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Abstract

Alzheimer’s disease (AD) is a complex disorder with a clear genetic component. Three genes have
been identified as the cause of early onset familial AD (EOAD). The most common form of the
disease is, however, a sporadic one presenting itself in later stages of life (LOAD). The genetic
component of this late onset form of AD has been the target of a large number of studies, since
only one genetic risk factor (APOE4) has been consistently associated with the disease. However,
technological advances allow new approaches in the study of complex disorders. In this review,
we discuss the new results produced by genome wide association studies, in light of the current
knowledge of the complexity of AD genetics.

INTRODUCTION

Historically, Alzheimer's disease (AD) is the most common cause of dementia. It is a
progressive neurodegenerative disorder with an insidious onset, which typically appears in
older individuals, but may affect people as early as the third decade of life [Rademakers, et
al. 2003, Rogaeva 2002]. The genetics of Alzheimer’s disease is complex and
heterogeneous. Most cases are “sporadic” with no apparent familial recurrence of the
disease. However, a small percentage of AD cases (1-2% of all cases) have an early onset
(EOAD), with symptoms appearing before 65 years of age. In these patients, the disease
commonly aggregates within families and typically presents an autosomal dominant pattern
of inheritance. Mutations in three genes are known to account for this early onset, familial

“Corresponding author: Rita Guerreiro, Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH. Room 1A-1010, Porter
Neuroscience Research Center, 35 Lincoln Drive, Bethesda, MD 20892, USA, Phone 301 435 8866, Fax 301 451 7295,
portalegrer@nia.nih.gov.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

DISCLOSURE STATEMENT

None of the authors has any actual or potential conflicts of interest including any financial, personal or other relationships with other
people or organizations within three years of beginning the work submitted that could inappropriately bias their work.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Guerreiro et al.

Page 2

type of the disease: amyloid precursor protein gene (APP), presenilin 1 gene (PSEN1) and
presenilin 2 gene (PSEN2) [Rogaeva 2002]. In fact, early-onset autosomal dominant disease
with age of onset younger than sixty years, seems to be completely explained by pathogenic
mutations in these three genes.

The most common, late onset and sporadic form of the disease remains mostly a genetic
conundrum. The only well established genetic risk factor for late onset AD (LOAD) is the
E4 allele of apolipoprotein E although many lifestyle risk factors have been reported
including low education, mid-life high blood pressure and cholesterol levels, obesity and
diabetes [Rogaeva 2002]. It has been estimated that the four established AD genes account
for less than 30% of the genetic variance in EOAD and LOAD, suggesting that numerous
additional AD genes may exist [Daw, et al. 2000]. The pursuit of these additional genes has
been unproductive until recently. In the last two years however, high throughput
technologies able to genotype up to one million single nucleotide polymorphisms (SNPs)
have revealed some of the genetic players in different complex disorders. In this review, we
will consolidate the current knowledge on the role of APP, PSENs and APOE in AD, we
will systematically review the most promising new loci and variants reported to be
associated with AD and we will discuss the recent advances in AD genome wide analysis in
the context of the known epidemiology of the disorder.

EOAD CAUSATIVE GENES (APP, PSEN1 and PSEN2)

The amyloid precursor protein gene (APP, OMIM 104760, chromosome 21g21) encodes an
ubiquitously expressed, integral type | membrane glycoprotein that exists as different
alternatively spliced isoforms, with three predominant ones: APP751, APP770 and APP695,
the latter being the main isoform found in brain [Yoshikali, et al. 1990]. The proteolytic
processing of APP results in the production of different peptides (including A), after a
series of secretase cleavages, and occurs through two mutually exclusive pathways: the
amyloidogenic pathway (fundamentally considered as the pathogenic pathway) and the non-
amyloidogenic or constitutive pathway [Esch, et al. 1990, Haass, et al. 1992, Shoji, et al.
1992]. The identification of AB as a metabolic product of APP and the reports of AD
families harboring APP causative mutations led to the general concept that Ap is a key
player in the development of AD, and that EOAD mutations are influencing the properties or
ratios of the different A isoforms in the brain [Hardy 1997]. Dominant mutations in APP
are, however, a rare cause of AD with an estimated frequency of 16% of familial EOAD
patients [Raux, et al. 2005]. More recently, two mutations in APP (A673V and E693A) have
been reported to cause AD only in the homozygous state in families with apparently
recessive modes of inheritance [Di Fede, et al. 2009] [Tomiyama, et al. 2008].

In addition to missense variants, copy humber mutations have been identified in autosomal
dominant early-onset families. Five French families [Cabrejo, et al. 2006, Rovelet-Lecrux, et
al. 2006] were first reported to harbor small chromosomal duplications with different break
points, but all including the APP locus. Subsequent screens in Finnish and Dutch AD cases
revealed additional APP duplications in EOAD cases with prominent cerebral amyloid
angiopathy (CAA) [Remes, et al. 2004, Rovelet-Lecrux, et al. 2007, Sleegers, et al. 2006].
The phenotypic spectrum of APP duplications is yet to be fully defined but clearly includes
mixed phenotypes of AD and/or CAA. The estimated frequency of duplications also appears
to be variable: in the selected Rovelet-Lecrux cohort it was 8% (about half the contribution
of missense APP mutations to early onset, autosomal dominant AD) [Raux, et al. 2005]; in
the Dutch cohort less than 2% [Sleegers, et al. 2006]; in EOAD familial and sporadic
Swedish and Finnish cases there were no duplications in APP identified [Blom, et al. 2008];
and a frequency of 18% was estimated in early onset familial Japanese cases [Kasuga, et al.
2009].
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The presenilin 1 (PSEN1, OMIM 104311, chromosome 14q24.3) and presenilin 2 (PSEN2,
OMIM 600759, chromosome 1g31-g42) genes have a very similar genetic structure and
encode two proteins expressed in a multiplicity of tissues including the brain, with higher
levels in the cerebellum and the hippocampus and a primarily neuronal expression [Levy-
Lahad, et al. 1996],[Rogaev, et al. 1995]. These are highly homologous, sharing an overall
amino acid sequence identity of 67%. Hydrophobicity plots predicted these to be integral
membrane proteins [Rogaev, et al. 1995] most likely adopting a transmembrane structure
containing nine segments with a hydrophilic intracellular loop region [Henricson, et al.
2005, Laudon, et al. 2005]. PSENSs are important components of the multimeric gamma-
secretase complex and are predominantly located in the endoplasmic reticulum and Golgi
compartments, clearly suggesting their involvement in protein processing [Kovacs, et al.
1996],[De Strooper 2003]. The first disease causing mutations in PSEN1 and PSEN2 were
identified in 1995 [Rogaev, et al. 1995, Sherrington, et al. 1995]. At the present time, 175
pathogenic mutations and 7 variants non-pathogenic or with unclear pathogenicity have been
identified in PSEN1. PSEN2 harbors fewer mutations: 14 pathogenic mutations and 9
variants non-pathogenic or with unclear pathogenicity
(http://lwww.molgen.ua.ac.be/ADMutations, accessed on August 2009). The PSENs
mutation range encompasses mainly missense mutations, thus manifesting in a scattered
fashion all over the proteins, with some clustering around transmembrane domains
[Guerreiro, et al. 2008, Hardy and Crook 2001].

GENETIC RISK FOR AD (APOE)

The apolipoprotein E gene (APOE, OMIM 107741, chromosome 19q13.2) encodes a
glycoprotein synthesized mainly in the liver, brain (primarily by neurons and astrocytes),
and also by other cells such as macrophages and monocytes [Siest, et al. 1995]. APOE is
involved in the mobilization and redistribution of cholesterol in the periphery and also
during neuronal growth and repair [Mahley 1988]; in nerve regeneration, immunoregulation
and activation of several lipolytic enzymes [Mahley and Rall 2000]. The three major APOE
isoforms (ApoE2, ApoE3 and ApoE4) differ in two sites of the aminoacid sequence
(residues 112 and 158) and are encoded by a single genetic locus. The frequencies of the €2,
€3, and ¢4 alleles were estimated at 0.11, 0.72, and 0.17, respectively, but vary widely
among populations [Zannis, et al. 1981]. The €4 allele, (the ancestral allele), is more
frequent in populations such as Pygmies (0.407) and Khoi San (0.370). The €2 allele
frequency oscillates with no apparent trend and, for example, is absent in some Native
Americans populations [Corbo and Scacchi 1999].

Many studies have demonstrated an association between the €4 allele and familial and
sporadic forms of LOAD. This allele represents an increased risk seen across different
ethnic groups of 3 fold for heterozygous carriers and up to 15 fold for individuals who are g4
homozygotes, when compared to €3 homozygotes [Ashford 2004]. APOE is known to act in
a dose dependent manner in AD: the effect of the €4 allele in the risk for AD increases from
20 to 90% and the mean age of onset decreases from 84 to 68 years with the increase in the
number of €4 alleles [Corder, et al. 1993]. The &2 allele has been shown to have an impact
on longevity and may confer protection against AD [Corder, et al. 1994]. Distinct binding
properties of the different APOE isoforms to the A peptide [Strittmatter, et al. 1993] and
tau protein [Strittmatter, et al. 1994] have been suggested to underlie the disparities
associated with each genotype. In particular, the ApoE4 isoform binds to the Ap peptide
more rapidly than the ApoE3 isoform, forming novel monofibrils that precipitate into dense
structures [Sanan, et al. 1994]. The fact that ApoE4 does not bind to tau protein in vitro,
unlike ApoE2 and ApoE3, has suggested to some that this interaction between ApoE3 and
tau serves as a protection against tau phosphorylation and consequent neurofibrillary tangle
formation [Strittmatter, et al. 1994, Weisgraber 1994].
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The ¢4 allele appears to be a risk factor and not an invariant cause of AD, indicating that
other environmental or genetic factors may need to be concurrently acting with this allele in
order to cause AD [Hyman, et al. 1996]. For example, physical activity has been shown to
be protective for dementia in non-APOEe4 carriers [Podewils, et al. 2005]. Additionally,
while most of the risk at the APOE locus is likely to be encoded at the protein coding
polymorphism, it is likely that other genetic variability at this locus, probably altering APOE
expression, also contributes to the risk of developing AD [Bekris, et al. 2009, Chartier-
Harlin, et al. 1994, Lambert, et al. 2002, Lambert, et al. 1997]. Genetic variability in APOE
expression may contribute more to disease risk, rather than independent effects of the
adjacent gene TOMMA40.

During the past two decades there have been many studies searching for genetic risk factors:
hundreds of positive and negative results have been produced, but none apart from APOE
have produced clear and reproducible associations.

DIFFERENT TYPES OF STUDIES IN AD GENETICS

Methodologically, two main genetic strategies have governed the field: genetic linkage
analysis and case-control association studies. For linkage analysis, researchers have used
informative families where a clear heritability of the disease is present and no mutations
have been found. In association studies, researchers compare the frequencies of a pre-
determined allele between a group of AD cases and a group of healthy individuals. Several
considerations are relevant for both strategies, of which we will mention the main ones. A
full discussion of all methodological issues involved in these types of studies goes beyond
the scope of this review. Here we will briefly describe the known genes and risk factors
associated with AD, with a focus on genome wide association studies (GWAS) as a
methodology for exploring genetic susceptibility and identifying risk factors and
mechanisms for disease. We will also address the previously overlooked role of
homozygosity and recessive cases in the major complexity of AD genetics.

LINKAGE STUDIES—Genetic linkage studies aim to identify chromosomal regions
associated with disease by measuring the correlated segregation of particular markers with a
determined phenotype within a family [Dawn Teare and Barrett 2005]. This type of study
usually involves three sequential steps: 1) the identification of the disease causative locus; 2)
sequencing the region found in the previous step in a cohort of cases and controls in order to
define and characterize the mutation(s) found; 3) uncovering the molecular and biological
functions of the genes found [Altshuler, et al. 2008]. Several factors are known to
complicate this approach in AD: i) difficulties in getting large, complete and informative
multigeneration families; ii) the potential inclusion of phenocopies (individuals with a
sporadic indistinguishable form of disease); and iii) genetic heterogeneity, since observing
that the pattern of disease in families is consistent with a major gene component does not
necessarily imply that only one gene or factor is involved. Additionally, linkage mapping
suffers from limitations, such as the low resolution of the results. Usually these studies do
not identify one gene or one mutation associated with a disease, but rather a chromosomal
region (many times, a very large region) is identified. In addition, the strongest linkage
signals tend to come from recessive and highly penetrant, thus very rare, disorders [Dawn
Teare and Barrett 2005].

Nonetheless, linkage mapping has been a very important methodology in the study of AD
genetics. The four genes undoubtedly associated with AD were identified primarily by
linkage analysis. In addition to these genes, several other genomic regions have been
implicated using this methodology (Table 1). These loci contain many genes that have been
considered candidates and consequently have been studied in order to identify the genetic
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variation responsible for the development of AD. Until now, no specific genes implicated in
AD have been identified in these regions. Most recently, a study by Butler and colleagues
used a meta-analysis method to analyze the pooled linkage results from five independent
genome scans. These included the results of 2206 affected individuals and 785 families of
Caucasian and Caribbean Hispanic descent. This study was able to identify genome-wide
suggestive evidence for linkage on chromosomes 1p13.3-g31.1, 7pter-p21.1 and 8p22-p21.1,
together with other seven loci presenting nominally significant evidence for linkage [Butler,
et al. 2009]. Interestingly, the most significant locus identified in this study (8p22-p21.1)
includes the CLU gene, (the top hit from the largest GWAS performed in AD, as discussed
below in this review) and previously reported loci by different studies (as 9p, 99, 10g and
12p) were not identified by Butler and colleagues. Even so, linkage analysis has largely
failed to identify risk factors in LOAD, probably due to the low odds ratios associated with
the unidentified variants.

GENE ASSOCIATION STUDIES—The quest for genetic risk factors in clinical genetics
has mainly focused on the study of candidate genes (usually focusing only on variants
altering the coding sequence of a gene). These types of studies rely on a rather simple
principle: to test if a determined allelic or genotypic variant occurs more or less often in a
group of people with a particular disease when compared to a similar group of healthy
individuals.

The success of this approach relies in an in-depth understanding of the disease and disease
pathways, in such a way that the researcher will be able to select, not only the right gene, but
also the right variant(s) to be studied. Additionally, the two studied groups need to be
homogeneous, well characterized and large enough to allow a statistically powerful analysis
[Hattersley and McCarthy 2005].

Most gene association studies in AD have studied a few variants in one or two genes. The
large number of genes and even more variants, clearly reduce the chances of true positive
findings. Nonetheless, several hundreds of positive associations have been reported. Most of
these are certainly false positives resulting mainly from population substructure (i.e.
existence of subpopulations in which there was random mating with reduced amount of gene
flow, that may lead to spurious associations when the geographical origin/ancestry of cases
and controls are not matched) [Tian, et al. 2008], poor statistical analysis and publication
bias toward positive results [Choudhry, et al. 2006, loannidis, et al. 2001]. Positive
associations have been broadly published, while negative results (unless convincingly
refuting previous results) would not be reported. When reported, most of these studies
pointed to small sample sizes, or specific genetic population backgrounds as main reasons
for the negative results. Other issues, particularly in large epidemiologic studies, include
case definition or the ability to accurately identify AD versus vascular or other forms of
dementia; age of dementia onset estimation; and phenotypic variations in the disease
whether cognitive, vascular, psychiatric or metabolic.

In order to address these very large numbers of conflicting reports, a database (the AlzGene
database) was created which systematically collects, summarizes and meta-analyzes the
results for all the genetic variants studied in association with AD [Bertram, et al. 2007]. As
of November 16t 2009 the top ten results in this database included: APOE (E2/3/4), CLU,
PICALM, TNK1, ACE, TFAM, CST3, IL1B, CR1 and hCG2039140 [Bertram and Tanzi
2008]. The fifth top hit, ACE, has repeatedly been reported as associated with AD [Webster
J, et al. 2009], atherosclerosis [Sayed-Tabatabaei, et al. 2003] and hypertension [Staessen, et
al. 1997]. The role of vascular risk factors in AD is further discussed below.
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GENOME WIDE ASSOCIATION STUDIES—The development of platforms able to
genotype millions of SNPs and of powerful analytical frameworks, able to distinguish true
associations; together with the completion of the International Human HapMap project
[Consortium 2005], have provided unprecedented tools to the study of the so called
“Common Disease-Common Variant” (CD-CV) hypothesis. This theory proposes that
common polymorphisms (usually defined as having a minor allele frequency of over 5%)
may contribute to the overall susceptibility to common diseases [Cargill, et al. 1999,
Chakravarti 1999, Lander 1996]. This type of analysis addresses one of the major pitfalls of
gene association studies: the coverage of the study. Instead of studying one or two genetic
variants, we are now able to test the majority of common variability in the genome for
association with disease, by means of testing tagging SNPs, i.e., polymorphisms in linkage
disequilibrium (LD) with each other. This means that if one knows the genotype in one
locus, one can predict with a high accuracy (dependent on the strength of the LD and the
allele frequencies) the genotype occurring at linked loci. However, these platforms require
the analyses of large numbers of samples and some regions of the genome are still not well
covered. Thus, the success of genome wide association studies (GWAS) depends on sample
size, frequency of risk alleles and individual effect sizes. The smaller the attributable risk
associated with any given common variant, the greater the number of samples needed to
identify that variant. The risk allele frequency relates to the effect size: a risk variant that has
a high odds ratio but is rare in the population is much more difficult to identify with GWAS
than a common variant linked to moderate or mild risk within the population. Additionally,
population stratification (when cases and non-cases are not genetically similar); population
admixture (when several distinct, unrecognized sub-populations comprise the same group of
individuals studied) and unreported relatedness in the population may also be problems if
the study is not correctly designed [Simon-Sanchez and Singleton 2008].

The competing hypothesis to explain the genetic basis of complex diseases is the “Common
Disease-Rare Variant” (CD-RV) theory, which suggests that multiple rare variants underlie
susceptibility to such diseases [Fearnhead, et al. 2005]. Although the CD-CV versus CD-RV
is a false dichotomy, it has major implications for the future of the research in this field,
since different techniques are used to find common versus rare alleles. By definition, rare
variants have low frequencies (MAF > 0.1% to 2—-3%) and individually small contributions
to the overall inherited susceptibility of a disease. In this way, rare variants will not be
detectable by GWAS. Instead, the choice of candidate genes and appropriate case groups has
been essential to uncover this type of variants[Bodmer and Bonilla 2008]. The new
sequencing technologies will facilitate this approach by allowing the assessment of all the
genes in the genome. Nonetheless, the extensive DNA resequencing of the whole genome in
large numbers of individuals, and the assessment of the functional consequences of the
variants found, poses difficult bioinformatic and data management challenges.

There is no doubt that GWAS have uncovered previously unknown polymorphic variants
and genes with significant effects on AD risk. However, considering the studies so far
carried out in AD (see next section for details), the associations still to be found will have
ORs lower than 1.2. This has raised the question as to whether it is worthwhile to pursue
even larger GWAS in order to identify variants with small effects disease risk. Certainly, in
the future, sequencing and association strategies will be employed together to fully dissect
the genetic architecture of the risk of AD and other complex disorders [Bodmer and Bonilla
2008].

Since APOE has been the only risk factor consistently associated with LOAD and some
reports have estimated a heritability of AD between 60 and 80% [Gatz, et al. 2006,
Pedersen, et al. 2001] it is believed that genetic variability plays a critical role in LOAD and
that several risk factors are still to be uncovered. Daw and colleagues had estimated the
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existence of four to seven additional genes contributing to this genetic variability [Daw, et
al. 2000].

Several GWAS in AD have now been published. The first study of this type was performed
by Grupe et al., in which the approach used was to first generate a short list of candidate
SNPs by analyzing >17,000 SNPs in DNA pools from one set of cases and controls. In truth,
this study only covers a small proportion of the genome, probably around 5%, and is not
strictly “genome-wide”. In this study, markers meeting a previously defined significance
criteria were then typed in DNA pools from a second set of samples and, again the SNPs
satisfying the criteria were then individually genotyped in four sets of cases and controls and
finally in a fifth sample. In total, nearly 4000 samples (~2000 AD cases, ~2000 controls)
from the United States and the United Kingdom were studied. Three SNPs on chromosome
19 in LD to APOE represented the most significant associations, of which two (rs157581 in
TOMMA40 and rs405509 in APOE) achieved genome-wide significance. SNPs in other genes
reached nominal significance but did not achieve genome wide significance [Grupe, et al.
2007].

The first studies covering the majority of the genome were published by Coon et al. [Coon,
et al. 2007] and Reiman et al. [Reiman, et al. 2007] (~1000 cases and controls). In these
studies on largely the same dataset, only a single SNP in LD with APOE (rs4420638)
reached genome wide significance although SNPs in GAB2 (rs2373115) reached
significance when the AD cases were stratified by APOE genotype [Reiman, et al. 2007]. An
analysis of the top hits from AlzGene in the same dataset found that only SNPs is ACE
reached nominal significance [Webster J, et al. 2009].

Liu et al. reported on a genome screen of 402 microsatellite markers in 103 LOAD patients
and 170 first-degree relatives from a pedigree with 4645 members from The Netherlands.
Multipoint analysis revealed four significant (1921, 1925, 10q22-24 and 3g22-24) and one
suggestive (11g24-25) linkage peaks. Several of these regions coincide with previously
reported loci (Table 1) with the strongest linkage association found for chromosome 1g21.
Following these results, the authors tested for association between cognitive function and
4,173 SNPs in the linked regions in an independent sample consisting of 197 individuals
from the same Genetic Research in Isolated Populations program. After adjusting for
multiple testing, significant associations were identified in four (1925, 3q22-24, 10q22-24
and 11q25) of the previous five regions (Table 2) [Liu, et al. 2007].

Abraham and colleagues performed a genome-wide association study in pooled DNA
samples of ~2000 LOAD cases and >1000 controls. They identified a set of 109 SNPs with a
significant association with AD and genotyped them individually. In addition to APOE, one
SNP (rs727153), located approximately 13 kb apart from the start of LRAT transcription site,
was suggested as associated with disease [Abraham, et al. 2008].

Li et al., 2008 studied a hypothesis-generating cohort from Canada and identified rs4420638
within APOCL to be strongly associated with AD, due to LD with APOE [Coon, et al. 2007]
but nothing else reached genome wide significance [Li, et al. 2008].

Bertram et al., 2008 used samples from 410 AD families to identify five SNPs significantly
or marginally associated with a multivariate phenotype combining age at onset of the disease
and affection status. The marker presenting the most significant association was again
rs4420638 (located 340 bp 3’ of APOC1) and almost certainly reflecting the effects of
APOE &4 allele. Once more, no other SNP reached genome wide significance [Bertram, et
al. 2008].
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Beecham and colleagues analyzed ~500 LOAD cases and ~500 cognitive controls followed
by a further >200 cases and >200 controls used as a validation data set for SNPs that
reached nominal, but not genome-wide significance. They too, were able to confirm
association with the APOE locus and they suggest an association with the 12913 locus,
which they replicated in the validation data set. The associated SNP (rs11610206) is close to
the hypothetical gene FAM113B. Additionally, there are a number of nearby candidate
genes, such as VDR and AMIGO?2. In order to validate associated SNPs with p values
<0.0001 and nominally associated candidate genes, they imputed SNPs from a previously
published GWAS [Reiman, et al. 2007]. Four additional highly associated signals were
replicated with the use of the imputed data set: 1g42-within DISC1; 4928-200 kb proximal
to PCDH18; 614 — nearest gene BCKDHB; and 19q13 — within ZNF224 [Beecham, et al.
2009].

By analyzing ~1000 LOAD cases and ~1000 controls and evaluating the 25 SNPs with the
most significant allelic association in four additional series, Carrasquillo and colleagues
suggested an association with the X chromosome SNP rs5984894 in PCDH11X (Xq21.3)
[Carrasquillo, et al. 2009] but again, this association did not reach genome wide
significance.

Feulner et al. generated genome-wide data in a German cohort of ~500 AD patients and
~500 controls. The results obtained were analyzed only for the genes included in the top
results list on the AlzGene database. Additionally to APOE, nominally significant
associations were found for six of the ten studied genes (CH25H, PGBD1, LMNA, PCK1,
MAPT and SORL1) [Feulner, et al. 2009] but none of these putative signals reached genome
wide significance.

All the above studies, which each used <2000 Alzheimer cases in their analysis, were able to
pick up the signal at the APOE locus, but despite tantalizing results, none were able to
identify other loci at a level which passes the threshold for genome wide significance, and
no two of them identified the same locus. The data from the Reiman et al. and by Li et al.
studies, were made publicly available (http://www.tgen.org/research/neuro_gab2.cfm and
http://ww.GSK.com, respectively) to enable their additive use in other studies. Overall,
these data pointed to the need for larger studies to identify risk loci with smaller effect sizes.
Two such studies have now been reported.

One reported the analysis of ~4000 cases and ~8000 controls in stage 1 and ~2000 cases and
~2000 controls in stage 2. Two SNPs significantly associated with AD, outside the APOE
locus, were identified: rs11136000 located in an intron of CLU on chromosome 8 and
rs3851179 located close to the gene PICALM on chromosome 11. Although the risks
associated with CLU and PICALM genes are relatively small (APOE odds ratio~4; CLU/
PICALM~1.1) these associations reached genome wide significance [Harold, et al. 2009].
The other large AD GWAS reported on 2000 cases and ~5000 controls in the first stage, and
~3000 cases and ~3000 controls in the replication stage. An association between AD and
ApoE, CLU and CR1 locus on chromosome 1g32 (OR=1.2) was found [Lambert, et al.
2009b].

These aforementioned three genes (CLU, CR1 and PICALM) will clearly be the subject of
intense research. Here we will discuss the main features of each of these genes, as well as
the potential pathobiological pathways in which they may be involved in the context of AD.

Clusterin or apolipoprotein J is, like APOE, a lipoprotein expressed in most mammalian
tissues with higher levels present in brain, ovary, testis and liver [de Silva, et al. 1990]. CLU
interacts with different molecules, including lipids, amyloid proteins, components of the
complement membrane attack complex (MAC) and immunoglobulins [Jones and Jomary
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2002]. Accordingly, it has been proposed to be involved in a number of physiological
processes such as ongoing synapse turnover [Danik, et al. 1993], apoptosis [Jenne and
Tschopp 1992, Wong, et al. 1993], cytoprotection at fluid-tissue boundaries, membrane
recycling during development and in response to injury and regulation of complement-
mediated MAC [Jones and Jomary 2002, Oda, et al. 1994]. Clusterin has also been proposed
to be a form of secreted heat-shock protein or chaperone molecule [Michel, et al. 1997,
Wilson and Easterbrook-Smith 2000].

Several lines of evidence suggest that CLU has a central (either protective or pathogenic)
role in the pathway leading to Alzheimer’s disease. First, CLU mRNA has been reported to
be elevated in AD affected brain areas such as hippocampus, either when brains from AD
patients were compared to one Huntington patient [Duguid, et al. 1989], or to controls [May,
etal. 1990]. Likewise, Oda et al. reported a statistically significant difference in the
Clusterin protein content of extracts from cortex and hippocampus when comparing 10 non-
AD individuals and 25 AD patients [Oda, et al. 1994]. Second, Clusterin is one of the
components of amyloid plaques [Kida, et al. 1995, McGeer, et al. 1992, McGeer, et al. 1994,
Takamaru 1994]. Third, is able to bind soluble AB through a specific, reversible and high-
affinity interaction in cerebrospinal fluid [Ghiso, et al. 1993, Golabek, et al. 1995] to form
complexes able to cross the blood-brain barrier by a high affinity receptor mediated process
involving transcytosis [Zlokovic 1996]. Fourth, reduced levels of APOE and increased
levels of CLU have been correlated with the number of E4 alleles, suggesting a
compensatory induction of CLU in the brain of AD individuals with the €4 allele of APOE
presenting low brain levels of APOE [Bertrand, et al. 1995]. Moreover, CLU was shown to
prevent aggregation and polymerization of synthetic AB and to enhance the oxidative stress
caused by A in vitro [Matsubara, et al. 1996, Oda, et al. 1995], and to facilitate Ap uptake in
cell culture experiments [Hammad, et al. 1997]. Clusterin appears to regulate the toxicity
and conversion of A into soluble forms [Boggs, et al. 1996, DeMattos, et al. 2002,
Matsubara, et al. 1996, Oda, et al. 1995]. Together with APOE, suppresses AP deposition
[DeMattos, et al. 2004] and may modify AP clearance at the blood brain barrier [Bell, et al.
2007].

PICALM, encodes the phosphatidylinositol-binding clathrin assembly protein, also known as
CALM: clathrin assembly lymphoid-myeloid leukemia gene. It is ubiquitously expressed
with particularly high levels in neurons. This gene has been associated with leukemia, thus
its relation to AD may appear not as direct as the one observed for CLU (Figure 1).
Nonetheless, its involvement in clathrin-mediated endocytosis (essential to the intracellular
trafficking of proteins and lipids) [Kim and Kim 2001] and in the fusion of synaptic vesicles
to the presynaptic membrane by directing the trafficking of VAMP2 [Harel, et al. 2008]
have lead Harold et al. to propose two interesting hypotheses for the role of Picalm in AD.
In this way, genetic variability in PICALM may result on synapse perturbations, possibly
through synaptic vesicle cycling, or on alterations of APP processing through endocytic
pathways, culminating in changes in AB levels [Harold, et al. 2009].

CR1, the complement component (3b/4b) receptor 1 (Knops blood group) is a member of the
receptors of complement activation family. The gene encodes a monomeric single-pass type
I membrane glycoprotein found on erythrocytes, leukocytes, glomerular podocytes, and
splenic follicular dendritic cells that mediates cellular binding to particles and immune
complexes that have activated complement [Ahearn and Fearon 1989].

Three complement pathways are known: the classical, alternative and lectin-mediated
cascades, which have different activation triggers, but all terminate with the production of
the membrane attack complex. High enough concentrations of MAC result in cell lysis. This
may lead to tissue damaging when the complement activation tight regulation, (that occurs
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through the action of several different endogenous complement inhibitor proteins), is
deficient [Sjoberg, et al. 2009]. Typically, the complement classical pathway is the one
associated with AD [Akiyama, et al. 2000], mainly due to three facts: 1) C1q, the first
protein in this pathway, efficiently binds to aggregated Ap, activating the pathway and
further enhancing AP aggregation and fibril formation [Rogers, et al. 1992, Webster, et al.
1995]; 2) early complement activation proteins (C1g, C4 and C3) and the MAC have been
found to co-localize with senile plagues, NFTs and dystrophic neurites in AD brains
[McGeer, et al. 1989, Veerhuis, et al. 1996, Webster, et al. 1997]; and 3) increased mRNA
levels of complement proteins are present in AD brains when compared to controls [Walker
and McGeer 1992]. More recently, activation of the alternative pathway in AD brains has
also been demonstrated: Ap activates the alternative pathway in vitro [Bradt, et al. 1998];
factor B mRNA is present in AD frontal cortex, and factor D cleaved split products of factor
B (Bb and Ba) are significantly increased in AD brains [Strohmeyer, et al. 2000]. After the
discovery that the complement system can be activated in the brain by several senile plaques
and neurofibrillary tangle related components, in the absence of antibodies, and that neurons
are a source of complement proteins in the brain, the involvement of the complement system
in AD has been widely accepted [McGeer and McGeer 2001]. However, whether this
involvement has a protective or deleterious effect has been extensively debated. In fact, it
has been proposed that binding of C1q to misfolded proteins in early AD, together with
C4BP that decreases MAC activation, are favorable and enable clearance of the misfolded
material. But, when the system is overwhelmed by amyloid, this protein binds extensively to
C1q leading to the full activation of the complement, ultimately leading to detrimental
inflammation and neurodegeneration [Sjoberg, et al. 2009].

In summary, as in other aging degenerative diseases, the complement system has an
important role in AD, and one may expect that the activation of the classical or the
alternative pathways (or both) by AB will lead to neurodegeneration in individuals with a
genetic predisposition [Zipfel 2009]. This will possibly result from an unbalance between
the expression of regulator proteins, and one or more cascade proteins (Figure 2). This
model is able to explain, at least partially, the presence of neuropathological changes in the
brains of non-demented individuals [Hof, et al. 1996] since the genetic variability in the
complement genes may be responsible for different complement reactions to the presence of
NFT and senile plaques. Interestingly, as mentioned above, one function attributed to
clusterin is in the regulation of complement-mediated membrane attack complex. Together
with vitronectin, clusterin binds to the nascent amphiphilic C5b-9 complex, rendering it
water soluble and lytically inactive, raising the possibility that the genetic risk conferred by
clusterin for the development of AD, may arise from its regulation role in the complement
system.

VASCULAR RISK FACTORS AND AD

These genetic findings point to the role of tissue and vascular damage in AD pathogenesis
and thus to vascular risk factors in its aetiology. It is noteworthy that many of the genes now
implicated potentially have a direct role at the blood brain interface: this includes APOE,
ACE and the complement cascade components including CR1 and CLU. As such, these
findings are consistent with the epidemiologic literature, which has consistently reported an
association between vascular risk factors and AD. The evidence base for the prevention of
AD and related brain pathologies is strongest for control of vascular risk factors [Gustafson
D and | 2009]. Overweight and obesity is a cornerstone of vascular risk, which predisposes
to hypertension, hypercholesterolemia, diabetes, and cardiovascular disease. Indeed, the low
risk ratios observed in genetic studies attempting to identify new susceptibility genes for AD
may be due to lack of information on presence and/or severity of this vascular involvement,
as well as to the differential expression and clustering of vascular and metabolic traits. AD
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brain pathologies exist against a background continuum of vascular pathologies, which may
modulate risk for clinically manifest disease. Vascular factors most directly related to newly
identified susceptibility genes are hypertension, hypercholesterolemia, and overweight and
obesity.

Hypertension is a risk factor for stroke, ischemic white matter lesions, silent infarcts, general
atherosclerosis, myocardial infarction and cardiovascular morbidity and mortality. This risk
increases with increasing blood pressure also at apparently healthy blood pressure ranges
[Kannel 2000]. Several longitudinal studies have suggested an association between AD and
previous hypertension [Kivipelto, et al. 2002, Launer, et al. 2000, Qiu, et al. 2005, Skoog, et
al. 1996, Stewart, et al. 2009]. ACE, which is currently (accessed on November 16™) the
fifth top hit on Alzgene database [Bertram, et al. 2007], plays a classical role in blood
pressure regulation as part of the renin-angiotensin system [Goossens, et al. 2003]. This
system may play a role in dementia pathogenesis because of its effects on vascular and
metabolic homeostasis, as well as amyloid metabolism. The gene encoding for ACE is an
AD susceptibility gene whereby effect modification is observed by vascular phenotype,
particularly with population stratification by vascular factors such as APOE ¢4 allele,
systolic blood pressure, body mass index, and obesity indices [Gustafson, et al. 2008,
Katzov, et al. 2004]. Thus, the renin angiotensin system may also provide a link between
obesity, hypertension, and vascular syndromes, such as type 2 diabetes, and health of the
brain [Goossens, et al. 2003, Katzov, et al. 2004] because human brain and adipose tissue
express the renin-angiotensin system [Strazzullo, et al. 2003].

Cholesterol is important in AD, not only because of its relationship with cardiovascular
disease, but due to its role in amyloid metabolism [Sparks, et al. 1994]. APOE and CLU are
two proteins involved in lipid transport in the peripheral and central nervous systems
[Nuutinen, et al. 2009]. APOE regulates cholesterol homeostasis in astrocytes and microglia,
and is related to blood cholesterol levels [Hoglund and Blennow 2007]. In addition,
mutations in the APP gene upregulate AB40 and AB42 production; [Pangalos, et al. 2005]
and AP processing is sensitive to cholesterol levels and lipid trafficking. Brain cholesterol
levels increase during AD progression [Hoglund and Blennow 2007]. The epidemiologic
evidence associating high blood cholesterol levels with AD and other forms of dementia is
mixed. High cholesterol levels in mid-life may increase risk for subsequent dementia and
AD [Kivipelto, et al. 2002, Notkola, et al. 1998, Whitmer, et al. 2005], however, in late-life,
low cholesterol levels have been predictive of subsequent dementia [Mielke, et al. 2005,
Reitz, et al. 2004] or no association has been observed [Li, et al. 2005, Yoshitake, et al.
1995]. Nevertheless, even within the mid-life cholesterol literature, results are conflicting, as
some studies have not found high cholesterol to predict later dementia [Kalmijn, et al. 2000,
Stewart, et al. 2007, Tan, et al. 2003]. While there remain a number of questions regarding
the amyloid hypothesis in relationship to AD, the potential link to cholesterol metabolism
and vascular damage is noteworthy [Hardy 2009].

Finally, while overweight and obesity appear to increase risk for dementia independently of
other vascular factors, there is limited evidence related to adipose-specific mechanisms of
action in AD, particularly in relationship to these newly identified susceptibility genes. Mid-
life total or central obesity measured decades before dementia onset has been linked to
higher risk of dementia in late life [Fitzpatrick, et al. 2009, Gustafson, et al. 2009, Kivipelto,
et al. 2005, Whitmer, et al. 2007, Whitmer, et al. 2008]. Risky effects of high BMI as late as
in the eighth decade of life have also been observed [Gustafson, et al. 2003, Hayden, et al.
2006]. During the prodromal phase of dementia, higher rates of body weight or BMI decline
occur among those developing dementia [Barrett-Connor, et al. 1996, Buchman, et al. 2005,
Stewart, et al. 2005]. Thus, one cannot deny the role of excess adiposity as enhanced
substrate for CR1-related inflammatory events, nor its potential role in hypertension and
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hyperlipidemia. However, also of importance are the implications of declining metabolic
parameters, such as BMI [Barrett-Connor, et al. 1996, Buchman, et al. 2005, Stewart, et al.
2005], blood pressure [Stewart, et al. 2009] and cholesterol [Stewart, et al. 2007] in AD, for
which these newly identified susceptibility genes may enhance our precision in identifying
subgroups of AD for whom interventions are more advantageous.

POSSIBLE ROLE OF HOMOZYGOSITY AND RECESSIVE CASES

AD, as many other diseases occurring sporadically, recurs within families more often than
expected by chance alone. However, in the majority of the cases, the pattern of familial
recurrence is not compatible with simple Mendelian transmission and this model is typically
presumed to reflect a multifactorial determination with contributions from multiple genes
and/or environmental factors [Altshuler, et al. 2008]. However, the observed familial
recurrence could also be attributed to genetic loci with large phenotypic effects and reduced
penetrance (possibly recessive loci). In this case, one would not necessarily expect to see
recurrence of the disease in multiple generations, nor a high recurrence rate among siblings,
and the disease would be sporadic in the population. Although without a definite
confirmation of pathogenicity, two rare potentially disease-associated mutations (Q170H
and R181G) in ADAM10 (an alpha-secretase capable of anti-amyloidogenic proteolysis of
the amyloid precursor protein) were recently reported to be associated with LOAD [Kim, et
al. 2009]. Other mutations in PSEN1 (A79V) [Kauwe, et al. 2007] and PSEN2 (N1411)
[Levy-Lahad, et al. 1995] have also been reported to be present in families with non-carriers
affected individuals.

Recessive contributions can be inferred when populations with high degrees of
consanguinity present higher prevalence of the disease than the general population [Mani, et
al. 2002]. The Wadi Ara population is one example of this premise: an unusually high
prevalence of AD (20% of those over 65 years and 60% of those over 85 years) in a
population where the 4 allele of APOE is relatively uncommon [Bowirrat, et al. 2000,
Bowirrat, et al. 2001]. In this regard, the study of families with a recessive mode of
inheritance may not only identify the cause of disease in the respective family, but also be of
utility in the identification of risk factors contributing to the sporadic form of disease.

Populations that have been largely isolated and subjected to extensive inbreeding during
considerable periods in their recent history represent a powerful resource for the study of
new genetic variants for common diseases. These populations provide several advantages
for genetic research, such as longer stretches of linkage between neighboring markers, high
levels of genetic and environmental homogeneity and a simpler genetic architecture for
complex traits. Although these long homozygous tracts of uninterrupted sequences may
represent deletion polymorphisms, loss of heterozygosity or segmental uniparental disomy,
recent data suggests that these, most likely, represent autozygosity (homozygosity by virtue
of parental descent from a common ancestor) [Devilee, et al. 2001, Li, et al. 2006,
Raghavan, et al. 2005, Woods, et al. 2004]. In this way, an obvious application of whole
genome platforms in relation to autozygosity is in the genetic analysis of consanguineous
families. This can be considered as an analogous approach to linkage analysis, in which
researchers aim to define shared regions of autozygosity and/or overlapping structural
variants in order to determine the role of autozygosity in a particular disease. Autozygosity
mapping has long been recognized as a rapid and cost effective way to identify loci
underlying recessive disease [Lander and Botstein 1987] and several genes underlying
different disorders have been identified using this methodology [Camargos, et al. 2008,
Paisan-Ruiz, et al. 2009]. Specifically in AD, we have generated the first catalog of
autozygosity in EOAD by studying a consanguineous Israeli family. Although we were
unable to pinpoint a specific gene due to the small number of samples we had available for
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analysis, we were able to generate a catalog that may be used in future studies of other
families [Clarimon, et al. 2008].

Furthermore, even in outbred populations, more individuals have a high frequency of these
autozygous tracts than previously expected [Gibson, et al. 2006, Li, et al. 2006]. Our group
and others have recently reported the unexpected high degree of apparent parental
consanguinity in control individuals from North America (~10% of studied individuals
harboring homozygous tracts larger than 5Mb) [Simon-Sanchez, et al. 2007]. Similar
numbers (~6%) were presented by Li and collaborators, when studying an outbred
population of unrelated Han Chinese [Li, et al. 2006] and by Gibson et al. who reported that
>1000 tracts exceeding 1Mb in length were observed in the ~200 unrelated HapMap
individuals studied [Gibson, et al. 2006]. These observations prompted us to study
autozygosity in LOAD in an outbred population. By comparing measures of extended
homozygosity (greater than 1 Mb in length) in a population of >800 LOAD cases and >550
controls we were able to identify one homozygous region on chromosome 8 (8p12, not
including the CLU locus), significantly associated with LOAD. Additionally, the
comparison of the total numbers of homozygous runs and the total length of these runs
between cases and controls, revealed a suggestive difference in these measures (p-values
0.052-0.062), most likely symptomatic of a recessive component in the etiology of LOAD
[Nalls, et al. 2009]. The role of recessive mutations in AD has been considerably
overlooked: in addition to the recent works describing recessive APP mutations (discussed
above in this review) [Di Fede, et al. 2009, Tomiyama, et al. 2008], only two other studies of
isolated populations with a high incidence of the disease have been reported where the
primary analyses were performed using dominant or additive modes of inheritance [Farrer,
etal. 2003, Liu, et al. 2007]. The new technologies now available will allow us to overcome
this gap in the near future.

THE NEXT STEPS

Two major and clearly non-exclusive pathways have been recently discussed as the future
guidelines in the genome wide analysis of complex disorders [Goldstein 2009, Hirschhorn
2009, Kraft and Hunter 2009]. The first is the extension of the assembly of studies
containing larger (tens or even hundreds of thousands) and representative samples in order
to identify variants with lower frequencies that may have been missed until now and that
could explain the so elusive fractions of “missing heritability” in AD. The increase in the
number of studied samples will inevitably result in the discovery of new variants and
probably new genes associated with AD, but the real net value of these variants is highly
disputable. Therefore, the actual dilemma now is to know how far one should take these
studies in order to keep a positive balance between the resources applied and the gathered
genetic returns [Goldstein 2009, Hardy and Singleton 2009]. Clearly, still to discover rare
variants and variants with small effect sizes will be difficult to replicate, due to reduced
power and restriction to specific populations, respectively. Nonetheless, in order to identify
these rare variants one may speculate the need to use new chips with a better coverage of
rare variants and the resequencing of previously identified regions. One may also predict
that, being AD a complex disorder, more emphasis will be put in the study of
endophenotypes, as happened in the study by Liu et al. that used cognitive function as an
endophenotype of AD and identified the RGSL2, RALGPS2 and Clorf49 genes as potential
causative genes located in one of the associated genomic regions [Liu, et al. 2007]. This
approach will obviously require precise and clearly defined clinical assessments.

The second line of investigation will rely in the sequencing of whole exomes and whole
genomes, expectantly unveiling several new rarer risk variants. These higher risk variants
may be related to the commoner lower risk variants found with GWAS. In fact, a classical
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example comes from the study of Parkinson’s disease genetics: rare high-risk variants in the
a-synuclein gene are the cause of monogenic PD [Polymeropoulos, et al. 1997], while a
common haplotype of this same gene has been established as a moderate risk cause of
sporadic disease [Simon-Sanchez, et al. 2009].

Both lines of research will be followed by large resequencing efforts, in order to identify the
real risk variants. Many GWAS have identified regions of the genome associated with AD,
but in many cases the real risk/causal changes are not known. Additionally, in the cases
where SNPs have been associated with a disease, these SNPs identified may in fact be in LD
with the real variants causing the association. Further functional data, (for instance, the
effects of a determined variant in gene expression), although not always possible to obtain,
will be essential not only to validate the previously identified variants, but also because
many variants map to non coding protein sequences, gene deserts, or genomic regions
without any functional elements. The integration of these functional studies with
information on multiple variants from the same gene, in different populations and the effects
of epigenetics and epistasis will be vital. The interpretation of these results, however, will be
complex and will most likely require the combination of disciplines as integrative genomics
and systems biology. Although difficult, this approach will ultimately allow a more
profound understanding of the molecular pathways underlying AD and AD risk, as well as
the subsequent identification of effective biomarkers and drugs.
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Figure 1. Predicted interactions for Clu (A), Picalm (B) and CR1 (C)

The software STRING 8.0 (available at
http://string.embl.de/newstring_cgi/show_input_page.pl?
Userld=75H_IKjgP5Xi&sessionld=9vx3bNEK6tmB) was used to establish a network of
predicted interactions for Clu (A), Picalm (B) and CR1 (C) proteins. Accessed on August
2009. STRING is a database of known and predicted protein interactions. The interactions
include direct (physical) and indirect (functional) associations; they are derived from four
sources: genomic context, high-throughput experiments, (conserved) coexpression and
previous knowledge. STRING quantitatively integrates interaction data from these sources
for a large number of organisms, and transfers information between these organisms where
applicable. The database currently covers 2,483,276 proteins from 630 organisms.

From the three represented proteins, CLU is the one with a more direct relation with AD:
APOE is directly connected to CLU. Interestingly, CLU also interacts with proteins present
in CR1 network (like C3). No other genes consistently associated with AD are present in
PICALM or CR1 networks, indicating that these proteins may be involved in new
pathobiological pathways.
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Figure 2. Genetic variability and the role of the complement system in AD

Ap and probably NFTs are able to activate the classical and alternative complement
pathways. These are regulated by several membrane (m) and soluble (s) proteins at different
stages. The genetic variability in CR1 is now known to be associated with the risk of
developing AD. Increased numbers of samples are needed to know if the same is true for
any other component of these pathways. Drawn from the work of Tenner [Tenner 2001] and
McGeer and McGeer [McGeer and McGeer 2002]
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