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Abstract
Massively parallel sequencing technologies continue to alter the study of human genetics. As the cost of sequencing
declines, next-generation sequencing (NGS) instruments and datasets will become increasingly accessible to the
wider research community. Investigators are understandably eager to harness the power of these new technologies.
Sequencing human genomes on these platforms, however, presents numerous production and bioinformatics chal-
lenges. Production issues like sample contamination, library chimaeras and variable run quality have become increas-
ingly problematic in the transition from technology development lab to production floor. Analysis of NGS data,
too, remains challenging, particularly given the short-read lengths (35^250bp) and sheer volume of data.The devel-
opment of streamlined, highly automated pipelines for data analysis is critical for transition from technology adop-
tion to accelerated research and publication. This review aims to describe the state of current NGS technologies,
as well as the strategies that enable NGS users to characterize the full spectrum of DNA sequence variation
in humans.

Keywords:massively parallel sequencing; next generation sequencing; humangenome; variant detection; short read alignment;
whole genome sequencing

INTRODUCTION
The landscape of human genetics is rapidly chang-

ing, fueled by the advent of massively parallel

sequencing technologies [1]. New instruments from

Roche (454), Illumina (GenomeAnalyzer), Life

Technologies (SOLiD) and Helicos Biosciences

(Heliscope) generate millions of short sequence

reads per run, making it possible to sequence entire

human genomes in a matter of weeks. These ‘next-

generation sequencing’ (NGS) technologies have al-

ready been employed to sequence the constitutional

genomes of several individuals [2–10]. Ambitious ef-

forts like the 1000 Genomes Project and the Personal

Genomes Project [11] hope to add thousands more.

The first five cancer genomes to be published

[12–17] revealed thousands of novel somatic muta-

tions and implicated new genes in tumor develop-

ment and progression. Our knowledge of the genetic

variants that underlie disease susceptibility, treatment

response and other phenotypes will continually im-

prove as these studies expand the catalog of DNA

sequence variation in humans.

The genomes of at least 10 individuals have been

sequenced to high coverage using NGS technologies

(Table 1). The first such genome (Watson) was

sequenced to �7.4� coverage on the 454 GS

(Roche) platform [9], and included �3.3 million

single nucleotide polymorphisms (SNPs) of which

82% were already listed in the National Center for

Biotechnology Information SNP database (dbSNP)

[18]. Remarkably, the nine personal genomes that

followed on NGS technologies [2–8] reported simi-

lar results in terms of SNPs: 3–4 million per genome,

80–90% of which overlapped dbSNP. This pattern is

so robust, in fact, that many consider �3 million

SNPs with 80–90% dbSNP concordance (depending
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on the ethnicity of the sample) to be the ‘gold stand-

ard’ for SNP discovery in whole-genome sequencing

(WGS). Another implication of this pattern is that

individual genomes contain �0.5 million novel

SNPs, whose submission to public databases will

cause exponential growth as WGS studies expand.

Indeed, since the completion of the Watson

genome in 2007, submissions to dbSNP have sky-

rocketed (Figure 1). As of February 2010, dbSNP

received over 100 million submissions for human,

Table 1: Complete individual genomes and cancer genomes sequenced onmassively parallel sequencing instruments

Sample Sequencing
platform

Max read
length (bp)

Fold
coverage

Genotype
concord. (%)

SNPs
(m)

dbSNP
(%)

Individual genomes
Watson [9] Roche/454 1�250 7.4� 75.8 3.32 82
NA18507 (YRI) [3] Illumina 2� 35 41� 99.5 3.45 74
NA18507 (YRI) [6] ABI SOLiD 2� 25 18� 99.2 3.87 81
YH (Asian) [8] Illumina 2� 35 36� 99.2 3.07 86
SJK (Korean) [2] Illumina 1�75 29� 99.4 3.44 88
AK1 (Korean) [5] Illumina 2�106 28� 99.1 3.45 83
P0 (Quake) [7] Helicos 1�70 28� 98.3 2.81 76
NA07022 (CEU) [4] Complete genomics 2� 35 87� 91.0 3.08 90
NA19240 (YRI) [4] Complete genomics 2� 35 63� 95.0 4.04 81
NA20431 (PGP1) [4] Complete genomics 2� 35 45� 86.0 2.91 90

Sample Sequencing
platform

Max read
length (bp)

Tumor
coverage

Normal
coverage

Coding
SNVs

Coding
idels

Cancer genomes
Acute myeloid leukemia (AML1) [12] Illumina 1�36 33� 14� 8 2
Acute myeloid leukemia (AML2) [13] Illumina 2� 75 23� 21� 10 2
Lobular breast cancer [16] Illumina 2� 50 43� ç 32 0
Small-cell lung cancer (NCI-H209) [15] ABI SOLiD 2� 25 39� 31� 134 2
Malignant melanoma (COLO-829) [14] Illumina 2� 75 40� 32� 292 0
Glioblastoma cell line (U87MG) [20] ABI SOLiD 2� 50 30� ç 100 34
Basal-like breast cancer [17] Illumina 2� 75 29� 39� 43 7

Genotype concordance for individual genomes represents agreement with high-density SNP array genotypes.‘SNPs’ indicates the number of single
nucleotide polymorphisms called, excluding small indels. ‘dbSNP’ indicates the proportion of SNPs that were present in dbSNP build 126 or later.
‘Coding SNVs’ indicates validated single nucleotide variants (non-indels) in coding regions, while ‘coding indels’ includes validated small insertions/
deletions in coding regions.

Figure 1: Growth of public database dbSNP from 2002 to 2010. Note exponential growth in submissions following
the first genome sequenced on next-generation technology (Watson) in 2007.
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corresponding to 23.7 unique sequence variants of

which more than half have been validated [18].

NGS technologies show great promise for the

study of the genetic underpinnings of human disease.

WGS is particularly appealing because it can detect

the full spectrum of genetic variants—SNPs, indels,

structural variants (SVs) and copy number variatons

(CNV)—that may contribute to a phenotype [19].

Indeed, the complete genome sequences several

human cancers—AML [12, 13], breast cancer

[16, 17], melanoma [14], lung cancer [15] and glio-

blastoma [20]—have dramatically expanded the cata-

log of acquired (somatic) changes that may

contribute to tumor development and growth

(Table 1). For Mendelian diseases, massively parallel

sequencing of family pedigrees offers an effective

means of identifying the variants and genes under-

lying inherited disease [21]. Indeed, the recent

sequencing and analysis of a proband with

Charcot–Marie tooth syndrome [22] demonstrates

that these technologies have the potential for diag-

nostics in a clinical setting.

The value of massively parallel sequencing instru-

ments for research is clearly illustrated by the wide-

spread adoption of these platforms throughout North

America, Europe, Asia and the Pacific (Figure 2).

The commoditization of NGS throughout the

world suggests that a substantial portion of sequenced

human genomes will be produced outside of major

genome sequencing centers. Very soon, groups with

little to no experience in working with massively

parallel sequencing data will gain access to these

powerful technologies. The challenges that they

face—in terms of production, management, analysis

and interpretation of incredible amounts of sequence

data—are daunting indeed. Fortunately, major

genome centers and other groups who pioneered

both traditional and NGS of human genomes have

already addressed many of the key issues. Their stra-

tegies and methods for high-throughput sequencing

of human genomes are the focus of this review.

NGS: OVERVIEW
Massively parallel sequencing enjoys a wide array of

applications to the study of human genetics.

Generally speaking, however, human genome rese-

quencing using NGS technologies typically employs

one of three strategies: targeted resequencing

(Target-Seq), whole genome shotgun sequencing

(WGS) and transcriptome sequencing (RNA-Seq).

The types of genetic variation that can be character-

ized by these strategies are largely complementary;

ultimately, a combination of whole-genome, tar-

geted, and transcriptome sequencing yields the

most comprehensive view of an individual genome

(Figure 3).

Figure 2: Distribution of NGS instruments by country (March 2010).Courtesy of next-generation sequencingmaps
maintained by Nick Loman [70] and James Hadfield [71].
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Targeted sequencing (Target-Seq) applies

genome enrichment strategies to isolate specific re-

gions of interest prior to sequencing. Polymerase

chain reaction (PCR)-based approaches for enrich-

ment are gradually being supplanted by hybrid selec-

tion (capture) technologies [23, 24], in which sets

of DNA or RNA oligonucleotide probes comple-

mentary to regions of interest are hybridized with

libraries of fragmented DNA. Several methods for

capture have been optimized for use with massively

parallel sequencing [25–29]. Perhaps the penultimate

goal of massively parallel targeted sequencing is to fully

characterize the ‘exome’, or the full set of known

coding exons. Indeed, dozens of human exomes

have been sequenced using hybrid selection technol-

ogies paired with massively parallel sequencing [30].

WGS offers the most comprehensive and un-

biased approach to genome characterization with

next-generation instruments. WGS is particularly at-

tractive because it lets one study the full scope of

known DNA sequence variation—from SNPs and

small indels to large SVs and CNVs—in a single ex-

periment [1]. Furthermore, sequence reads from

single DNA molecules enable the phasing of de-

tected variants to determine which occur on the

same chromosome copy, information which is

critical for genotype–phenotype correlation. To

comprehensively characterize the variation in a

single genome, however, it is necessary to generate

highly redundant coverage to account for the

increased sequencing error and shorter read lengths

of massively parallel sequencing technologies. The

redundancy required for accurate sequencing (cur-

rently �30�) is dependent upon read lengths and

sequencing error rate; as these metrics improve, less

redundancy may be required.

Massively parallel sequencing of cDNA libraries,

or RNA-Seq, is a rapidly developing application for

NGS technologies [31]. RNA-Seq offers a powerful

approach to study the transcribed portion of the

human genome, providing a digital readout of

gene expression with sensitivity that far exceeds

microarray-based methods. Furthermore, RNA-Seq

enables the characterization of alternative splicing,

allele-specific expression, fusion genes, and other

forms of variation at the transcript levels.

Specialized methods for mapping mRNA–miRNA

interactions have also been adopted for massively

parallel sequencing [32, 33].

The broad set of applications for massively parallel

sequencing technologies, combined with their wide-

spread adoption by the research community, suggest

Figure 3: The intersection of WGS, Target-Seq and RNA-Seq for the characterization of human genomes.
Target-Seq of specific regions (selected by PCR or capture) serves primarily for the identification of SNPs and
small indels.WGS enables detection not only of SNPs and indels, but also of CNVs and SV (often aided by de novo as-
sembly). RNA-Seq provides digital gene expression information that can be used to validate SNP/indel calls in
coding regions and assess the impact of genetic variation (CNV, SNPs and indels) on gene expression. RNA-Seq
with paired-end libraries also enables the identification of chimeric transcripts, which serve to validate gene fusion
events resulting from genomic structural variation.
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that NGS will continue to play a key role in the

biological discoveries of coming years. Although

investigators are understandably eager to harness

the power of these new technologies, the massively

parallel sequencing of human genomes presents some

significant challenges.

PRODUCTIONCHALLENGES
It is important to realize that the generation and ana-

lysis of data from next-generation instruments pre-

sent numerous challenges (Table 2). Principal among

these are issues of sample contamination from

non-human sources, library chimaeras, sample

mix-ups and variable run quality.

Sample contamination
While sample contamination remains an area of

concern in any sequencing project, two aspects of

NGS help mitigate this issue. First, NGS can be per-

formed on libraries without the use of bacterial clon-

ing, which was a significant source of sequence

contamination in capillary-based sequencing.

Second, each read from NGS interrogates a single

DNA molecule, which permits the identification

and removal of individual contaminating reads.

Indeed, by mapping NGS reads to a database of

common contaminating genome sequences (of bac-

terial and viral origin, for example), it is possible to

rapidly screen libraries and remove the contaminat-

ing sequences.

Library chimaeras
As many as 5% of long-insert paired-end libraries

contain chimeric reads [3]. This artifact can have ser-

ious ramifications for de novo assembly [34–37] and

SV prediction [38, 39] algorithms that rely upon

mate pairing information. The assembly problem is

potentially more severe, as chimeric fragments can

generate false assembly paths. One solution is to

use only fragment-end or short insert paired-end

data for de novo assembly, and long insert paired-end

data for the scaffolding of assembled contigs. For

both scaffolding and SV detection, requiring a min-

imum of three or more independent supporting read

pairs at a given locus helps reduce the influence of

low-frequency chimeras.

Sample mix-ups
In a high-throughput sequencing environment,

human error is an important factor. Major genome

centers have developed strategies to identify samples

that are switched, mislabeled, or highly contami-

nated. To identify mislabeled samples, our group

and others utilize high-density SNP array data,

which provide thousands or millions of accurate

genotypes across the genome. These not only pro-

vide reference points for diploid coverage estimation,

but also constitute a highly individualized forensic

DNA profile of the intended sample. Even a single

lane of data from WGS or exome captures typically

provides sufficient depth to call genotypes at thou-

sands of variant positions; a simple concordance ana-

lysis between these and the expected genotypes from

high-density arrays (Figure 4A) can distinguish cor-

rectly a correctly matched sample (90–99% concord-

ant) from a mis-labeled one (60–80% concordance).

Tumor-normal switches
NGS of cancer genomes is typically performed on

tumor samples and matched normal controls from

the same patient. Here, correct sample identification

is particularly critical, since the discovery of somatic

changes requires a direct comparison of tumor to

normal. Unfortunately, high-density SNP arrays are

less informative, since samples share a common gen-

etic origin. For many tumors, however, widespread

genomic alterations and copy number changes dis-

tinguish tumor from normal. Thus, our group and

others have applied CNV detection algorithms to

NGS data from tumor-normal pairs to identify pos-

sible sample switches.

Table 2: Production challenges and solutions for next-generation sequencing

Challenge Solution

Sample contamination Map reads to databases of possible contaminating sequences
Library chimeras Avoid long-insert data for de novo assembly; require high coverage for SVdetection
Sample mix-ups Compare SNP calls to high-density SNP array genotypes to identify mismatched samples
Tumor-normal switches Apply copy number variation (CNV) algorithms to verify tumor or normal sample type
Variable run quality Automate liquid handling, streamline workflows, and implement regular QC checkpoints
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Variable run quality
As massively parallel sequencing instruments transi-

tion from technology development labs to produc-

tion floors, maintaining consistent run quality is an

important challenge. The quality and amount of

input DNA and reagents, as well as the skill of the

laboratory technicians, can significantly affect results.

Given the typically high cost of a single run on

NGS instruments, experimental variability must be

reduced as much as possible. Major genome centers

have addressed this issue through automated liquid

handling and streamlined workflows. Regular

training of laboratory personnel is important as

well. Finally, a series of quality control checks—

DNA quantification using Picogreen, gel-based or

microfluidics fragment size selection, for example—

can isolate the source of problems when they arise.

EVALUATIONOF SEQUENCE
QUALITYAND COMPLETENESS
Although the throughputs of current NGS platforms

are significant, some samples (particularly those

undergoing WGS) may require multiple sequencing

Figure 4: Performance metrics for sequence data quality. (A) Genotype quality control of sequencing runs.
Concordance of per-lane SNP calls with high-density SNP array genotypes for 65 lanes of Illumina data.The low con-
cordance of randomly mismatched controls (left) helps distinguish low-quality data (top right) from true sample
mix-ups (right). (B) Error and mapping rates for five real flowcells sequenced on the Illumina platform (1�50bp).
Note the increased error rates and decreased alignment rates for poor-performing lanes 1 and 2 on flowcell 1.
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runs. Given that sequencing runs on NGS instru-

ments are costly and time-consuming, defining a

data generation goal is an important step of the plan-

ning process. How much sequence data is enough?

Often this question is answered by the practical con-

siderations of funding, instrument access, and/or the

availability of sample material. In the absence of such

restrictions, however, certain performance metrics

can indicate the quality and completeness of a

sequenced genome.

Run quality metrics
The vendor-provided software for most NGS plat-

forms provides some informative run metrics indicat-

ing the quality. Specifically, the number of reads,

average read length (for the Roche/454 platform),

alignment rate, and inferred error rate are the most

obvious indicators of success or failure. As users gain

experience with NGS data, the performance metrics

of good versus bad runs will become more obvious.

On the Illumina GAIIx platform, for example, we

expect that good runs will yield 35–75 million reads

per lane, with error rates of <2% and ELAND align-

ment rates of >80%. Error rate and alignment rate

are correlated; as error rates increase, alignment rates

tend to decrease (Figure 4B).

Sequencing coverage metrics
Sequencing coverage of the genome (for WGS stu-

dies) or of target regions (for Target-Seq studies) is

the most basic metric for genome completion. There

are several advantages to using coverage rather than

numbers of runs, lanes, reads, or bases generated.

Importantly, coverage excludes reads that are un-

mapped, ambiguously mapped, or marked as PCR

duplicates to provide an estimate of ‘usable’ sequence

data. The depth and breadth of sequencing coverage

are directly related to the sensitivity and specificity of

variant detection, which often represents the key

analysis endpoint of human resequencing.

‘Fold’ redundancy (also called haploid coverage) is

the number usually followed by an ‘X’ in whole

genome resequencing studies. Most of the currently

published WGS studies report fold coverage in the

�30–50� range, which seems to be the bar for a

genome sequenced on current NGS platforms.

Among the individual genome sequences listed in

Table 1 are two exceptions. One is the genome

of James D. Watson [9], which was the first to

be sequenced on a massively parallel platform

(Roche/454) and whose 7.4�-fold coverage

represented a major achievement in sequencing

technology. The second exception to the �30�

rule is the sequencing of NA18507 on Life

Technologies’ SOLiD platform [6], which utilizes a

di-base encoding scheme that requires lower redun-

dancy to achieve >99% sequencing accuracy [6].

The availability of high-density SNP arrays,

which typically assay >1-million SNPs across the

human genome, provides another key metric of

genome completion. Granted, current SNP arrays

are largely comprised of SNPs that were character-

ized by large-scale efforts such as the International

HapMap Project, sets which are known to harbor

certain biases (assay ability, allele frequency and

proximity to genes). Highly repetitive regions, for

example, are under-represented. Nevertheless, SNP

array data for a sequenced genome is extremely valu-

able because it provides millions of data points at

which sequencing coverage and accuracy can be as-

sessed. Because SNP arrays include many common

variants, a substantial number are likely to be hetero-

zygous in the individual being sequenced; detection

of both alleles in sequencing data indicates that both

chromosomes in a pair are represented. Thus, a com-

parison of the SNP calls from sequencing data to

known genotypes from high-density SNP arrays

serves as a more direct measurement of diploid

coverage, which should reach 98–99% in a com-

pleted genome [12, 13].

PRIMARYANALYSIS OF NGS DATA
Initially, the sheer volume of data produced by NGS

instruments can be overwhelming. Development of

a streamlined, highly automated pipeline to facilitate

data analysis is a critical step that facilitates the tran-

sition from technology adoption to rapid data gen-

eration, analysis and publication. In this portion of

the review, we discuss the key components of a pri-

mary analysis pipeline: sequence alignment, read

de-duplication and conversion of data into a generic

format in preparation for downstream analysis

(Figure 5A).

Sequence alignment
The key first step in the analysis of next-generation

resequencing data is the alignment, or mapping, of

sequence reads to a reference sequence. Three char-

acteristics of NGS data complicate this task. First, the

read lengths are relatively short (36–250 bp) com-

pared to traditional capillary-based sequencing,
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which not only provides less information to use for

mapping, but also decreases the likelihood that a read

can be mapped to a single, unique location. Second,

reads from NGS platforms are of imperfect quality;

that is, they contain higher rates of sequencing error.

On the Roche/454 platform, for example, homo-

polymeric sequences are often over- or under-called

[40], resulting in reads that contain gaps relative to

the reference sequence. On the Illumina GAIIx plat-

form, base quality is a function of read position [3],

Figure 5: Basic workflows for next-generation sequencing. (A) Sequencing and alignment. Libraries constructed
from genomic DNA or RNA are sequenced on massively parallel instruments (e.g. Illumina or SOLiD).The resulting
NGS reads are mapped to a reference sequence. Mapped and unmapped reads are imported into SAM/BAM
format and marked for PCR/optical duplicates. (B) Post-BAM downstream analysis. The FLAG field of the BAM file
indicates the mapping status for each read. Mapped, properly paired reads (or mapped fragment-end reads) are
used for SNP/indel detection and copy number estimation. Aberrantly mapped reads, in which reads in a pair map
with unexpected distance or orientations, are mined for evidence of structural variation. Finally, de novo assembly
of unmapped reads yields predictions of structural variants and novel insertions.
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with the highest-quality bases at the start of the read.

The third complication presented by NGS platforms

is the sheer volume of data. A single run produces

millions of sequencing reads, whose alignment to a

large reference sequence requires significant comput-

ing power.

Recent years have seen a plethora of short-read

alignment tools to support next-generation data ana-

lysis. Reads produced on the Roche/454 platform

are long enough that traditional algorithms like

BLAT [41] and SSAHA2 [42] can be used effectively

to map them. The high-throughput and short-read

length of the Illumina/Solexa platform, however,

presented a significant algorithmic challenge. One

of the first tools to address it was the mapping and

alignment with qualities algorithm, or MAQ [43].

Compared to the vendor-provided software for

Illumina data alignment, MAQ offered several ad-

vantages. It considered base quality scores during se-

quence alignment, which helped to address the

variable quality of sequence across a read. Second,

it assigned a mapping quality score to quantify the

algorithm’s confidence that a read was correctly

placed. Finally, MAQ made use of read pairing

information (for Illumina paired-end libraries) to im-

prove mapping accuracy and identify aberrantly-

mapped pairs. MAQ was widely adopted by the

NGS community, and utilized in WGS of human

[2, 3] and cancer [12, 13, 16] genomes.

Efficient mapping of short reads to a large refer-

ence sequence has remained a considerable compu-

tational challenge, spurring the development of

dozens of alignment algorithms (Table 3). Some,

like Novoalign (http://www.novocraft.com),

sought to improve upon the sensitivity of Illumina

read alignment. At least three aligners (Bowtie [44],

BWA [45] and SOAP2 [46]) have leveraged the

Burrows–Wheeler transformation (BWT) algorithm,

to dramatically decrease alignment time. Indeed,

these algorithms can map a single lane of Illumina

data (�20 million reads) in a matter of hours, com-

pared to the several days required by Maq or

Novoalign.

The SOLiD platform (Life Technologies) util-

izes a unique di-base encoding scheme in which

each base is interrogated twice, to help distinguish

sequencing errors from true variation. Indeed, a re-

cently published study applied SOLiD sequencing

to characterize an entire genome with only �18�

haploid coverage [6]. While the vendor-provided

software for mapping SOLiD data is available, inde-

pendent groups have developed their own.

SHRiMP [47] is a rapid implementation of Smith–

Waterman alignment that performs colorspace-

correction while aligning reads. The BLAT-like fast

alignment software tool (BFAST [48]) maps reads

in color space and allows gaps, which enabled the

identification of �190 000 small (1–21 bp) indels

Table 3: Selected mapping and alignment tools for massively parallel sequencing data

Aligner Description URL

Illumina platform
ELAND Vendor-provided aligner for Illumina data http://www.illumina.com
Bowtie Ultrafast, memory-efficient short-read aligner for Illumina data http://bowtie-bio.sourceforge.net
Novoalign A sensitive aligner for Illumina data that uses the Needleman^Wunsch algorithm http://www.novocraft.com
SOAP Short oligo analysis package for alignment of Illumina data http://soap.genomics.org.cn/
MrFAST A mapper that allows alignments to multiple locations for CNVdetection http://mrfast.sourceforge.net/

SOLiD platform
Corona-lite Vendor-provided aligner for SOLiD data http://solidsoftwaretools.com
SHRiMP Efficient Smith^Waterman mapper with colorspace correction http://compbio.cs.toronto.edu/shrimp/

454 Platform
Newbler Vendor-provided aligner and assembler for 454 data http://www.454.com
SSAHA2 SAM-friendly sequence search and alignment by hashing program http://www.sanger.ac.uk/resources/software
BWA-SW SAM-friendly Smith^Waterman implementation of BWA for long reads http://bio-bwa.sourceforge.net

Multi-platform
BFAST BLAT-like fast aligner for Illumina and SOLiD data http://bfast.sourceforge.net
BWA Burrows-Wheeler aligner for Illumina, SOLiD, and 454 data http://bio-bwa.sourceforge.net
Maq Awidely used mapping tool for Illumina and SOLiD; now deprecated by BWA http://maq.sourceforge.net
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in the recent sequencing of a glioblastoma cell

line [20].

Identifying redundant sequences
Early during the rise of NGS, it became apparent that

many of the reads from massively parallel sequencing

instruments were identical—same sequence, start site

and orientation—suggesting that they represent mul-

tiple reads of the same unique DNA fragment, pos-

sibly amplified by PCR during the sequencing

workflow [49–52]. It is critical to identify and

remove these duplicate reads prior to variant calling,

since the unintended amplification of PCR-

introduced errors can yield skew variant allele fre-

quencies and thereby decrease variant detection

sensitivity and specificity [50].

SAMtools ([53], http://samtools.sourceforge.net)

includes utilities for the removal of PCR duplicates

from single-end or paired-end libraries. However,

a superior solution is offered by the Picard suite

(http://picard.sourceforge.net), which not only

applies optimal fragment-based duplicate identifica-

tion, but marks duplicate reads using the FLAG field

rather than removing them from a SAM file.

The SAM/BAM format
The definition of the sequence alignment map

(SAM) format and its binary equivalent (BAM) was

a critical achievement for NGS data analysis. The

SAM format specification (http://samtools.source

forge.net/SAM1.pdf) describes a generic format for

storing both sequencing reads and their alignment

to a reference sequence or assembly. SAM/BAM

format is relatively compact, but flexible enough to

accommodate relevant information from different

sequencing platforms and short-read aligners. A

single SAM/BAM file can store mapped, unmapped,

and even QC-failed reads from a sequencing run,

and indexed to allow rapid access. This means that,

if desired, the raw sequencing data can be fully reca-

pitulated from the SAM/BAM file.

One key field of the SAM format specification is

the FLAG, a ‘bitwise’ representation of several read

properties, which can be true or false. Each property

is set to on (1) or off (0); the bits that are set to on,

when combined, represent an integer value. Thus, a

single field in the SAM format specification indicates

if a read is paired, properly paired, mapped, read1 or

read2, quality-failed, or marked as duplicate. Thus,

SAM/BAM files can contain extensive information

about a read, its properties, and its alignment to a

reference sequence. A freely available software pack-

age, SAMtools [53], provides the utilities for creat-

ing, sorting, combining, indexing, viewing, and

manipulating SAM/BAM files. For these reasons,

SAM/BAM format has been widely adopted by

the sequencing community.

Possibilities for outsourcing sequencing
The availability of sequencing services offered by

private companies [4] such as Complete Genomics,

as well as the Beijing Genomics Institute and other

centers, have raised the possibility of ‘outsourcing’

massively parallel sequencing. This option may be

attractive to investigators because it mitigates the

considerable financial and personnel investment

required for NGS instruments [4]. Furthermore,

the development of NGS data analysis packages for

cloud computing [54] suggests that computationally

intense analyses may be run on rented hardware, thus

removing the cost of purchasing and maintaining

such equipment.

The possibility of outsourcing DNA sequencing

to a third party deserves careful consideration. There

are important concerns related to privacy and secur-

ity of the data—since DNA and RNA contain in-

formation that could be used to identify an

individual, keeping that information in confidence,

and safe from intrusion, is of the utmost importance

for many investigators. The ethical and legal respon-

sibilities surrounding human samples continue to

gain prominence; suggesting that permitting third

parties to perform the sequencing faces, at the very

least, an uphill battle. Transparency in the data gen-

eration process is also a key issue; since the primary

analysis of NGS data is so critical to the final results,

every step between receiving a sample and providing

a BAM file must be carefully documented.

Despite these difficulties, it is clear that some

companies and institutions will have the capacity to

perform sequencing for outside parties, and some

investigators are bound to find sequencing-as-a-

service appealing for their research. Furthermore,

recent studies in which NGS technologies un-

covered important genes for Mendelian disease

[21, 22] illustrate the potential of sequencing data

to enhance clinical research. For these reasons, the

following sections on downstream analysis have the

expectation of sequencing data in a BAM file, which

seems the most likely endpoint for both primary ana-

lysis pipelines and outsourced sequencing.
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DOWNSTREAMANALYSIS OF
NGSDATA
A key advantage of converting NGS data to SAM/

BAM format is that all downstream analysis can be

driven from a single data file (Figure 5B). Properly

mapped reads can be used to identify SNPs/indels

and to infer genome-wide copy number. Aberrantly

mapped read pairs can be screened for evidence

of underlying structural variation, while de novo as-

sembly of unmapped reads [34–37] enables the char-

acterization of novel insertions and SV breakpoints.

In this section of the review, we discuss some of the

algorithms that have been developed for detecting

these types of variation in NGS data.

SNPs
Massively parallel sequencing data has proven ideal

for the identification of SNPs [55, 56]. Indeed, some

�3–4-million SNPs per individual were reported for

the WGS studies presented in Figure 1; of these,

the vast majority (74–90%) [2–9] corresponded

to known variants in the National Center for

Biotechnology Information’s database of sequence

variation in humans (dbSNP). This high overlap sug-

gests that the vast majority of reported variants are

real human polymorphisms. Yet the significant frac-

tion of novel SNPs (10–26%) identified from whole

genome sequencing implies that a substantial portion

of rare variation remains to be discovered. Efforts

such as the 1000 Genomes Project (http://www

.1000genomes.org) hope to catalog these by sequen-

cing the genomes of thousands of individuals. In

cancer, most of the validated somatic single nucleo-

tide variants (SNVs) are neither present in dbSNP

nor shared amongst other tumors [12, 13, 16].

Accurate detection of single nucleotide variation,

therefore, remains an important aspect of NGS.

Numerous algorithms for calling SNPs in NGS

data have been developed in recent years. Bayesian

methods (e.g. Atlas-SNP [56], SOAPsnp [55]) utilize

prior probability calculations to determine the most

probable genotype (reference or variant) based upon

available sequence information. Other packages (e.g.

SAMtools [53], VarScan [57]) include numerous uti-

lities for detection and filtering of variant calls based

on heuristic and probabilistic models, reinforced with

empirical knowledge of massively parallel sequencing

platforms. No one tool single-handedly outperforms

the others. Indeed, a combination of variant calling

algorithms, each tuned to perform optimally for the

dataset in hand, is likely to yield the best

combination of sensitivity and specificity for variant

detection in human genomes.

False positives during SNP calling generally arise

from two phenomena. The first source is sequencing

error, which is more prevalent for NGS platforms

than traditional capillary-based methods. While

sequencing errors are often random, certain

platform-specific and platform-independent trends

have become evident. On the Illumina/Solexa plat-

form, sequencing error is positively correlated with

read position; errors tend to occur near the ends of

reads. In contrast, errors on the Roche/454 platform

are not dependent on read position, but tend to clus-

ter around homopolymeric sequences that are

under- or over-called during 454 pyrosequencing.

Alignment artifacts are the second major source of

false positive SNP calls. The relatively short-read

lengths from NGS platforms and complexity of the

human reference genome make read mis-alignments

inevitable. Paralogous sequences and low-copy re-

peats that differ by only a few bases can give rise to

reads that, when aligned incorrectly, appear to sup-

port a substitution at the same position. Thus, these

types of errors can manifest even in regions of deep

coverage. A window-based filtering approach that

identifies clusters of SNP calls (i.e. three SNPs

within 10 bp) can help remove some of these

artifacts.

Indels
Detection of small insertions and deletions in NGS

data has proven more difficult, particularly due to the

relatively short-read length typical of most platforms.

Computationally speaking, aligning reads with sub-

stitutions (SNPs) to a reference sequence is much

easier than aligning reads with gaps (indels). While

the longer reads of the 454 platform seem to address

this problem, indels detected in 454 data tend to

carry a high false-positive rate, primarily due to the

inability of pyrosequencing technology to resolve

homopolymers (runs of a single nucleotide) longer

than 4–5 bases. The growing read length of the

Illumina/Solexa platform (currently 100 bp) coupled

with improvements in gapped short-read alignment

(BWA, Novoalign), makes it feasible to detect inser-

tions of up to 30 bp and deletions of nearly any size.

We developed a tool, called VarScan (http://varscan

.sourceforge.net) [57] that performs indel detection

using gapped alignments of massively parallel

sequencing data. The Pindel tool takes another ap-

proach to indel detection that leverages the mate
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pairing information from paired-end sequencing on

Illumina or SOLiD platforms. By isolating mate pairs

where only one read is mapped, and performing

split-read alignment of the unmapped read, Pindel

identifies slightly larger indel events that are refrac-

tory to direct gapped alignment.

Despite these advances, accurate indel detection

using massively parallel sequencing data remains

challenging. One reason for this is the relatively

short-read lengths of NGS platforms, which limits

their ability to detect large events, particularly for

insertions. Furthermore, indels predicted in NGS

datasets, particularly single-base events, suffer high

false positive rates due to alignment artifacts and

sequencing error. The combination of paired-end

sequencing (to increase mapping accuracy) and

localized de novo assembly (to remove local mis-

alignments and resolve breakpoints) [34–37]

improves the performance of indel detection,

though not nearly to levels of sensitivity and speci-

ficity that are achievable for SNPs.

Structural variation
Massively parallel sequencing data is particularly ad-

vantageous for the study of structural variation (SV).

Not only does it offer the sensitivity to detect SVs

across a wide range of sizes (1–1000 kb), but also

enables precise identification of structural break-

points at base-pair resolution [59–62]. Most

sequence-based approaches to SV detection extend

seminal work by Volik et al. [63] and Raphael et al.
[64]. Their approach used traditional 3730 sequen-

cing to perform end-sequence profiling (ESP) of

bacterial artificial chromosomes (BACs). When

mapped to the human genome, aberrations in dis-

tance and/or orientation between end-sequence read

pairs revealed the presence of underlying structural

variation.

The ESP method has since been adapted to char-

acterize structural variation in human genomes using

paired-end sequencing on the Roche/454 [59],

Illumina [65] and SOLiD platforms [6]. Our group

has developed an automated pipeline for SV predic-

tion from Illumina paired-end sequencing data.

The software algorithm, BreakDancer [39], utilizes

data in BAM format to conduct de novo prediction

and in silico confirmation of structural variation. The

confidence score for each SV prediction is estimated

using a Poisson model that takes into consideration

the number of supporting reads, the size of the

anchoring regions, and the coverage of the

genome. BreakDancerMax outputs five types of

SVs: insertions, large deletions (>100 bp), inversions,

intra-chromosomal rearrangements and inter-

chromosomal translocations. Alignment artifacts in

short-read data appear to be the most significant

source of false positives from BreakDancer and

other SV prediction algorithms. To remove false

positives, and to precisely define the breakpoints of

each variant, we perform de novo assembly using

TIGRA (unpublished) of all read pairs that have at

least one end mapped to the predicted intervals.

AbySS [66], Velvet [34] and other short-read assem-

blers are well-suited to localized de novo assembly for

this purpose. Even the most advanced pipelines for

SV detection suffer a high false positive rate [67],

suggesting SV detection using NGS data is still in

its infancy. However, theoretical work shows the

possibility, at least in principle, of controlling false-

positives by appropriately tuning redundancy [61].

CNV
Massively parallel, WGS enables detection of CNV

at unprecedented resolution. It is important, how-

ever, to account for certain biases when utilizing

sequencing coverage to infer copy number. First,

variable GþC content throughout the genome is

known to influence sequence coverage on most

NGS platforms. On the Illumina platform, for ex-

ample, regions with significantly low (<20%) or high

(>60%) GþC content are under-represented in

shotgun sequencing [3]. To address this bias, Yoon

et al. [68] segmented the genome into 100-bp win-

dows, and adjusted each window’s read counts based

on the observed deviation in coverage for a given

GþC percentage. Mapping bias is another import-

ant contributor to variation in sequencing coverage,

particularly for the short (35–50 bp) reads produced

on Illumina and SOLiD platforms. Campbell et al.
[65] proposed a method to correct for mapping

bias based on simulations of Illumina 2� 35 bp

reads, which they mapped to the genome using

MAQ. Next, they divided the genome into

non-overlapping ‘windows’ of unequal width such

that each window contained roughly the same

number of mapped reads.

After correcting for GþC content and unique-

ness, the normalized read depth offers a uniform

representation of copy number across the genome.

To identify regions of significant copy number

change, Campbell et al. [65] adapted a circular

binary segmentation algorithm for SNP array data.
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Their adaptation is implemented in R as the

‘DNAcopy’ library of the Bioconductor project

(http://www.bioconductor.org). A similar method,

correlational matrix diagonal segmentation (CMDS)

[69], enables copy number estimation across a popu-

lation of samples.

CONCLUSION
The rise of massively parallel sequencing has funda-

mentally changed the study of genetics and genom-

ics. Whole genome sequencing of 10 individuals and

several tumor samples has only begun to reveal the

extent and nature of human sequence variation.

To date, the majority of NGS has taken place

inside of major genome centers. However, the wide-

spread adoption of new sequencing instruments

throughout the world suggests that this pattern will

change. It should be noted that NGS as a research

tool presents substantial challenges—in production,

in data management, and in downstream analysis.

Investigators stand to benefit from strategies for qual-

ity control and data analysis that produced the first

studies enabled by NGS technologies. It is clear that

new sequencing technologies hold incredible pro-

mise for research; their capabilities in the hands of

investigators will undoubtedly accelerate our under-

standing of human genetics.

Key Points

� The widespread adoption and varied applications of massively
parallel sequencing suggest that it will play a pivotal role in
human genetics in coming years.

� Quality control procedures and streamlinedworkflows can help
eliminate some of the production-associated issuesçsuch as
sample contamination and variable run quality.

� While the bioinformatics challenges presented by NGS are con-
siderable, numerous software tools and algorithms have been
developed to facilitate data-management, short-read alignment
and the identification of sequence variants.

� The incredible throughput of NGS calls for the implementation
of automated pipelines, which help speed discovery from the
adoption of new sequencing technology to high-throughput
research and publication.
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