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Abstract
There has been considerable excitement over the ability to construct linkage maps based only on
genome-wide genotype data for single nucleotide polymorphic sites (SNPs) in a population
sample. These maps, which are derived from estimates of linkage disequilibrium (LD), rely on
population genetics theory to relate the decay of LD to the local rate of recombination, but other
population processes also come into play. Here we contrast these LD maps to the classically
derived, pedigree-based human recombination maps. The LD maps have a level of resolution
greatly exceeding that of the pedigree maps, and at this fine scale, sperm typing allows a means of
validation. While at a gross level both the pedigree maps and the sperm typing methods generally
agree with LD maps, there are significant local differences between them, and the fact that these
maps measure different genetic features should be remembered when using them for other genetic
inferences.
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OVERVIEW AND OBJECTIVES
Classically, recombination rates have been quantified by counting the products of meiosis,
tallying either progeny or gametes into recombinant and nonrecombinant classes. In humans,
there is an extensive literature on the statistical approaches for obtaining maximum-
likelihood and other recombination rate estimators from pedigree-based data (76). By
scoring markers across the entire genome, it has been possible to construct whole-genome
genetic maps based on such pedigree data. A key limitation of this approach is that the
number of sampled individuals is relatively small, so rare events are not adequately
ascertained and map resolution is consequently low. This limitation has motivated the
development of methods that indirectly sample a much larger number of meiotic events. The
leading such approach has been to apply population genetics theory relating local rates of
recombination to local levels of linkage disequilibrium (LD) to infer genetic maps from
population samples of genotypes. The purpose of this review is to contrast the LD and
pedigree-based approaches, highlighting the rich territory at the interface of the two
methods.
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PEDIGREE-BASED HUMAN GENETIC MAPS
In model organisms, genome-wide linkage maps are constructed by performing controlled
crosses and genotyping the progeny in a way that allows the investigator to identify
recombination events throughout the genome. The study of human linkage progressed with
the cataloging of large pedigrees and the growing availability of molecular markers. The
theoretical underpinnings of computational methods for inference of linkage were well
understood if the gene or marker order was known (76), and methods of maximum
likelihood can be performed with a wide variety of software tools
(http://linkage.rockefeller.edu/soft). But when large numbers of genetic markers were
involved, entailing a great many possible marker orders, the standard methods became
computationally limiting. Lander and Green (60) developed a method for multilocus linkage
analysis that applied a hidden Markov chain to efficiently calculate likelihoods in small
pedigrees typed for DNA markers. There followed a period of rapid development of
computational methods that used a combination of heuristic methods to reduce the search
space of gene orders (11,61–63,68).

Due to their high heterozygosity, microsatellites became the marker of choice for human
linkage studies, and screening repeat libraries resulted in polymerase chain reaction (PCR)
primer sets that could score allelic states of thousands of these markers. During the 1990s,
James Weber and colleagues at the Marshfield Medical Research Foundation and the
Généthon in France established custom-built laboratories for high-throughput genotyping of
DNA samples and constructed comprehensive human genetic maps with thousands of
microsatellite markers typed on subsets of the extended CEPH (Centre d’Etude du
Polymorphisme Humain) family pedigrees (5,19,72). It was immediately clear that the
intensity of recombination per unit physical length was highly variable across the genome,
with consistently low recombination rates in centromeric regions. The total map length on
the Marshfield map was 4,400 cM for females, and 2,700 cM for males, and while the sex-
specific maps showed generally correlated variation across the genome, there were also sex-
specific differences in local recombination rates. There was greater variation among the
females in the counts of recombination events than would be expected by chance, and counts
were strongly correlated across chromosomes, indicating differences in overall
recombination rate among females. These maps subsequently proved highly useful to the
human genome sequencing effort, as they contributed independent information on the order
and orientation of genes and markers along the chromosome.

A few years later deCODE Genetics, combining extended pedigree information of Icelandic
kindreds with the genotyping prowess of their laboratory in Reykjavik, Iceland, produced an
even finer resolution map (56) that included 5,136 microsatellite markers genotyped in 869
individuals across 146 Icelandic families. Linkage inference was based on a total of 1,257
meiotic events, approximately 6 times as many as the Marshfield map. The previously
published draft human genome sequence and clone physical maps uniquely placed
approximately 93% of the markers, and in regions where both genetic and physical maps
were available, recombination rates could be correlated with many attributes of the DNA
sequence [such as local guanine–cytosine (GC) content, CpG (C—phosphate—G) motifs,
and poly(A)/poly(T) stretches (where A and T are adenine and thymine nucleotides)] as well
as chromosomal cytological features (telomeres and centromeres). The greatly increased
resolution of the deCODE map revealed many local differences between male and female
recombination rates.

Pooling genotype data from the CEPH database and from deCODE Genetics, the first
Rutgers map, a combined linkage and physical map (59), contained 14,759 markers that had
been genotyped in a mixture of CEPH and deCODE (56) families. Version 2 of this map
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incorporated an additional 13,666 SNP markers genotyped in the CEPH pedigrees for a total
of 28,121 mapped polymorphic sites (58,67). Over 1 million SNP genotypes are now
available for these samples, but the genetic map is not much increased in resolution by
further addition of markers, because there is already high confidence in the locations of the
breakpoints of nearly every meiotic exchange. Further increases in resolution would require
additional pedigrees.

Contrasts of the genetic and physical maps have been highly informative. A scatterplot of
marker locations, with the physical map along the x-axis and the genetic map along the y-
axis, would be expected to fall along a perfect diagonal if gene order and distances were
precisely concordant in the two maps. Instead, such plots show some local regions that are
flat and others that rise steeply, indicating long physical regions in which little
recombination occurs, and short regions where there is intense recombination, respectively
(Figure 1). The slope of this plot yields the local rate of recombination per physical distance,
or the recombination intensity, typically measured in units of cM/Mbp. Human centromeres
have quite low recombination intensity, estimated at well under 1 cM/Mbp, and the steepest
regions, often occurring at telomeres, have an average recombination intensity of
approximately 5–10 cM/Mbp. This approach led to the discovery of genomic regions with
particularly low levels of recombination, which not surprisingly also tend to have much
greater levels of linkage disequilibrium (100). Comparisons between the genetic and
physical maps also highlighted discrepancies in apparent marker order (18). Roughly 5% of
the Marshfield linkage map markers had linkage orders inconsistent with the physical map
order in the draft genome sequence. Initially, this was thought to be due to errors in the
physical map, but in addition to this possibility, we now know that segmental variation can
result in discrepancies between the physical map of any given individual and the reference.

Linkage maps are affected by genotyping errors, although these are likely fewer than with
association-mapping methods because tests of concordance with expected Mendelian
transmission provides a strong filter for maintaining data quality. Genotyping errors often
result in apparent nearby pairs of recombination events, or close double crossovers. Most
mapping efforts delete close doubles from the analysis as likely errors, although some of
them may in fact represent gene conversion events or other double exchanges. Similarly,
deviations from Mendelian segregation result in marker exclusion; although this is a
reasonable and conservative approach, at a genome-wide scale, growing evidence suggests
that some markers show genuine exceptions to Mendelian segregation (101). The fact that
genetic linkage maps are assembled as an amalgam of meiotic exchange events from many
individuals whose local recombination rates almost certainly differ certainly inflates the
statistical uncertainty in the averaged map. But perhaps the greatest limitation of genetic
maps based on pedigrees is the fact that so few meiotic exchange events can be captured,
which limits resolution of the highest-density linkage maps to the order of only 0.5–2 cM.
These maps are therefore not useful for understanding the nature of recombination events at
a finer scale.

LINKAGE-DISEQUILIBRIUM-BASED GENETIC MAPS
A very different, indirect, means of inferring local rates of recombination, developed over
many years, has, with the recent identification of huge numbers of markers made available
by high-throughput SNP genotyping methods, shown strong promise for producing genetic
maps at a far finer resolution than pedigree maps. The history of this effort is closely tied to
the development of tools for genome-wide association mapping in humans. The recognition
that it should be feasible to identify genetic variation statistically associated with inflated
disease risk, using only case-control samples with sufficiently many typed markers, gave
impetus to the quest for large numbers of SNPs across the human genome. It was necessary
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not only to identify SNPs, but also to determine the degree to which populations exhibited
linkage disequilibrium across pairs of SNPs. The International HapMap project identified
SNPs from many different sources, and then systematically genotyped them in a panel of 30
CEPH trios, 30 Nigerian Yoruban trios, 45 unrelated Japanese, and 45 unrelated Chinese.
This set of 270 people, split equally among European, African, and Asian ancestries, was
genotyped and analyzed, yielding a genome-wide map of the haplotype structure in major
human populations (1).

SNPs in the first phase of the HapMap project were initially identified by a wide variety of
methods, and the ascertainment bias that resulted from detecting SNPs in small samples was
felt to compromise the utility of the data for some purposes. Using microarray hybridization,
Perlegen Biosciences had fully sequenced a panel of 24 human genomic DNA samples, and
the SNPs discovered in this set played an important role in expanding the SNP collection to
what became known as HapMap2 (28). Phase II of HapMap characterized more than 3.1
million SNPs, or on average one approximately every 1 kb across the genome (although the
distribution was not uniform), in the same 270 individuals. These data yielded a detailed
picture of the pattern of linkage disequilibrium across the human genome, and it became
abundantly clear that the regions with extensive LD over long spans were regions with low
recombination intensity, as inferred from the contrast between genetic and physical maps. In
addition, sharply defined regions were found in which LD decayed very rapidly, consistent
with local, high levels of recombination. This provided strong impetus to use the LD
information to infer which local distribution of recombination events could generate the
observed distribution of LD across the genome.

Procedures for estimating recombination rates from population genetic data have been
reviewed thoroughly elsewhere (91). Population genetics has a rich history of mathematical
theory relating processes that occur in idealized populations to empirically derived metrics.
Intuitively, one expects that greater recombination rates will result in more rapid decay of
linkage disequilibrium, and population genetics theory provides precise equations for this
process. The relationship between local levels of linkage disequilibrium and the local rate of
recombination is somewhat involved, with random genetic drift playing a key role. In fact it
is through random drift that LD can be maintained at equilibrium in a finite population,
since in an infinite population with only neutral variation, all LD eventually decays. So the
theory that relates human LD to human recombination rates of necessity includes parameters
reflecting population size and demography (Figure 2).

Before we summarize this theory, it is useful to emphasize that the estimates of
recombination rate are made in the context of a population genetic model that carries many
assumptions. Technically, the model assumes no natural selection, no migration, and
constant finite population size with homogeneous rates of recombination. Mutation is
ignored. Since these assumptions are clearly violated to some degree in human populations,
one might question the validity of the estimates, but in fact it is possible to show that the
estimates are robust to many reasonable departures from these idealized conditions. Note
however that the parameter estimated in the methods described below is rho = 4Ner, a
confounding of recombination with effective population size. This means that factors not
included in the model that may distort the local inference of effective population size, such
as a selective sweep, will also tend to distort the inference of local recombination.
Fortunately, this too is amenable to analysis by simulation.

The formal theory relating the sampling properties of a pair of segregating sites to
parameters such as recombination rate was developed by Richard Hudson (37). This work
showed that a feasible way to infer a local estimate of rho was to use all the segregating sites
in a region and to combine the pairwise inferences in a composite likelihood estimator. The
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composite estimator does not yield a true maximum likelihood because it combines
dependent likelihoods as though they were independent. Fortunately, this approximation
works quite well, and its properties have been thoroughly investigated. Along with this
important discovery, Hudson developed a means for generating population samples of a
region of the genome under a neutral model with recombination (38), and this has been an
immensely valuable tool for testing models of LD in finite populations.

Inference of local recombination rates across the human genome using the above population
genetic theory remained a steep challenge because calculating the likelihood is
computationally difficult. Griffiths and Marjoram (32) developed a Markov chain Monte
Carlo (MCMC) approach to approximate the likelihood for estimating rho. This approach
could be accelerated by use of importance sampling, but it was still too slow to be feasible
for a genome-wide application. Fearnhead and Donnelly (23,24) finally cracked the problem
by introducing a novel importance sampler to calculate the likelihood under a coalescent-
based model. This method was several orders of magnitude faster than anything else
available and allowed construction of the first genome-wide maps of the population
recombination rate, rho. Approximate methods based on the composite likelihood are much
faster still. McVean and colleagues (71) implemented and applied the composite likelihood,
and using the 1.6 million SNPs from the HapMap project, a full genome-wide LD map was
subsequently generated (73). Over the next few sections, we will return to the results of this
paper, but the key finding not predicted from the pedigree-based linkage maps is the number
and intensity of apparent hotspots of recombination across the human genome.

Before turning to the conclusions drawn from the LD maps, it is important to consider the
effects of gene conversion, defined as recombinational exchange events that resolve double-
strand breaks without exchange of flanking markers. Such events typically result in the
copying of a short tract of sequence from one haplotype onto another, such that if the
individual is heterozygous for sites within the conversion tract, the resulting gamete
resembles a close double recombinant. Wiuf and Hein (99) developed a model for this
process, a geometric length distribution for recombination tracts. Gene conversion alters the
pattern of pairwise linkage disequilibrium, and a parameter of Hudson’s (37) model is the
ratio of gene conversion to recombination rates. This has been used to infer rates of gene
conversion from polymorphism data (29).

Other methods for inferring gene conversion rates from population sample data have been
devised (30,95), for example, using triplets of SNPs. Gene conversion results in reduced LD
at a very local scale but has less impact on LD at greater distances; this results in a steeper
decline in LD for nearby markers, so inclusion of gene conversion can provide improved
empirical fits to the LD decay curves. Models incorporating both crossing over and gene
conversion fit the short-range data (0–5 kb) of chromosome 21 much better than do models
that include crossing over alone. The estimated ratio of gene-conversion rate to crossing-
over rate has a range of 1.6–9.4, depending on the assumed conversion tract length (in the
range of 500–50 bp) (78,79). These methods appear to be reasonably good at estimating an
average gene conversion rate over many loci, but they cannot reliably estimate local gene
conversion rates for a single region of the genome. One reason for this is that the methods
are highly sensitive to genotyping error (83). Several lines of evidence indicate that
recombination intensity varies widely across the genome, but evidence for variation in rates
of gene conversion is sparser (42,94). In short, our understanding of determinants of rates of
gene conversion remains somewhat unsatisfying.
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HETEROGENEITY IN LOCAL RECOMBINATION INTENSITY
Before turning to highly localized spikes of recombination rate, known as hotspots, let us
first consider broader-scale variation in recombination rates. As mentioned above,
centromeric regions tend to have low rates of recombination, and telomeres tend to have
elevated rates. But there are many other regional differences in local recombination rates,
including non-centromeric stretches of unusually low recombination. What causes this kind
of variation, and what are its consequences for the human genome?

The first efforts to study variation in local recombination rates showed that the genetic and
physical maps could not be reconciled unless there was local variation on a megabase pair
scale in the rate of recombination. However, determining the scale at which recombination
rates vary has been challenging. The first attempts focused on targeted gene regions and
asked whether the rate of decay of LD was homogeneous across the regions (16,86). There
does appear to be a signal for within-gene variation in recombination rates, but as we will
see below, a combination of variation in density and intensity of recombination hotspots
could also be driving this.

Statistical inference of local recombination intensity by comparison of the genetic and
physical maps is not entirely straightforward, because it involves the local slope of the
relation plotted in Figure 1. One approach has been to apply locally weighted linear
regression (loess) from the best current physical map position to the best current linkage
map (20). We updated these calculations using the latest physical and genetic maps (Build
36 and the Rutgers 2007 maps) and applied local regression (66) to obtain smoothed
estimates of local recombination intensity (Figure 3). A striking finding is that an increase in
recombination in telomeres of males relative to females is now evident for every
chromosome.

Large-scale variation in recombination rate across the genome is now widely appreciated,
and many efforts have been made to correlate local recombination rate with other properties
of the genome. The strongest of these is GC content, which is positively correlated with
local recombination rate. The Hill–Robertson effect states that natural selection should be
less effective in regions of low recombination, and that this could lead to differences in rates
of adaptation among regions of high versus low recombination. Bullaughey and colleagues
(6) tested the association between human recombination rate variation and adaptive
molecular evolution in primates as scored by the dN/dS ratio (the ratio of rates of substitution
at non-synonymous and synonymous nucleotide sites). Using data from human, chimp, and
macaque, they found no correlation between rates of recombination and rates of protein
evolution, after GC content is taken into account. Genes found in regions of very low
recombination, which are expected to show the most pronounced reduction in the efficacy of
selection, do not evolve at a different rate than other genes. We will return to the question of
the evolutionary consequences of recombination rate variation, but for now it appears that
effective population sizes of primates may be small enough that the patterns driven by local
selective sweeps and the Hill–Robertson effect are at best weak.

RECOMBINATION HOTSPOTS IN HUMANS
The HapMap project presented human population geneticists with a plethora of genotype
frequency data with which to analyze patterns of LD. In particular, the 1.6 million SNPs
genotyped in 270 people in HapMap phase 1 enabled scoring local LD patterns at a scale
exceeding that available even for model organisms. Initial efforts to estimate the population
recombination rate parameter, rho, from human genotype data were limited to local genomic
regions. In 2004, Fearnhead and colleagues (25) applied coalescent-based approaches to
estimate recombination rates from polymorphism data using full-likelihood methods for the
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well-characterized hotspot region of the beta-globin gene. A local reduction in LD in this
region is clear from resequencing data in population samples. The full-likelihood estimates
of local rho in this region provide a satisfying concordance between sperm-typing inference
of recombination hotspots and the population recombination rate estimates.

An important means to estimate likelihoods uses simulation of sample data. The approach of
Li and Stephens (65) provided a quantum leap in our ability to generate population sample
simulations of recombined segments of chromosomes. This approach is not limited to
considering only pairwise samples of SNPs, and is computationally extremely fast. The Li
and Stephens algorithm could be used to estimate underlying recombination rates from
population data, and simulations demonstrated its utility. This algorithm remains a standard
tool in many different applications in population genetics, especially for haplotype phasing.

At the time of publication of the first HapMap paper, it was already clear that linkage
disequilibrium is organized in a somewhat blockwise fashion, and the human genetics
community was eager to catalog the resulting haplotype blocks in order to allow more
efficient genome-wide typing of an individual. It is now generally believed that these blocks
largely comprise regions delimited by recombination hotspots, but at the time the full extent
of hotspots was not fully appreciated, and it was argued that the normal process of random
genetic drift, even in the face of homogeneous recombination, can also generate blockwise
haplotype structures (80). Although the existence of recombination hotspots is now widely
acknowledged, the utility of haplotype blocks has become less critical because of
standardized use of commercial SNP genotyping platforms which allow very dense
sampling of the genome.

The ability to construct a genome-wide map based on population recombination rate (rho)
estimates from population sample data depended on the development of approximate-
likelihood methods that provided sufficient computational speed to make the likelihood
calculations feasible. Considerable effort was spent in testing these methods by simulations,
generating sample genotype data under different scenarios of recombination hotspots and
demography, and finding conditions which yielded reasonable estimates of rho
(24,25,70,71,73). Approximate-likelihood methods were then applied to the HapMap sample
data, generating the finest-scale resolution recombination map in humans to date (71,73).
The new map showed good correspondence to the pedigree-based maps over large
chromosomal scales, and to known hotspots at a very fine scale. The most striking findings
were that local rate variation appeared to vary over four orders of magnitude, and that the
bulk of recombination in the human genome occurs within hotspots. Initial estimates were
that 50% of all recombination occurs in less than 10% of the sequence (Figure 4). There was
still reason to pause before throwing out previous maps, since this new map was based on
indirect inference from population sample data, but all tests of correspondence with other
known attributes of human linkage were encouraging.

The statistical inference of recombination hotspots from genotype data on samples from a
population remains an area of active debate (22,33,64,89,92). Not only is there a need to
improve upon the speed and accuracy of approximate-likelihood methods, but joint
inference of gene conversion and integration of imputed genotype data are desirable aims as
well. Soon we will have full-genome sequence data from individuals at a scale allowing
inference of recombination rates directly from the sequence, and methods will need to
accommodate both sequencing error and orders-of-magnitude larger volumes of data.
Another problem being tackled with current genotyping data is inferring variation in the
background recombination rate. It is common to assume a single background rate,
augmented by hotspots of varying density and intensity, but a model allowing variable
background recombination rates seems at least as plausible. Auton and McVean (3)
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developed such a model, and in applying it to data from the human leukocyte antigen (HLA)
and minisatellite MS32 regions of the human genome, they find clear differences in
background rates in addition to hotspot variability.

Accepting for the moment that recombination hotspots are a genuine feature of the human
genome, we can ask which features of the DNA sequence signal the location of a hotspot.
Many attempts have been made to identify correlates to hotspot location, including GC
content, gene density, and repetitive elements. At best the correlations are weak and offer
little predictive power. Myers and colleagues (75) developed an LD map based on the
HapMap2 data and found 25,000 recombination hotspots which they then analyzed for
predictive features. They applied wavelet-based analysis to determine the scale at which
features such as base composition, coding context, and DNA repeats impacted hotspot
presence. Word analysis identified a set of statistically significant DNA motifs that are
strongly associated with recombination hotspots. They confirmed a rapid turnover of
hotspots between humans and chimpanzees, in a manner consistent with the use of the DNA
motifs.

The initial success with hotspot motif finding motivated a continued search, both for more
refined motifs and for the factors that recognize them. Myers and colleagues (74) found that
a 13-bp sequence motif previously associated with the activity of 40% of human hotspots
does not function in chimpanzee and is being removed by self-destructive drive in the
human lineage. This motif is bound by PRDM9, a rapidly evolving zinc-finger protein that
harbors significant human–chimp divergence. PRDM9 catalyzes histone H3 lysine 4
trimethylation in a manner consistent with a role in recombination. Polymorphisms in both
mice and humans influence both the binding of PRDM9 and the induction of recombination
(4). Initial evidence for a role of PRDM9 in recombination hotspots appears quite strong, but
it remains a challenge to imagine how such rapid turnover of recombination landscapes can
be adaptive.

DIRECT SCORING OF HOTSPOTS BY SPERM GENOTYPING
As exciting as the inference of hotspots was, the fact that the LD data yielded only indirect
evidence of them strongly motivated the direct scoring of local rates of recombination to
verify the findings. The laboratories of Norman Arnheim and Alec Jeffreys had earlier
developed methods for both single-sperm and pooled-sperm PCR genotyping that are
effective in scoring recombinant gametes. In one study (36), sperm-DNA typing was applied
to determine the distribution of crossover events within a 1-Mbp region of human
chromosome 4p. The investigators typed 602 sperm using PCR and detected 29
recombinants. Genotyping SNPs in the region showed that a 280-kb interval had a six- to
ninefold excess of counts of recombination breakpoints compared to flanking regions. This
was among the first clues that the human genome may harbor local hotspots of
recombination.

Jeffreys et al. (41) attracted strong attention to sperm genotyping technologies and
demonstrated clearly at the level of individual recombination events that the human genome
has recombination hotspots. Their observation that recombination in humans is “intensely
punctate” has held up well. This paper analyzed a 216-kb segment of the class II region of
the major histocompatibility complex (MHC) that had been thoroughly studied for LD-map–
based inference of recombination hotspots (manifested as discrete points of low LD that also
terminate haplotype blocks). The sperm typing confirmed beautifully that the LD-based
inferred recombination hotspots were in fact coincident with meiotic crossover hotspots. The
six hotspots they defined all share a remarkably similar symmetrical morphology but vary
considerably in intensity and are not obviously associated with any primary DNA sequence
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determinants of hotspot activity. The MHC hotspots occur in clusters and together account
for almost all crossovers in this region of the MHC.

Subsequent publications documented the local concentration of meiotic breakpoints in other
regions, as assessed by sperm genotyping (2,40–49,69,93). Every region examined was
found to have some local inflation of recombination, if not outright hotspots, and this seems
to be a widespread characteristic of mammalian genomes (51). The correspondence between
the LD-based hotspots and the sperm-typing hotspots remained strong but not perfect. It is
not difficult to imagine reasons for the few discrepancies: A recombinational hotspot may
fail to show reduced LD if it is relatively young (9); the vagaries of population drift or of
natural selection may give rise to a high-frequency haplotype that spans a hotspot, resulting
in LD spanning the hotspot.

One means for dissecting the effects of recombination, demographic history, random genetic
drift, and natural selection on hotspot intensity is to compare human populations that have
highly distinct demographic histories. Kauppi and colleagues (53) examined such
populations by genotyping SNPs across a 75-kb span of the MHC region in individuals from
northern Europe, northern Finland (Saami), and Zimbabwe. Previous studies had identified
three recombination hotspots and a 60-kb long LD block in European samples. Despite the
wide variation in demographic histories among these three populations, which is reflected in
corresponding variation in haplotype diversity and composition, all three populations
showed very similar patterns of LD. The three hotspots were evident in all three populations,
and nucleotide diversity in the hotspot regions was also elevated. This early example
confirmed predictions from simulations (71) that the ability to detect recombination hotspots
from patterns of LD should be robust to demography, and thus good correspondence of
hotspots across human populations might be expected (see the section, Among-Population
Heterogeneity in Recombination Rates, below).

To date, some 26 recombination hotspots have been characterized using allele-specific PCR
to selectively amplify recombined DNA molecules (52). There emerges a consistent picture
that meiotic crossover hotspots in humans are highly localized. Interestingly, where there are
hotspots, it appears that flanking DNA segments exhibit many fewer exchange events, as
though recombination were suppressed. There does appear to be a corresponding increase in
noncrossover exchanges (gene conversion), consistent with models in which the relative
proportion of exchange and nonexchange resolutions of double-strand breaks remains fairly
constant. It is somewhat puzzling that the sperm-typing methods rarely find hotspots with
recombination rates greater than 12 cM/Mbp, whereas the LD-based maps suggest that
hotspots can approach 100 cM/Mbp. However, rates estimated from both methods have
large confidence intervals: Sperm-typing methods are limited by small sample sizes (counts
of meiotic exchanges), while LD-based mapping methods rely on the vagaries of sampling
from an astronomical number of neutral coalescents, with a resulting inherent uncertainty in
the derived estimates (91).

Although sperm typing and population recombination estimates are generally concordant,
instances of population and species differences suggest that hotspots are not permanent
features of the genome (12,14,47,51). The lack of shared hotspots between humans and
chimpanzee (81,82), in particular, highlights the short evolutionary timeframe in which
recombination hotspots operate, which is somewhat surpising given that humans and chimps
differ by only slightly more than 1% at the DNA sequence level. The transient nature of
hotspots suggests that there exists a mechanism for hotspot turnover, one possibility being
gene conversion biased to propagate alleles that locally disrupt hotspots. Coop and Myers
(13) demonstrate that gene conversion bias may serve to erase hotspots by shortening their
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life span. Biased gene conversion may be a sufficiently strong force to produce the observed
lack of sharing of intense hotspots between species.

STRUCTURAL VARIATION AND THE LINKAGE MAP
Another potential source of variation in the linkage map arises from variation among
individuals in the structure of the physical genome. Copy number variation is now widely
recognized to be an important feature of the human population, with any pair of human
individuals differing by insertions and deletions amounting to well over 1 Mbp on average
(54). Inversions of genetic regions also can attain fairly appreciable frequency (90). The
effects of such variation on standard SNP genotyping platforms might be expected to result
in regions with an inflated count of SNPs that display typing errors or Mendelian exceptions,
or with a reduction of the observed SNP density (Figure 5). Development of commercial
SNP genotype arrays often involved extensive empirical testing and elimination of those
SNPs that appeared problematic; almost certainly, a significant portion of these dropped
SNPs occur in repetitive regions or regions harboring other copy number variation. Regions
repeated within the genome may also have unusual recombination characteristics, since they
potentially undergo both orthologous and ectopic (paralogous) recombination. In fact, the
local average intensity of recombination (in cM/Mbp) is significantly reduced in regions
near copy number variants (Figure 5).

A study of the low copy number repeats containing NF1REPa and NF1REPc on
chromosome 17 and a third paralogous copy on chromosome 19 showed that all copies share
a recombination hotspot (84). The extra effort in obtaining accurate genotyping data for such
repeated regions suggests that it will not be easy to study them at a genome-wide scale and
that, even as we progress into whole-genome sequencing of individuals, repeated regions
will present challenges. It is also proving difficult to accurately score copy number variants
using high-throughput SNP-typing platforms, although the technical problems of typing
CNVs do seem surmountable, and the impact of CNVs on local patterns of recombination
will hopefully soon be clarified.

LOCAL CONTRASTS OF GENETIC AND LD-BASED RECOMBINATION
MAPS

Pedigree-derived linkage maps provide a picture of the actual meiotic exchanges in specific
individuals, whereas LD-based maps reflect an integration of population-level processes
over many previous generations. LD maps provide an historical average, incorporating the
effects of population genetic events such as bottlenecks, population growth, and natural
selection. Aside from the different time scales, distortions in local Ne may drive additional
discrepancies between pedigree and LD maps. It is worth emphasizing that the LD-based
maps are estimates of the parameter rho = 4Ner, which confounds population recombination
rate with effective population size so it is somewhat misleading to claim that the LD-based
maps estimate recombination intensity (in cM/Mbp). The estimates are model based, and
because effective population size weighs into the estimates, any errors in demographic
inference will manifest as errors in estimates of recombination intensity. In fact, the
HapMap estimates of recombination intensity, besides assuming that all variation is neutral,
also assume constant Ne = 10,000 for the European population and Ne = 15,000 for the
African population.

Since the pedigree-based genetic map provides direct estimates of recombination rate, and
the LD-based map provides an estimate of the compound parameter rho, in principle,
discrepancies between the maps can provide evidence for distortion of Ne. This idea goes
back at least to Hill (35), who provided a means of estimating Ne from LD data.
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IMPACT OF LOCAL RECOMBINATION INTENSITY VARIATION ON
GENOME-WIDE ASSOCIATIONS

The recognition that local recombination intensity varies widely gave rise to the notion that
for genome-wide association testing, an optimal choice of SNPs would require careful
tuning of SNP density to the local recombination rate. In particular, regions of high
recombination would shorten the lengths of shared haplotypes such that larger numbers of
SNPs would be required to tag those regions. One effective way to choose such tagSNPs
was to algorithmically select a maximally informative set of common single-nucleotide
polymorphisms that included all known common SNPs for direct assay, and any additional
SNPs that fall below a threshold level of r2 (8). With the threshold (r2 = 0.8), the LD-
selected tagSNPs resolve >80% of all haplotypes across a set of 100 candidate genes. This
method nicely accommodates variation in recombination rate, and in principle provides an
empirical solution to the problem. In the end, however, commercial enterprises produced
SNP chips with a standardized array of SNPs that were orders of magnitude less expensive
for genotyping, and the tagSNP problem became more or less irrelevant. The commercial
arrays are heavily weighted toward SNPs that genotype reliably. One lingering issue that the
tagSNP problem highlighted is that the optimal selection of SNPs should in principle be
tuned for different major population groups; the commercial chips provide us instead with a
compromise set of SNPs that is definitely suboptimal for some populations.

AMONG-POPULATION HETEROGENEITY IN RECOMBINATION RATES
The observation of major differences in recombination hotspots between humans and
chimpanzees raises the issue of hotspot differences among human populations. This is an
important consideration if we are to use the same SNP resources for association scans in
different populations. The recognition that linkage disequilibrium patterns can differ in a
consistent way came with the observation that LD decays more rapidly in African than in
non-African samples (86). However, this most likely reflects long-term effective population
size differences rather than recombination differences. Non-African populations, which have
experienced one or more bottlenecks, have a lower effective size, resulting in slower decay
of LD. Whether on top of this there is heterogeneity in local patterns of LD remains an
interesting question.

Several studies tackle the problem of contrasting LD across population samples. One
primary lesson is that apart from the shift in overall levels, local regions of high and low LD
remain largely consistent across populations (17). To the extent that some of the LD reflects
the state of the human population prior to the migration out of Africa, this result is not
surprising. But both adaptive and neutral forces have likely acted in population-specific
manners over the last 100,000 years, so it is not surprising that within the overall pattern of
consistent changes in local LD, there are regions with population-specific changes in LD
(21,87). If patterns of LD are sufficiently heterogeneous, then the tools for inference of
association in genome-wide association studies would have to be tuned for each population.
Too few populations have been ascertained with sufficient depth to assess this fully, but the
major population groups that have been examined appear to have sufficiently similar
patterns at least for common SNPs such that genome-wide association study (GWAS)
approaches should be applicable across populations. It remains to be seen how the inclusion
of increasing numbers of rare SNPs will impact this picture.

Modeling among-population heterogeneity in SNP and haplotype frequencies is feasible
with classical population genetics approaches, and methods for generating large simulated
samples are also readily available. What is not yet routine, but desirable, is to model
heterogeneity in hotspot density and intensity across populations. Calabrese and colleagues
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(7) developed such a population genetics model, featuring recombination hotspots that are
heterogeneous across the population and whose population frequency changes with time.
They produced a diffusion approximation to the model, and used simulations to show that
hotspot turnover could account for observed patterns of LD.

Our understanding of among-population variation in rho is at present limited, and only with
the generation of genotype samples from multiple populations can we really address the
heterogeneity in rho across populations. When rho is calculated separately based on SNP
genotype data for each of several population samples (31), one does indeed find many
instances of local differences (Figure 6). It has been argued that the primary causes are a
combination of random drift (in the context of particular demographic changes) and natural
selection. Identifying which differences are caused by actual population-specific changes in
recombination rate is a surmountable challenge. In CAP10, there is at least one instance of a
population-specific difference in hotspot activity (10). The HapMap3 data (39) and
eventually the 1000 Genomes data will provide an excellent opportunity to explore such
local variation in rho at a genome-wide scale.

AMONG-INDIVIDUAL VARIATION IN RECOMBINATION RATES
One might expect that the challenges in identifying among-population differences in
recombination rate would become even more daunting for among-individual differences.
However, with sufficient density of genotyped markers, it is possible to localize
recombination events in each transmitted gamete. The existence of heritable differences in
total recombination rate among individuals has been recognized for many years, and was
thoroughly documented in the early genome-wide genetic maps (5). Coop and colleagues
(15) used genome-wide SNP genotype data collected in Hutterite nuclear families to localize
a total of 728 crossovers with high spatial resolution. By tallying which breakpoints were in
recombination hotspots, they could show that overall hotspot usage was similar in males and
females, with individual hotspots often active in both sexes, and that 60% of crossovers
occurred in confirmed recombination hotspots. There were large differences in the number
of recombination events among both males and females, and these differences were heritable
as assessed by the clustering on the pedigrees. In a similar analysis of the deCODE data, a
factor that determined local recombination rate was mapped to RNF212 (57). Baudat and
colleagues (4) also identify an association between PRDM9 allelic differences and overall
recombination rate in humans. Model organisms such as Drosophila and yeast have many
recombination-influencing mutations, some of which influence region-specific
recombination rates, so the existence of such variation in humans should not come as a
surprise. The association between elevated rates of chromosomal nondisjunction and low
rates of recombination show that the differences may not be entirely benign in humans (55).

OUTSTANDING QUESTIONS AND FUTURE OPPORTUNITIES
An open question about the pattern of recombination in the human genome is whether the
unstable hotspot organization has any adaptive function. Theory suggests that natural
selection may act to tune local rates of recombination, but the strength of such selection is
typically quite weak, so mutational events that create and erase hotspots may dominate the
process. A worthwhile goal is to develop an evolutionary perspective to understand why the
pattern of recombination in the human genome is what we observe.

We have already touched upon some lines of evidence regarding the evolutionary
divergence of the primate recombination map. The first demonstration that the map might
vary significantly came from a study of the beta-globin recombination hotspot (96). By
resequencing a 15-kb segment in a human population sample, and in samples of
chimpanzees and rhesus macaques, Wall and colleagues pinpointed the location of the
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human beta-globin hotspot and tested whether the data were consistent with hotspots in
chimpanzee and macaque. The chimp data had population structure complications, but the
macaque data clearly showed the absence of a hotspot. This was followed by studies of the
hotspots in TAP2 in humans and 24 chimpanzees by Ptak and colleagues (82) who found
very little support for recombination rate variation at TAP2 in the western chimpanzee data.
Later an additional 14 Mb of sequencing in chimpanzee and human samples confirmed the
generality of the instability of recombination hotspots (81).

Perhaps our greatest ignorance of human recombination stems from a failure to understand
the evolutionary basis for the fluidity of recombination hotspots. There exists an extensive
body of literature on the theory of genetic modifiers of recombination rate, reviewed by
Feldman and colleagues (26). In a constant environment, modifiers that reduce
recombination rate are generally favored, but since nearly all organisms persist in
maintaining some form of recombination, it has been necessary to investigate more complex
scenarios. One general conclusion is that increased recombination may be favored under
certain forms of negative epistasis among alleles. Hey (34) summarizes this situation as
follows: LD among SNPs can be actively maintained by selection, and when this occurs, a
modifier allele that raises the recombination rate (thus decreasing LD) can cause selection to
act more efficiently. As recombination generates new configurations of beneficial alleles,
both the beneficial alleles and the recombination modifiers increase in concert. Otto and
Lenormand (77) marshall evidence from model organisms that, as artificial directional
selection proceeds, there is often a correlated elevation in recombination rate. There are
many differences in hotspot density in and near human protein coding genes stratified by
gene function, including a significant elevation of recombination hotspots in brain-expressed
genes (50). Whether the expansion by humans into new environments and subsequent
adaptive evolution was accelerated by recombination-inflating hotspots remains an
intriguing possibility.

Finally, returning to the primary empirical questions about the distribution of recombination
events across the human genome, there remains room for many additional advances.
Analysis of LD took a big step forward with our understanding of the sampling properties of
pairs of loci in a population sample (37), and population genetics theory continues to
develop analytical results that are useful and relevant to understanding recombination and
LD (88). Incorporation of a full Bayesian approach to the problem has promise, although
computational demands of Markov chain Monte Carlo (MCMC) approaches remain a
concern. In one successful attempt, Wang and Ranalla (97,98) developed a full-likelihood
MCMC method for estimating recombination rate under a Bayesian framework. This
method seems particularly ambitious when it is realized that the genealogies are modeled by
using marginal individual SNP genealogies related through an ancestral recombination
graph. The method does a credible job locating recombination hotspots, including those that
occur in clusters. Further development of approaches like this, incorporating such
complications as individual recombination rate distortions due to copy number variants,
PRDM9 allelic differences, and richer demographic models all seem within reach.
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Figure 1.
Genetic versus physical maps. (a) Genetic map location versus physical location for markers
in a 20-Mb region of human chromosome 10. The local slope of this relationship provides
an estimate of the local recombination intensity in cM/Mbp. (b) Sex-averaged recombination
intensity in the same region. Most human chromosomes have very low recombination
intensity at centromeres and high recombination intensity at telomeres. Data are from the
Rutgers human linkage map version 2 (67).
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Figure 2.
Relationship between population demography and the linkage disequilibrium (LD) map.
Colored boxes indicate the size of recurrently observed haplotypes in the sample. A small
population undergoes strong genetic drift, which results in large haplotype blocks, and as the
population size increases, these blocks get smaller. We believe that human demography is
dominated by an out-of-Africa bottleneck, so that the picture moves from small haplotype
blocks in Africa to larger blocks in the out-of-Africa populations due to founder effects and
drift. But note that the breaks between the blocks in Africa will often remain breaks outside
of Africa, preserving the locations of recombination hotspots. Redrawn from (91).
Abbreviations: Ne, effective population size; ρ, the population recombination rate, also
written as ρ = 4Neμ, where μ is the mutation rate.
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Figure 3.
Sex-specific recombination intensity across the human genome. The observations that
females produce gametes with more recombination than males, centromeres have low
recombination, and telomeres have high recombination are all discernable. To obtain the
genome-wide local recombination intensity (in cM/Mb), we performed a local regression on
the Rutgers human linkage map version 2 (67). The local polynomial degree and weight
function parameters were optimized by minimizing the local likelihood within a three-
dimensional parameter grid for each chromosome arm (66). The optimal parameter
combinations were selected by minimizing local Akaike information criterion (AIC) for
male-specific and female-specific linkage maps separately. Computation was done using the
Locfit package in the R statistical software v. 2.60 (http://www.r-project.org). Abbreviation:
Chr, chromosome.
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Figure 4.
A substantial portion of all human recombination occurs in hotspots. If small windows of the
genome are put in rank order of recombination intensity, the lowest 80% of the genome
includes only 20% of the recombination events, according to the red curve, adapted from
Myers et al. (73). The blue curve presents the result of using pedigree-based recombination
data from Coop et al. (15, tbl. S7).
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Figure 5.
Structural variation and recombination. In copy number variation (CNV) regions, there is a
deficit of markers in the Rutgers human linkage map (67) (left). The (HapMap) CNV data
are from Redon et al. (27,85). The CNV regions also have a lower sex-averaged
recombination intensity compared with the rest of the genome (right). The asterisks indicate
that the two contrasts are significant at P < 0.001. Abbreviation: CNV, copy number
variation.
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Figure 6.
Among-population heterogeneity in linkage disequilibrium (LD). A collection of 107 single
nucleotide polymorphisms (SNPs) spanning 1 Mbp of chromosome 22q was genotyped by
Graffelman et al. (31) in samples from 28 different human populations. Plotted are the
estimates of rho across this region in the major population groups studied in the HapMap
project. There is an overall similarity across populations but also pronounced local
differences.
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