing an
incentive.
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Using reasonably stringent criteria, at this writing we identify 334 GEO data sets that appear
to be brain-related (including competitive genome hybridization, studies with multiple tissues
types, and tumor studies) in mouse, human or rat, associated with 170 PubMed citations (the
list is available as a supplement). In ArrayExpress, 67 data sets (from a total of 1683) were
returned in response to the query “brain”, of which most (50) involve human, mouse or rat
samples. Aarnio et al. (2005) performed a remarkably thorough survey of the state of
neuroscience microarray publications as of June 2004, and identified 448 papers describing
microarray studies. Unfortunately, only 56 were reported as having full data available (Aarnio
et al., 2005). Some of the available data sets they identified are available through author or
publisher web sites rather than the public repositories. The spreadsheet giving the full details
of Aarnio et al.’s literature search is available at
http://www.uku.fi/aivi/neuro/genomics/supplement.xls.

It is worth mentioning some other data sources which sometimes have data that are not in the
main public repositories. The NIH Microarray Consortium (http://arrayconsortium.tgen.org/)
is an expression analysis service for neuroscientists holding NIH grants. The Consortium
provides data 6 months after data collection. While these data sets are all put in GEO after
publication of a paper, at this writing there are about a dozen mouse and rat data sets which
appear to be public only though the Consortium web site. The Stanford Microarray Database
(SMD, http://smd.stanford.edu/) data is submitted to GEO and ArrayExpress, but offers a
variety of analysis tools and supplementary information. Most of the studies in SMD are not
neuroscience-related, except for a few brain tumor studies. Similarly, the National Cancer
Institute caArrayDB (https://caarraydb.nci.nih.gov/) contains data for around 60 studies,
though most are probably of lesser interest to neuroscientists. The caArrayDB data sets do not
appear to be mirrored in GEO.

How can investigators be encouraged to release expression data (or indeed any type of data)?
One strategy, which we refer to as “the stick”, is to require release as a condition for funding
or publication. As mentioned above, many but not all journals require microarray data release.
The NIH guidelines on data release (http://grants.nih.gov/grants/policy/data_sharing/) are a
step in the direction of requiring greater openness. The other strategy is “the carrot”, in which
investigators recognize the benefits of releasing their data. The growing popularity of “open”
software and journal publishing models raises some hope that a cultural shift is taking place,
in which the benefits of a “share and share alike” attitude are increasingly being taken up by
scientists (Brown et al., 2003; Watson, 2007).

Gene expression data re-use in neuroscience
Expression data can be re-used either by re-analyzing the original data, or by re-using the
summarized results in some way. The latter case is not always easily distinguished from the
act of simply citing a brief comparison to earlier work (The 170 papers mentioned above are
cited over 800 times in papers in PubMed Central journals alone
(http://www.pubmedcentral.nih.gov/)). There are some cases we can identify where re-use of
published results was substantial without requiring access to the raw data. Iwamoto et al.
(2004a) made use of a list of genes differentially expressed in schizophrenics published by
Hakak et al. (2001) to show that the same genes appear to be differentially expressed between
schizophrenics and controls in their own data set (Hakak et al., 2001; Iwamoto et al., 2004a).
In a similar re-use of processed data, Sibille et al. (2007) showed that the effects of aging on
gene expression are similar in the mouse and previously-published data on human brain (Erraji-
Benchekroun et al., 2005) and also made use of direct use of published results on a BDNF
knockout mouse (Glorioso et al., 2006).
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There are only a few cases we have identified where gene expression data from neuroscience
studies was actually re-analyzed, as opposed to simply cited or used in summary form. An
early case of re-analysis comes from work undertaken by one of us (P.P.) to re-analyze a
previously published mouse brain data set from Sandberg et al. (Sandberg et al., 2000). The
focus of the re-analysis was to compare the power of different methodologies for identifying
differentially-expressed genes (Pavlidis and Noble, 2001), rather than asking new biological
questions or performing a meta-analysis (Figure 4). More recently, two groups (Gu and Gu,
2003, 2004; Hsieh et al., 2003) independently re-analyzed a data set examining the divergence
of human, orangutan and chimpanzee brain expression patterns (Enard et al., 2002), again with
a focus on using different methods to answer the same question. In a case of a focused analysis
of a previously-available data set, Perkins et al. (2007) studied microRNA-containing
transcripts in human brain samples from the Harvard Brain Tissue Resource, and included in
their analysis an Affymetrix data set that has been available to registered investigators on the
HBTR web site for several years (http://www.brainbank.mclean.org/). Finally, data from
(Sugino et al., 2006), comprising expression patterns for purified GFP-labeled neurons of 11
distinct classes (available from GEO as GSE2882 or from http://mouse.bio.brandeis.edu/),
were reanalyzed to identify genes with expression correlated with Egr1 (Ponomarev et al.,
2006).

Meta-analyses of brain expression data sets are also rare, thus far. Vazquez-Chona et al.
(2005) performed a meta-analysis of published expression data sets to identify a common
response to neuronal injury. This is a good example of the use of disparate published data sets
to draw biological inferences, in this case that some genes are commonly upregulated in the
acute response to injury in retina, brain and spinal cord. The only other case of any type of
meta-analysis of brain expression data is that of (Mulligan et al., 2006). Mulligan combined
data collected by three different groups to find a common expression signature correlated with
alcohol preference in mice (Mulligan et al., 2006). We note that these data were not “re-
analyzed” in the sense we have been using the term, as they had not been previously published
separately. However, this study serves as another illustration of how data sets that differ in the
details of their design and collection can be integrated to improve the quality of inference.

At this point it is reasonable to ask: What types of data sets are most re-usable? In our view,
the data sets of the widest utility might be those which involve examining “baseline” expression
across brain regions, cell types and/or developmental stages. The Sugino data set mentioned
above (Sugino et al., 2006) is of this class, and there are a number of other “survey” data sets
available, some of which examine many tissues outside the nervous system (Chin et al.,
2007; Ge et al., 2005; Sandberg et al., 2000; Siddiqui et al., 2005; Stansberg et al., 2007; Su
et al., 2004; Zapala et al., 2005; Zhang et al., 2004). Along the same lines, spatially-resolved
expression atlases are important resources for gene expression studies in the brain and
complement the high-coverage approach offered by microarrays. Examples include the
comprehensive Allen Brain Atlas (ABA) of in situ hybridization patterns (Lein et al., 2007),
the more focused Gene Expression Nervous System Atlas (GENSAT) which uses fluorescent
protein reporters (Gong et al., 2003), and Brain Gene Expression Map (BGEM, which works
closely with GENSAT) (Magdaleno et al., 2006) which employs radioactive in situ
hybridization.

It is also safe to say that data sets that assay small brain regions or purified samples as opposed
to analyzing “whole brain” are much more amenable to interpretation (“which cells was this
signal coming from”), as well as affording higher sensitivity to detect expression of genes that
might be diluted in a bulk sample. The interpretation issue, but not the dilution issue, might be
addressed by comparing the patterns to in spatially resolved data (Lein et al., 2004; Ponomarev
et al., 2006; Sunkin, 2006). Recent work from (Chin et al., 2007) examined 68 “voxels” from
mouse brain using expression arrays and used the ABA for validation. Both the Chin study
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and the work of (Lein et al., 2004) provide evidence for a high degree of agreement between
microarray and in situ data.

Tools for data re-analysis
We suspect that the reasons neuroscientists do not make frequent use of published expression
studies are two-fold. First, because there are still relatively few studies available, it may be
hard to identify data that are sufficiently relevant to a question at hand. Second, performing a
re-analysis can be complex and difficult, a situation that can be ameliorated by the introduction
of improved tools. The current state of re-analysis tools is reviewed in this section.

Both the NCBI and the EBI provide analysis tools (Barrett et al., 2007; Kapushesky et al.,
2004), which greatly facilities re-use of data in GEO and ArrayExpress. Through GEO’s web
interface, if a data set is sufficiently well-annotated (having reached “GDS” status), t-tests can
be performed between groups of samples (e.g., between “hippocampus” and “cerebellum”.
Clustering analyses can be performed on GEO data as well. The EBI offers Expression Profiler,
an expanding toolkit that includes clustering, principal components analysis, between-group
analyses and other options (Kapushesky et al., 2004). A major advantage of these tools is that
they integrate directly with the databases, making the move from data set identification to
analysis easy. While users are limited to using the algorithms they implement, a great deal can
be accomplished by users with little bioinformatics or statistics experience. Naturally there are
numerous other tools available for expression data analysis, all of which can be applied to data
from public resources by downloading the data and converting it into a format that is suitable
for import. Both GEO and ArrayExpress offer data download in a simplified “spreadsheet-
like” tab-delimited format that makes this relatively straightforward.

For comparative or meta-analytical re-use of expression data to enter the every-day workflow
of biologists, improved analytical tools and more precise annotations are needed. Tools are
beginning to appear that aggregate published data under new covers, such as Oncomine
(Rhodes et al., 2004) and the Gene Aging Nexus (Pan et al., 2007), both of which include data
relevant to neuroscientists. Oncomine is, as the name suggests, entirely focused on human
tumor data, and at this writing contains data from 264 analyzed studies
(http://www.oncomine.org/). The Gene Aging Nexus (http://gan.usc.edu/) contains at least 42
aging-related data sets from multiple organisms. Oncomine is focused on differential
expression analysis (Rhodes et al., 2004), while the Gene Aging Nexus offers the additional
ability to analyze coexpression patterns or Gene Ontology categories (Pan et al., 2007). Stem
cell researchers have developed a focused database system for meta-analysis (Assou et al.,
2007).

For researchers interested in developing their own differential expression meta-analysis, a
number of packages in Bioconductor (Gentleman et al., 2004) can be of assistance. GeneMeta
implements algorithms described by (Choi et al., 2003). Other packages include RankProd
(Breitling et al., 2004) and metaArray (Ghosh et all, unpublished; all packages available
through the Bioconductor website, www.bioconductor.org).

A more specialized type of data re-use is offered by the GeneNetwork
(http://www.genenetwork.org/). GeneNetwork is focused on the integration of genetic
mapping information with expression profiles and behavioral traits (Li et al., 2005).
GeneNetwork includes several brain gene expression data sets from well-studied recombinant
inbred mouse strains, affording an unusual opportunity to treat expression levels as a
quantitative trait that can also be related to behavior (Chesler et al., 2005). GeneNetwork offers
a number of powerful query tools to access expression data and correlations with traits.
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Our own entry into this field was TMM, a database of approximately 200 published mouse
and human data sets (Lee et al., 2004), and focused on co-expression analysis. Recently we
have replaced TMM with an updated database and software system, Gemma
(http://www.bioinformatics.ubc.ca/Gemma/; details to be published elsewhere). We initially
approached the problem of expression data re-analysis from a functional genomics standpoint,
where the goal is to predict the function of genes. An approach that had been popularized from
the early days of expression profiling was “guilt by association”, in which genes that have
correlated expression patterns are inferred to have a closer functional relationship than genes
which are uncorrelated (Eisen et al., 1998). This is a probabilistic statement, as transcripts
which are not correlated can be functionally related, and transcripts that are highly correlated
might reflect different levels of functional relatedness, ranging from protein co-localization to
simply covariance in a mixed cell population. TMM and Gemma implement a type of co-
expression meta-analysis that identifies expression patterns that repeatedly occur in multiple
data sets. In a meta-analysis of 60 human data sets (mostly from tumors), we showed that
combining information from multiple studies yielded much higher-quality functional
predictions than single data sets ((Lee et al., 2004); Figure 5). Gemma includes a web-
accessible tool that allows the exploration of coexpression patterns in an interactive fashion.
A screenshot from the current version of Gemma is given in Figure 6.

At this writing, Gemma contains approximately 400 ‘series’ from GEO, and some additional
data sets that were available only from other sources, typically as tab-delimited text from
investigators’ personal web sites. An attempt was made to include as many data sets that are
brain-related as possible, accounting for a large fraction of the data in the system. The balance
includes data sets which were part of our older system (TMM) and a selection of other data
sets from GEO. Additional data sets are being added on a frequent basis.

Challenges
The remainder of our discussion focuses on the difficulties facing researchers who want to re-
use published expression data. Our focus is on issues surrounding the development of Gemma,
but many of the problems apply to anyone who wants to use a published data set.

Data models and formats
Expression data has been the subject of extensive discussions about standards for data
description and exchange formats. We review these in this section, highlighting issues relevant
to the topic of data re-use.

The Microarray And Gene Experiment object model (MAGE-OM) represents an attempt to
provide a detailed data model for gene expression microarray data (Spellman et al., 2002), and
is an Object Management Group adopted specification
(http://www.omg.org/cgi-bin/doc?formal/03-02–03). MAGE-OM does not support other types
of expression measurement technologies such as Serial Analysis of Gene Expression (SAGE).
MAGE-OM models array designs, array manufacture, experimental designs, as well as the
expression data itself and other supporting data. The importance of MAGE-OM for data re-
use lies, in large part, in its influence on database providers and exchange formats (described
in the next paragraphs). MAGE-OM is fairly complex and is also designed for the archiving
of data, not for direct use in re-analysis applications. Specifically, there is no simple concept
of “the data for one probe across the conditions” (the most common use case), and such data
can be extracted from the MAGE model only by fairly complex manipulations. Thus secondary
users of data modeled in MAGE usually find it necessary to convert the data into another
implicit or explicit model.
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The Gene Expression Omnibus (GEO) was the first major expression data repository to go on-
line, accepting its first submissions in 2001 (Edgar et al., 2002). One reason for the early
appearance of GEO is apparently the simplified data model under which it operates, which
eased its development. This is in contrast to ArrayExpress, which fully supports MAGE-OM,
and which has trailed behind GEO in submissions. From our point of view, a major feature of
the public databases is their support of data re-use. The use of data in ArrayExpress has been
hampered by the challenges of handling MAGE-ML, a primary export format of the data.
MAGE-ML is an XML representation of MAGE-OM, and parsing of MAGE-ML can be done
with the help of software toolkits built for the purpose (MAGE-stk,
http://mged.sourceforge.net/software/MAGEstk.php). However, MAGE-ML is still difficult
to handle (Eisenstein, 2006), and the code we use to transform MAGE-ML into our native data
model runs to thousands of lines. On the other hand, data in ArrayExpress is relatively well-
annotated compared to data in GEO, and ArrayExpress recently started offering data in a
simplified format, “MAGETAB”.

The Gene Expression Omnibus provided data in a simpler format from the start (SOFT;
alternative formats including an XML format are now available) but without any software tool
support. While writing a parser to handle SOFT files was not especially challenging, there were
still a number of hurdles to allowing all GEO SOFT files to be successfully handled. To give
an example, GEO ‘series’ (GSExxxx accessions) are eventually curated into ‘data
sets’ (GDSxxxx) which have much more detailed annotations, but without all the raw data.
However, it is not possible, based on the SOFT file for a GSE, to identify the matching GDS,
and we resorted to screen-scraping the GEO web site for this information. The limitations of
the GEO data model, while making data submission very simple, have presented a number of
challenges. Perhaps most vexing is the failure of submitters to provide clear indications of
which samples represent ‘technical replicates’ run on different platforms. Because GEO does
not have the concept of an “RNA sample” (or similar concepts for which there are MAGE-
OM classes), there is no way to determine that, for example, RNA from one tumor was run on
both the Affymetrix HG-U133A and the HG-U133B platforms, except by the name of the
sample and sometimes information on the experimental conditions which the samples shared,
if available. This would not be so bad but for the tendency for submitters to give the same
sample run on different platforms very different names. For example, instead of naming the
replicates in a consistent manner (“52.32 HG-U133A” and “52.32 HG-U133B”), we have find
constructs such as “lung-52.32a” paired with “52#32 – HG-U133B”. This leads to precarious
attempts to match these samples up with software or time-consuming and sometimes still-
uncertain curation efforts. We encourage potential data submitters to use consistent naming
schemes for their samples.

An integral aspect of the offerings of these databases, independent of file formats, is the
determination of what must be included in a submission. The aforementioned MIAME standard
is generally accepted and is supported by the major databases, and by many journal publishers
(Brazma et al., 2001; Spellman et al., 2002). To be MIAME compliant, a data set must fulfill
several critical elements by making available: 1) the raw as well as processed expression data;
2) a detailed description of the experimental design; 3) a detailed description of the array
designs used and 4) details of how the data were processed, such as normalization methods.
Naturally the MAGE-ML and the GEO formats have “slots” for all of this information, but
MIAME is independent of any specific format. While MIAME was in our view a major step
forward in improving the usefulness of expression data, as discussed below it can be argued it
does not go far enough in some areas (though others would argue the other way (Galbraith,
2006; Shields, 2006)). However, we recognize that the developers of MIAME tried to strike a
balance between requiring detailed information and not being a burden on the submitter.
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Data quality
A sticky issue that comes up when discussing the use of public data is quality. For our current
purposes, we define quality as the extent to which the investigators have successfully limited
the impact of technical sources of noise relative to biological signals. As described below,
uniformly applying this definition is not trivial, and in practice the end (a validated result) can
justify the means (even if low-quality data were used). At the same time, some other applicable
aphorisms are “Garbage in, garbage out” and “Buyer beware”. Ignoring the issue of data quality
risks turning an exercise in data re-use into a frustrating morass.

Most of the data available on the web has been in a sense vetted by reviewers of the relevant
publications. However, peer review of a manuscript about microarray data does not generally
entail close inspection of the raw data. Without further information we consider all available
data to be of questionable quality. The easiest problem to spot is the presence of sample outliers,
which show very different signal properties than the other samples (e.g., poor global
correlations with other samples or much lower average signals). A variant of this problem is
general high variance between samples, especially among biological or technical replicates.
Some data sets contain unusually large numbers of missing values suggesting overall poor
signals. The underlying causes of low data quality might not be recoverable from available
information, but the usual suspects include degraded RNA or hybridization problems leading
to high background.

Another source of noise is varying sample composition. It is common for studies of the nervous
system to analyze RNA extracted from macroscopic chunks of tissue that are dissected from
the brain. Unless very great care is taken, slight variation in the region that is taken can be a
big source of noise. Taking smaller samples using microdissection, laser capture or cell sorting
might ameliorate this problem by providing “purer” samples, but the cost of errors might
actually be amplified: if one is trying to sample the amygdala, and accidentally sometimes get
some neighboring areas, even in small amounts, the variability of the profiles obtained will be
increased. The manipulations involved in isolating small samples are sometimes seen as a
possible source of artifacts, but in general purer samples are valuable because they allow clearer
interpretation of the results, and the ability to resolve genes expressed in small numbers of cells
in enhanced.

The size of a data set can often limit its utility for re-use. Data sets that are highly re-usable,
all else being equal, will be large (more than 10 and probably more than 20 samples). Small
data sets yield results with either a very low sensitivity or unacceptable specificity. Larger data
sets mean that signal can be more reliably distinguished from noise. This will always be true
so long as other aspects of data quality are not relaxed in order to increase the sample size. In
practice this means that results from very small data sets are not as trustworthy as those
collected with larger sample sizes, and require independent validation before they can be used
constructively. Other experimental design issues might also prove problematic for potential
re-users, such as confounding variables. These can include batch effects that might not be well-
advertised in the original publication.

We stress that the generator of data sets with quality problems might not have been bothered,
because they obtained useful results anyway. This can easily be the case if, for example, there
was sufficient signal to observe differential expression of some genes which were subsequently
validated independently, despite an overall high level of noise. It is at this level that published
studies are reviewed prior to publication, so underlying problems that might affect future re-
purposing of the data might not be noticed.

Given the importance of data quality to re-use, who should be responsible for evaluating
quality? Obviously, the investigators who generated the data stand to benefit by careful quality
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control. Just as obvious, the potential for re-use of data is enhanced if submitters are careful to
include only high-quality data. However, we have to consider the case where the quality was
good enough for the investigators to answer the question they were interested in asking, but
not good enough for some other, unintended purpose that might be dreamed up by another
investigator. It is not reasonable to hold submitters to an extreme high level of data quality
standard, and it is similarly not reasonable to expect the curators of large databases to be able
to clean all the data that is submitted. Therefore we are left with the conclusion that the data
re-user must take quality into account, and if necessary remove data deemed to be of low
quality. This has the potential to generate controversy or difficulties in interpretation, as the
data are no longer tightly linked to the original study. Put another way, it is entirely possible
that researchers who re-analyze a published data set with new quality control parameters will
reach conflicting conclusions. When this happens, the submitter might feel that their data has
been used against them, which discourages future data submissions. It is tempting to avoid
such conflict by always using the data “as it was submitted”, but on the other hand it seems
counterproductive to use low-quality data if it is avoidable.

Addressing quality would be easier if data submissions included quality data. In general quality
control measures for each assay are not included in GEO or ArrayExpress submissions, though
often they could be computed from the raw data that are provided. Unfortunately, MIAME
appears to have too little to say about if, and how, quality control information is to be provided.
MIAME requires “Quality control steps taken (e.g., replicates or dye swaps)” and “data
selection procedures” (http://www.mged.org/Workgroups/MIAME/miame_checklist.html),
but this falls short of getting data submitters to explicitly define the quality control measures
they used to determine that an assay met inclusion criteria.

Reannotation of sequences on arrays
A major challenge to the interpretation of gene expression data is identifying what has been
measured. This task is essentially impossible without knowing the sequence that was used on
the array. Unfortunately, at least for the case of data in GEO, this information is often not
available. This is in spite of the fact that the MIAME standards for microarray data submission
require “unambiguous characteristics of the reporter molecule[s]” including sequences or
precise accession numbers
(http://www.mged.org/Workgroups/MIAME/miame_checklist.html). While there is almost
always some type of sequence identifier given, this is sometimes clearly not the accession for
the reporter (the sequence of the molecule that is actually on the array). For example, in
GPL254, Genbank accessions are provided, but this is a platform of synthetic 70-base
oligonucleotides. Instead the accessions appear to be an exemplar full-length transcript (e.g.,
RefSeq ID) for the gene the manufacturer claims to be assayed. The sequences for the
oligonucleotides are not available from GEO. This is an area where the field can clearly
improve. Repository maintainers could firm up their submission standards to require more
exact sequence information submission. In cases where the actual sequence identifier is not
provided, this should be clearly spelled out. In addition, purchasers of microarrays would
benefit from using vendors which make sequences available, so we encourage experimenters
to request the sequences up front.

An amusing (or frustrating) pastime in our lab is tracking down the sequences for array designs
that are not immediately available from web-accessible resources. A typical exchange of emails
involves contacting the investigator, who it seems sometimes has to spend considerable time
tracking the information down, presumably digging through dusty hard drives to find the
necessary information – or, unfortunately, not being able to find it. Alternatively, the sequences
turn out to be “proprietary”, not because the investigator wants it that way, but because they
got the probes from a company that considers the nucleotide sequences to be trade secrets. In
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some cases we have contacted firms with requests for sequences only to be told that “That
division was sold”, “We got the probes from another company” or something similar. Despite
doggedly following these trails, we are sometimes unable to find any living person who knows
what was on the microarray, much less willing to make them public. Fortunately some searches
for sequences have happy endings. For our purposes, we consider data that lacks reasonably
high-quality sequence information to be unusable; we prefer not to take the word of the
manufacturer for what was assayed, especially as it often turns out that sequences on arrays
are not specific for transcripts of a single gene.

Probe specificity
As suggested above, with the sequences in hand we are not finished. By aligning the sequences
to the genome or transcript sequences one can infer what gene (or genes) are assayed by each
probe on a microarray. There are myriad approaches to doing this; in our work we have adopted
the use of BLAT to align sequences to genome assemblies, and then relying on the annotation
efforts of the UCSC or NCBI genome curators to tell us what gene lays in the aligned region
(Barnes et al., 2005). In some cases, there is no simple answer, as many of the sequences on
microarrays in our system have at least two high-quality alignments to the genome (human,
mouse or rat, as appropriate). If only one of the alignments ‘hits’ a documented gene, then
perhaps all is well. However, it is very common for probes to plausibly assay at least two
different genes. In many cases this is hard to avoid, where duplicated genes are insufficiently
diverged to design specific probes. But often the problem is a function of incomplete knowledge
at the time of array design. The clones might have been selected at random or using fragmentary
information, not a complete genome. The moral of the story is that the annotations provided
by the manufacturer or submitter are very likely to be faulty if they do not rely on current,
rigorous sequence alignment and annotation efforts.

Experiment annotation
High-quality experiment annotations are required to make re-use of data efficient. Two of the
most important use-cases for annotations are locating data and labeling data. By locating data
we mean being able to search for and successfully find, for example, all the experiments or
hybridizations in a database that involved “mouse brain”. This is harder than it sounds because
a data set might be annotated as involving “hippocampus”, but if the word “brain” is not used
in the annotations, or a link to a relevant controlled vocabulary term is not provided (e.g.,
NeuroNames (Bowden and Dubach, 2003)), it is difficult for a computer program to infer that
a “hippocampus” data set is also a “brain” data set. By labeling data we mean providing
phenotypic or other data that is usable in computational analyses. For example, in order to
identify genes that are differentially expressed in a data set, the samples belonging to different
experimental groupings must be clearly identified.

The MIAME standard requires a good deal of information about the experimental design in a
microarray experiment, such as (as appropriate) time, dose, or genetic variation information
for each sample. However, other than recommending the use of the MGED Ontology (MO)
terms there is not much said about how this information is to be structured. In GEO, annotations
are primarily present in the form of free text submitted by the experimenter, associated with
fields in the submission form (http://www.ncbi.nlm.nih.gov/projects/geo/info/soft2.html).
This affords submitters a good deal of latitude in how they describe their data. This is an
advantage for the submitter in that it makes their job easier (they can often use text from the
“Materials and Methods” section of their paper), but a distinct disadvantage for those who are
trying to locate data (e.g. by searching the GEO web site) or re-use it in bulk. Therefore it is
almost inevitable that reusing expression data requires some reannotation effort. Even in
ArrayExpress, which uses the MGED Ontology to provide “slots” for annotators to fill, the
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values in the “slots” are often free text, not terms in a controlled vocabulary. For example, one
can find the annotation “Organism Part = ‘prefrontal cortex’” in on data set (E_AFMX-5) while
in another the same concept might be expressed as “Organism Part = ‘brain, prefrontal
cortex” (E-TAMB-136). There is clearly a limit to what data submitters can be expected to do
with the tools that are available, and (understandably) to what the public database organizations
(NCBI and EBI for GEO and ArrayExpress, respectively) are able to do with available curation
resources. This suggests that better tools are needed for data submitters to assist them in
providing useful annotations. A further challenge is the shifting landscape of terminologies:
The MGED ontology is due to be made redundant by a revised ontology based on the Ontology
for Biomedical Investigations (OBI; previously known as FuGO;
http://mged.sourceforge.net/ontologies/MO_FAQ.htm).

Conclusions
While there are numerous challenges to re-using expression data, including availability,
annotation, quality and comparability, in our view there is enormous potential to leverage
existing data. Improvements in tools for the development of databases (submission and
annotation) and for analysis will play a major role in making re-use of expression data as
common an activity as re-using sequence data. Investigators who generate and then release
data are the linchpin, and we hope that as the benefits become clearer, the motivation to release
well-annotated data will increase. Organizations enforcing how data are released (e.g.,
journals) should work with standards organizations and data repositories (e.g., MGED, GEO
and ArrayExpress) to help ensure that sufficiently detailed sequence and quality information
are made available to help guide data re-users.

For neuroscientists, there are some unique opportunities and needs in integrating high-
throughput expression profiling with other types of data. We predict that the next few years
will see a rapid increase in the availability of tools integrating microarray data (which has a
high degree of gene coverage but low spatial resolution) with spatially-resolved expression
data, as well as information on neuronal function. Continuing efforts to make data available
on the web and interoperable are essential (Koslow, 2005).

Acknowledgments
We are grateful to the Etienne Sibille and the anonymous reviewers for helpful suggestions, and to Tanya Barrett and
the rest of the GEO staff for their assistance with the use of GEO. We are indebted to the many groups who generously
provide expression data. Supported by NIH GM076990 and a Michael Smith Foundation for Health Research Career
Award to P.P.

References
Aarnio V, Paananen J, Wong G. Analysis of microarray studies performed in the neurosciences. J Mol

Neurosci 2005;27:261–268. [PubMed: 16280595]
Assou S, Le Carrour T, Tondeur S, Strom S, Gabelle A, Marty S, Nadal L, Pantesco V, Reme T, Hugnot

JP, et al. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based
expression atlas. Stem cells (Dayton, Ohio) 2007;25:961–973.

Barnes M, Freudenberg J, Thompson S, Aronow B, Pavlidis P. Experimental comparison and cross-
validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic acids research
2005;33:5914–5923. [PubMed: 16237126]

Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky
M, Edgar R. NCBI GEO: mining tens of millions of expression profiles--database and tools update.
Nucleic acids research 2007;35:D760–D765. [PubMed: 17099226]

Berman H, Henrick K, Nakamura H, Markley JL. The worldwide Protein Data Bank (wwPDB): ensuring
a single, uniform archive of PDB data. Nucl. Acids Res 2007;35:D301–D303.

Wan and Pavlidis Page 14

Neuroinformatics. Author manuscript; available in PMC 2010 November 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://mged.sourceforge.net/ontologies/MO_FAQ.htm


Bota M, Dong HW, Swanson LW. Brain architecture management system. Neuroinformatics 2005;3:15–
48. [PubMed: 15897615]

Bowden DM, Dubach MF. NeuroNames 2002. Neuroinformatics 2003;1:43–59. [PubMed: 15055392]
Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball

CA, Causton HC, et al. Minimum information about a microarray experiment (MIAME)-toward
standards for microarray data. Nature genetics 2001;29:365–371. [PubMed: 11726920]

Breitling R, Armengaud P, Amtmann A, Herzyk P. Rank products: a simple, yet powerful, new method
to detect differentially regulated genes in replicated microarray experiments. FEBS letters
2004;573:83–92. [PubMed: 15327980]

Brown PO, Eisen MB, Varmus HE. Why PLoS became a publisher. PLoS biology 2003;1:E36. [PubMed:
14551926]

Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin NE, Langston MA, et al.
Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate
nervous system function. Nature genetics 2005;37:233–242. [PubMed: 15711545]

Chin MH, Geng AB, Khan AH, Qian WJ, Petyuk VA, Boline J, Levy S, Toga AW, Smith RD, Leahy
RM, Smith DJ. A genome-scale map of expression for a mouse brain section obtained using
voxelation. Physiological genomics. 2007

Choi, JK.; Yu, U.; Kim, S.; Yoo, OJ. Bioinformatics. Vol. 19. Oxford, England: 2003. Combining multiple
microarray studies and modeling interstudy variation; p. 84-90.

Cooper, H.; Hedges, LV. Handbook of Research Synthesis. New York: Russell Sage Foundation; 1994.
Crasto CJ, Marenco LN, Liu N, Morse TM, Cheung KH, Lai PC, Bahl G, Masiar P, Lam HY, Lim E, et

al. SenseLab: new developments in disseminating neuroscience information. Briefings in
bioinformatics 2007;8:150–162. [PubMed: 17510162]

Eckersley P, Egan GF, Amari S, Beltrame F, Bennett R, Bjaalie JG, Dalkara T, De Schutter E, Gonzalez
C, Grillner S, et al. Neuroscience data and tool sharing: a legal and policy framework for
neuroinformatics. Neuroinformatics 2003;1:149–165. [PubMed: 15046238]

Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization
array data repository. Nucleic acids research 2002;30:207–210. [PubMed: 11752295]

Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression
patterns. Proceedings of the National Academy of Sciences of the United States of America
1998;95:14863–14868. [PubMed: 9843981]

Eisenstein M. Microarrays: quality control. Nature 2006;442:1067–1070. [PubMed: 16943838]
Enard, W.; Khaitovich, P.; Klose, J.; Zollner, S.; Heissig, F.; Giavalisco, P.; Nieselt-Struwe, K.;

Muchmore, E.; Varki, A.; Ravid, R., et al. Science. Vol. 296. New York, N.Y.: 2002. Intra- and
interspecific variation in primate gene expression patterns; p. 340-343.

Erraji-Benchekroun L, Underwood MD, Arango V, Galfalvy H, Pavlidis P, Smyrniotopoulos P, Mann
JJ, Sibille E. Molecular aging in human prefrontal cortex is selective and continuous throughout adult
life. Biological psychiatry 2005;57:549–558. [PubMed: 15737671]

Galbraith DW. The daunting process of MIAME. Nature 2006;444:31. [PubMed: 17080064]
Ge X, Yamamoto S, Tsutsumi S, Midorikawa Y, Ihara S, Wang SM, Aburatani H. Interpreting expression

profiles of cancers by genome-wide survey of breadth of expression in normal tissues. Genomics
2005;86:127–141. [PubMed: 15950434]

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry
J, et al. Bioconductor: open software development for computational biology and bioinformatics.
Genome biology 2004;5:R80. [PubMed: 15461798]

Glorioso C, Sabatini M, Unger T, Hashimoto T, Monteggia LM, Lewis DA, Mirnics K. Specificity and
timing of neocortical transcriptome changes in response to BDNF gene ablation during
embryogenesis or adulthood. Mol Psychiatry 2006;11:633–648. [PubMed: 16702976]

Golub, TR.; Slonim, DK.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, JP.; Coller, H.; Loh, ML.;
Downing, JR.; Caligiuri, MA., et al. Science. Vol. 286. New York, N.Y.: 1999. Molecular
classification of cancer: class discovery and class prediction by gene expression monitoring; p.
531-537.

Wan and Pavlidis Page 15

Neuroinformatics. Author manuscript; available in PMC 2010 November 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc
G, Hatten ME, Heintz N. A gene expression atlas of the central nervous system based on bacterial
artificial chromosomes. Nature 2003;425:917–925. [PubMed: 14586460]

Gu J, Gu X. Induced gene expression in human brain after the split from chimpanzee. Trends Genet
2003;19:63–65. [PubMed: 12547510]

Gu J, Gu X. Further statistical analysis for genome-wide expression evolution in primate brain/liver/
fibroblast tissues. Human genomics 2004;1:247–254. [PubMed: 15588485]

Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, Haroutunian V, Fienberg AA. Genome-
wide expression analysis reveals dysregulation of myelination-related genes in chronic
schizophrenia. Proceedings of the National Academy of Sciences of the United States of America
2001;98:4746–4751. [PubMed: 11296301]

Hsieh WP, Chu TM, Wolfinger RD, Gibson G. Mixed-model reanalysis of primate data suggests tissue
and species biases in oligonucleotide-based gene expression profiles. Genetics 2003;165:747–757.
[PubMed: 14573485]

Hunter, JE.; Schmidt, FL. Methods of meta-analysis. London: Sage; 1990.
Iwamoto K, Bundo M, Washizuka S, Kakiuchi C, Kato T. Expression of HSPF1 and LIM in the

lymphoblastoid cells derived from patients with bipolar disorder and schizophrenia. Journal of human
genetics 2004a;49:227–231. [PubMed: 15362566]

Iwamoto K, Kakiuchi C, Bundo M, Ikeda K, Kato T. Molecular characterization of bipolar disorder by
comparing gene expression profiles of postmortem brains of major mental disorders. Mol. Psychiatr
2004b;9:406–416.

Jurata LW, Bukhman YV, Charles V, Capriglione F, Bullard J, Lemire AL, Mohammed A, Pham Q,
Laeng P, Brockman JA, Altar CA. Comparison of microarray-based mRNA profiling technologies
for identification of psychiatric disease and drug signatures. J. Neurosci. Methods 2004;138:173–
188. [PubMed: 15325126]

Kapushesky M, Kemmeren P, Culhane AC, Durinck S, Ihmels J, Korner C, Kull M, Torrente A, Sarkans
U, Vilo J, Brazma A. Expression Profiler: next generation--an online platform for analysis of
microarray data. Nucleic acids research 2004;32:W465–W470. [PubMed: 15215431]

Koslow SH. Should the neuroscience community make a paradigm shift to sharing primary data? Nature
neuroscience 2000;3:863–865.

Koslow SH. Discovery and integrative neuroscience. Clin EEG Neurosci 2005;36:55–63. [PubMed:
15999900]

Larsson O, Wennmalm K, Sandberg R. Comparative microarray analysis. Omics 2006;10:381–397.
[PubMed: 17069515]

Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P. Coexpression analysis of human genes across many
microarray data sets. Genome research 2004;14:1085–1094. [PubMed: 15173114]

Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS,
Byrnes EJ, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature
2007;445:168–176. [PubMed: 17151600]

Lein ES, Zhao X, Gage FH. Defining a molecular atlas of the hippocampus using DNA microarrays and
high-throughput in situ hybridization. J Neurosci 2004;24:3879–3889. [PubMed: 15084669]

Li H, Lu L, Manly KF, Chesler EJ, Bao L, Wang J, Zhou M, Williams RW, Cui Y. Inferring gene
transcriptional modulatory relations: a genetical genomics approach. Human molecular genetics
2005;14:1119–1125. [PubMed: 15772094]

Magdaleno S, Jensen P, Brumwell CL, Seal A, Lehman K, Asbury A, Cheung T, Cornelius T, Batten
DM, Eden C, et al. BGEM: an in situ hybridization database of gene expression in the embryonic
and adult mouse nervous system. PLoS biology 2006;4:e86. [PubMed: 16602821]

McCarroll SA, Murphy CT, Zou S, Pletcher SD, Chin CS, Jan YN, Kenyon C, Bargmann CI, Li H.
Comparing genomic expression patterns across species identifies shared transcriptional profile in
aging. Nature genetics 2004;36:197–204. [PubMed: 14730301]

Mirnics K, Pevsner J. Progress in the use of microarray technology to study the neurobiology of disease.
Nature neuroscience 2004;7:434–439.

Wan and Pavlidis Page 16

Neuroinformatics. Author manuscript; available in PMC 2010 November 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Moreau Y, Aerts S, De Moor B, De Strooper B, Dabrowski M. Comparison and meta-analysis of
microarray data: from the bench to the computer desk. Trends Genet 2003;19:570–577. [PubMed:
14550631]

Mulligan MK, Ponomarev I, Hitzemann RJ, Belknap JK, Tabakoff B, Harris RA, Crabbe JC, Blednov
YA, Grahame NJ, Phillips TJ, et al. Toward understanding the genetics of alcohol drinking through
transcriptome meta-analysis. Proceedings of the National Academy of Sciences of the United States
of America 2006;103:6368–6373. [PubMed: 16618939]

Pan F, Chiu CH, Pulapura S, Mehan MR, Nunez-Iglesias J, Zhang K, Kamath K, Waterman MS, Finch
CE, Zhou XJ. Gene Aging Nexus: a web database and data mining platform for microarray data on
aging. Nucleic acids research 2007;35:D756–D759. [PubMed: 17090592]

Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, Holloway E,
Kolesnykov N, Lilja P, Lukk M, et al. ArrayExpress--a public database of microarray experiments
and gene expression profiles. Nucleic acids research 2007;35:D747–D750. [PubMed: 17132828]

Pavlidis P, Noble WS. Analysis of strain and regional variation in gene expression in mouse brain.
Genome biology 2001;2 RESEARCH0042.

Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, Parker JS, Jin J, Hammond
SM. microRNA expression in the prefrontal cortex of individuals with schizophrenia and
schizoaffective disorder. Genome biology 2007;8:R27. [PubMed: 17326821]

Polesskaya OO, Haroutunian V, Davis KL, Hernandez I, Sokolov BP. Novel putative nonprotein-coding
RNA gene from 11q14 displays decreased expression in brains of patients with schizophrenia. J.
Neurosci. Res 2003;74:111–122. [PubMed: 13130513]

Ponomarev I, Maiya R, Harnett MT, Schafer GL, Ryabinin AE, Blednov YA, Morikawa H, Boehm SL,
Homanics GE, Berman A, et al. Transcriptional signatures of cellular plasticity in mice lacking the
alpha 1 subunit of GABA(A) receptors. Journal of Neuroscience 2006;26:5673–5683. [PubMed:
16723524]

Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM. Meta-analysis of microarrays: interstudy
validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer
research 2002;62:4427–4433. [PubMed: 12154050]

Rhodes DR, Chinnaiyan AM. Bioinformatics strategies for translating genome-wide expression analyses
into clinically useful cancer markers. Annals of the New York Academy of Sciences 2004;1020:32–
40. [PubMed: 15208181]

Rhodes, DR.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.;
Chinnaiyan, AM. Neoplasia. Vol. 6. New York, N.Y.: 2004. ONCOMINE: a cancer microarray
database and integrated data-mining platform; p. 1-6.

Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L, Mayford M, Lockhart DJ,
Barlow C. Regional and strain-specific gene expression mapping in the adult mouse brain.
Proceedings of the National Academy of Sciences of the United States of America 2000;97:11038–
11043. [PubMed: 11005875]

Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, Sieberts SK, Monks S, Reitman M,
Zhang C, et al. An integrative genomics approach to infer causal associations between gene
expression and disease. Nature genetics 2005;37:710–717. [PubMed: 15965475]

Shields R. MIAME, we have a problem. Trends Genet 2006;22:65–66. [PubMed: 16380192]
Sibille E, Su J, Leman S, Le Guisquet AM, Ibarguen-Vargas Y, Joeyen-Waldorf J, Glorioso C, Tseng

GC, Pezzone M, Hen R, Belzung C. Lack of serotonin(1B) receptor expression leads to age-related
motor dysfunction, early onset of brain molecular aging and reduced longevity. Mol Psychiatry. 2007

Siddiqui AS, Khattra J, Delaney AD, Zhao Y, Astell C, Asano J, Babakaiff R, Barber S, Beland J, Bohacec
S, et al. A mouse atlas of gene expression: large-scale digital gene-expression profiles from precisely
defined developing C57BL/6J mouse tissues and cells. Proceedings of the National Academy of
Sciences of the United States of America 2005;102:18485–18490. [PubMed: 16352711]

Sokolov BP, Jiang LX, Trivedi NS, Aston C. Transcription profiling reveals mitochondrial, ubiquitin and
signaling systems abnormalities in postmortem brains from subjects with a history of alcohol abuse
or dependence. J. Neurosci. Res 2003;72:756–767. [PubMed: 12774316]

Wan and Pavlidis Page 17

Neuroinformatics. Author manuscript; available in PMC 2010 November 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Spellman PT, Miller M, Stewart J, Troup C, Sarkans U, Chervitz S, Bernhart D, Sherlock G, Ball C,
Lepage M, et al. Design and implementation of microarray gene expression markup language
(MAGE-ML). Genome biology 2002;3 RESEARCH0046.

Stansberg C, Vik-Mo AO, Holdhus R, Breilid H, Srebro B, Petersen K, Jorgensen HA, Jonassen I, Steen
VM. Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of
functional specialisation. Bmc Genomics 2007;8

Stuart, JM.; Segal, E.; Koller, D.; Kim, SK. Science. Vol. 302. New York, N.Y.: 2003. A gene-
coexpression network for global discovery of conserved genetic modules; p. 249-255.

Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman
G, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proceedings of the
National Academy of Sciences of the United States of America 2004;101:6062–6067. [PubMed:
15075390]

Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu C, Huang ZJ, Nelson SB. Molecular
taxonomy of major neuronal classes in the adult mouse forebrain. Nature neuroscience 2006;9:99–
107.

Sunkin SM. Towards the integration of spatially and temporally resolved murine gene expression
databases. Trends Genet 2006;22:211–217. [PubMed: 16499990]

Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, Starkey M, Webster MJ,
Yolken RH, Bahn S. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet
2003;362:798–805. [PubMed: 13678875]

Vazquez-Chona FR, Khan AN, Chan CK, Moore AN, Dash PK, Hernandez MR, Lu L, Chesler EJ, Manly
KF, Williams RW, Geisert EE Jr. Genetic networks controlling retinal injury. Molecular vision
2005;11:958–970. [PubMed: 16288200]

Watson R. EC to promote open access publishing. BMJ 2007;334:389. Clinical research ed. [PubMed:
17322242]

Williams RW. Expression genetics and the phenotype revolution. Mamm Genome 2006;17:496–502.
[PubMed: 16783631]

Zapala MA, Hovatta I, Ellison JA, Wodicka L, Del Rio JA, Tennant R, Tynan W, Broide RS, Helton R,
Stoveken BS, et al. Adult mouse brain gene expression patterns bear an embryologic imprint.
Proceedings of the National Academy of Sciences of the United States of America 2005;102:10357–
10362. [PubMed: 16002470]

Zhang W, Morris QD, Chang R, Shai O, Bakowski MA, Mitsakakis N, Mohammad N, Robinson MD,
Zirngibl R, Somogyi E, et al. The functional landscape of mouse gene expression. Journal of biology
2004;3:21. [PubMed: 15588312]

Wan and Pavlidis Page 18

Neuroinformatics. Author manuscript; available in PMC 2010 November 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Conceptualization of data selection for re-use. Criteria that are too stringent or too lax make
comparisons difficult.
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Figure 2.
Trends in publications on expression profiling. We searched PubMed for entries using the
search criteria “Gene Expression Profiling $M $Y[publication date]”, where $M was either
“cancer” or “brain” and $Y was a year (1998–2006); or the total number of PubMed entries
by year. A. Raw numbers showing that profiling papers accessible with the keyword “cancer”
were consistently much more numerous than for “brain”. B. Data normalized by the number
of publications in 2006, showing the similarity of the growth curves. Data for all PubMed
entries are shown for comparison: submissions about profiling outpace the growth of PubMed
by a wide margin.
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Figure 3.
Trends in submissions to GEO. We used the GEO web interface to identify experiment series
submissions in each year, using the same keywords that were used for the PubMed analysis in
Figure 3 (e.g., “GSE[Entry Type] AND 2002[Publication Date] AND cancer”). Values are
expressed as the fraction of all GEO series submissions. The growth curve of GEO overall is
shown in arbitrary units for comparison. Submissions with the keyword “brain” follow a similar
trend to “cancer” but with consistently smaller numbers of submissions.

Wan and Pavlidis Page 21

Neuroinformatics. Author manuscript; available in PMC 2010 November 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Re-analysis of mouse brain data from Sandberg et al. (2000). An example of how re-analysis
of existing data can uncover previously unrecognized patterns. Pavlidis et al. (2001) identified
genes showing brain-regionalization of expression using analysis of variance, in this case in
the midbrain compared to five other regions, in two mouse strains. A comparison to the existing
analysis showed that only a subset of these genes had been identified (marked by bullets). The
heatmap shows relative expression levels, where white represents higher levels. Reproduced
from Pavlidis et al. (2001) with permission.
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Figure 5.
Recurring expression patterns yield higher-quality functional inferences. Each curve is a
cumulative distribution of gene similarity as reflected in shared GO terms. Curves further to
the right represent coexpression patterns that reoccur in more data sets, and exhibit higher
functional similarity. Redrawn using data from (Lee et al., 2004).
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Figure 6.
Screen shot of coexpression results from Gemma. Users enter a query gene of interest (PARK7
in this case) and are provided with a list of genes that are reproducibly coexpressed in multiple
studies. The “support” is the number of data sets in which the pattern is found. “GO overlap”
reflects the existing state of knowledge about the relatedness of the query gene to the result
gene. The “Exps” column illustrates which data sets, of those searched, provide the support.
A black line is shown for each data set where the pattern is found, giving a visual cue to which
data sets are contributing most to the overall result. In this example, 57 data sets were searched,
yielding 1788 patterns involving PARK7. Of these, nineteen positive and two negative
correlation patterns were reproduced in at least 3 of the data sets.
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Table 1

Resources for gene expression data re-use

Expression data repositories

Gene Expression Omnibus
(GEO)

www.ncbi.nlm.nih.gov/geo Major repository of expression data,
based at the NCBI

NIH Microarray Consortium http://arrayconsortium.tgen.org/ Assists NIH-funded neuroscience
labs with expression studies and
makes data public

ArrayExpress www.ebi.ac.uk/arrayexpress Major repository of expression data,
based at the EBI.

Neuroscience-focused data re-use resources

GeneNetwork www.genenetwork.org Database linking behavioral and
gene expression traits with genetic
maps

Gemma www.bioinformatics.ubc.ca/Gemma Meta-analysis resource for
expression data

Other comparison facilities

Bioconductor www.bioconductor.org Contains several packages
implementing meta-analysis
algorithms

Oncomine www.oncomine.org Cancer profiling database

CleanEx www.cleanex.isb-sib.ch Provides public human and mouse
data with identifiers suitable for
cross-experiment comparison

Amazonia http://amazonia.montp.inserm.fr/ Meta-analysis focused on stem
cells

Gene Aging Nexus gan.usc.edu Database of gene expression
studies of aging

Annotation resources

MGED Ontology mged.sourceforge.net/ontologies Ontology specific for microarray
experiment description

Open Biomedical Ontologies obofoundry.org Gathering of ontologies for
biomedical research

Data transport and description standards

MIAME www.mged.org/Workgroups/MIAME/miame.html Standard for information required in
microarray experiment descriptions

MAGE-OM and MAGE-ML www.mged.org/Workgroups/MAGE/mage.html Object model and markup language
for describing expression
experiments

Functional Genomics
Experiment (FuGE)

fuge.sourceforge.net Object model for describing
functional genomics experiments

SOFT www.ncbi.nlm.nih.gov/projects/geo/info/soft2.html Primary format used by GEO

Other brain gene
expression resources

Allen Brain Atlas www.brain-map.org Expression patterns of 25,000
genes in adult mouse brain

GENSAT www.gensat.org Expression patterns of fluorescent
protein reporters in mouse brain

Mouse Atlas www.mouseatlas.org/data/mouse SAGE data from 198 tissues
including many brain regions at
different developmental stages
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