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The L1 adhesion molecule functions in axon growth and guidance,
but a role in synaptic development of cortical inhibitory interneur-
ons is largely unexplored. L1 mediates adhesion by engaging the
actin cytoskeleton through binding the actin/spectrin adapter
protein ankyrin. Loss of L1-ankyrin interaction impaired process
elaboration/branching by GABAergic interneurons, including basket
cells, and reduced the number of perisomatic synapses in the
cingulate cortex as shown in L1 mutant mice (L1YH) with a mutation
in the ankyrin-binding site, either alone or intercrossed with GAD67-
enhanced green fluorescence protein reporter mice. Electron
microscopy revealed that perisomatic inhibitory synapses but not
excitatory synapses in the neuropil were specifically affected. In
wild-type cingulate cortex, L1 colocalized with perisomatic syn-
aptic markers, whereas L1 phosphorylation on Tyr1229 decreased
postnatally, correlating with increased ankyrin binding and synaptic
development. These results suggest a novel role for L1 engagement
with the actin cytoskeleton in development of inhibitory connec-
tivity within the cingulate cortex.
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Introduction

The L1 family of cell adhesion molecules (L1-CAMs) contains 4

structurally related transmembrane glycoproteins in verte-

brates: L1 (NgCAM in chicken), Close Homolog of L1 (CHL1),

NrCAM, and Neurofascin (reviewed in Maness and Schachner

2007). Each member of the family has 6 immunoglobulin (Ig)-

like domains linked to 4--5 fibronectin III repeats (FNIII) in

their divergent extracellular regions, a transmembrane domain,

and a highly conserved cytoplasmic domain of ~110 residues.

The extracellular domains of L1-CAMs bind to neighboring cells

or the extracellular matrix through multiple homophilic and

heterophilic interactions, whereas the cytoplasmic domain en-

gages the actin cytoskeleton. L1-CAMs are expressed in neu-

ronal and glia cells, as well as in some nonneuronal cells, and

they are known to mediate diverse cellular responses including

adhesion, neurite outgrowth, axon fasciculation, and migration

(Maness and Schachner 2007). Studies in mutant mice dem-

onstrate that these functions are impaired by mutation or de-

letion of L1-CAM genes, and L1 human mutation are associated

with a pleiotypic X-linked mental retardation disorder, termed

the L1 syndrome (Kenwrick et al. 2000).

L1 reversibly binds to ankyrin, an actin/spectrin adapter

protein (Bennett and Chen 2001), through a conserved motif

(FIGQY) in the L1 cytoplasmic domain (Davis and Bennett 1994;

Bennett and Baines 2001; Hortsch et al. 2009). Multiple ank

repeatswithin the ankyrinmolecule organize protein complexes

within specialized membrane domains of the neurons, including

the axon initial segment and node of Ranvier, by recruiting

adhesionmolecules, ion channels, and transporters (Bennett and

Healy 2008). L1-ankyrin binding promotes stationary behavior of

cells in culture (Gil et al. 2003) and neurite initiation (Nishimura

et al. 2003) by inhibiting retrograde actin flow, but its function in

vivo is poorly understood. Phosphorylation of L1 on Tyr1229, or

the homologous tyrosine in other L1-CAMs, leads to dis-

engagement of ankyrin and correlates with enhanced neurite

outgrowth in vitro (Garver et al. 1997; Tuvia et al. 1997; Gil et al.

2003; Whittard et al. 2006). Mutation of tyrosine1229 to histidine

in the FIGQYmotif of L1,which is a humanpathologicalmutation

(Kenwrick et al. 2000), also causes ankyrin disengagement

(Needham et al. 2001). L1-CAMs can be phosphorylated at this

motif dependent on signaling of fibroblast growth factor (Chen

et al. 2001), epidermal growth factor (Whittard et al. 2006), or

ephrin B- (Zisch et al. 1997) receptor activation.

Although a role for L1 in neurite outgrowth is well

established, a potentially new function for L1 and its interaction

with ankyrin in synaptic development is largely unexplored.

The L1 homolog in Drosophila, Neuroglian, has been shown to

mediate the development of presynaptic terminals of a central

synapse (Godenschwege et al. 2006), raising the possibility that

L1 might have a related function in the mammalian neocortex.

In addition, the interaction of neurofascin with ankyrin directs

basket-cell axons to synaptic targets on the axon initial seg-

ment of cerebellar Purkinje cells (Ango et al. 2004). To in-

vestigate a potential function for L1-ankyrin interaction in

synaptic development of mammalian cortical neurons in vivo,

an L1 knock-in mouse, termed L1YH, was generated that

expresses the pathological L1 point mutation (Tyr1229His),

which specifically disrupts L1-ankyrin interaction (Buhusi et al.

2008). The mutant displays defective topographic mapping of

retinal ganglion cell axons to targets in the superior colliculus

(Buhusi et al. 2008), but it has not been analyzed for defects in

synapse formation. Dysregulation of another Ig-class neural

adhesion molecule, neural cell adhesion molecule (NCAM), has

been shown to perturb synaptic development of GABAergic

interneurons in the mouse prefrontal (cingulate) cortex

(Brennaman and Maness 2008); thus, it was of interest to ex-

plore a related role for L1 in developing interneurons.

GABAergic interneurons in the prefrontal cortex are important

in furnishing spatially and temporally coordinated inhibitory

input to regulate circuits involved in pyramidal cell synchrony

and oscillations that underlie cognitive behaviors such as

working memory (Klausberger and Somogyi 2008).

We report here that the disruption of L1-ankyrin binding

alters the regulation of neuronal branching and leads to decrease

in perisomatic synapses of GABAergic inhibitory interneurons in

the developing mouse cingulate cortex. These results disclose an
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essential role of L1-ankyrin interaction in the development of

inhibitory circuitry in the mammalian neocortex.

Materials and Methods

Mice
L1YH knock-in mice (Buhusi et al. 2008) and GAD67-enhanced green

fluorescence protein (EGFP) bacterial artificial chromosome (BAC)

transgenic mice (Chattopadhyaya et al. 2004) have been described

previously. To obtain L1YH/GAD67-EGFP mice and wild-type littermate

controls, L1YH mutant mice were intercrossed with GAD67-EGFP

mice. Because the L1 gene is located on the X-chromosome, it was

convenient to use male mice, which carry only one L1 allele, in all of

the experiments. All animals were used according to University of

North Carolina at Chapel Hill Institutional Animal Care and Use

Committee policies and in accordance with National Institutes of

Health guidelines.

Antibodies
For immunohistochemistry, immunoprecipitation, and immunoblotting

experiments, the following antibodies were used: Mouse anti-GAD65

mAb (GAD-6) (Developmental Studies Hybridoma Bank, University of

Iowa, Iowa City, IA), rabbit antisynaptophysin pAb and goat antigeph-

ryin pAb (Santa Cruz Biotechnology, Santa Cruz, CA), mouse anti-NeuN

mAb (A60) (Millipore, Billerica, MA), rabbit anti-GFP pAb and mouse

anti-Ankyrin B mAb (clone 2.20) (Invitrogen, Carlsbad, CA), mouse anti-

L1 mAb (clone 2C2) (Abcam, Cambridge, MA), mouse anti-L1 mAb

(clone 5G3) (BD Bioscience, San Jose, CA), and mouse anti-b-tubulin
mAb (clone TUJ1) (Covance, Emeryville, CA). Antibodies against

phosphorylated mouse L1 (p-L1) were raised in rabbit against a

phosphorylated peptide with the sequence NEDGSFIGQ(pY)SGKKE

corresponding to the ankyrin-binding site of cytoplasmic domain of L1,

essentially as described (Jenkins et al. 2001). The production and

affinity purification of antibodies was done by Bethyl Laboratories

(Montgomery, TX).

Western Blotting and Immunoprecipitation
Forebrains were collected from mice at designated ages and

homogenized in RIPA buffer containing protease inhibitors and

phosphatase inhibitors (0.15 M NaCl, 5 mM ethylenediaminetetraacetic

acid, 1 mM ethyleneglycol-bis(2-aminoethylether)-N,N,N#,N#-tetra ace-

ticacid, 1% NP-40, 1% sodium deoxcholate, 0.1% sodium dodecyl sulfate

in 20 mM Tris--HCl, pH 7.0 containing 10 lg/mL leupeptin, 0.11 TIU/

mL aprotinin, 0.2 mM sodium orthovanadate, and 10 mM sodium

fluoride). Brain lysates were clarified by centrifugation at 14 000 rpm.

Protein concentration was measured (Pierce Biotechnology, Rockford,

IL). Brain lysates (75 lg) were subjected to 8.5% SDS-PAGE and

transferred to nitrocellulose membranes (Schleicher and Schuell

Bioscience Inc., Keene, NH). After blocking with 5% milk in tris

buffered saline with Triton X-100, membranes were incubated at 4 �C
with primary antibodies: mouse anti-L1 (1:1000), mouse anti-Ankyrin B

(1:500), rabbit anti-pL1 (1:400), and mouse anti-b-tubulin (1:1000)

followed by incubation of peroxidase-conjugated secondary antibody

(Jackson ImmunoResearch, West Grove, PA) and Western lightning

plus-ECL (Perkin-Elmer, Waltham, MA) detection.

Immunoprecipitation of L1 was performed as described with minor

modification (Buhusi et al. 2008). Brain lysates (1000 lg) from WT and

L1YH mice were precleared with protein A/G-Sepharose (Pierce

Biotechnology) for 30 min at 4 �C. Precleared lysates were incubated

with a mixture of L1 monoclonal antibodies 2C2 (2.5 lg; Abcam) and

5G3 (1.25 lg; BD Bioscience) for 2 h at 4 �C followed by incubation of

protein A/G-Sepharose for 30 min at 4 �C. Beads were washed with ice-

cold RIPA buffer, and proteins were eluted by boiling in SDS-PAGE

sample buffer and subjected to SDS-PAGE followed by western blotting

analysis.

Immunohistochemistry and Confocal Microscopy
Mice were anesthetized and perfused transcardially with 4% para-

formaldehyde in phosphate buffer, pH 7.4. The brains were postfixed in

the same fixative for 2 days, and 60-lm-thick coronal sections were cut

using a vibratome (Leica VT1200S; Leica, Nussloch, Germany). Brain

sections at equivalent rostrocaudal levels were blocked in 10% normal

goat serum (NGS) and 1% Triton X-100 followed by incubation of

primary antibodies in 10% NGS and 0.1% Triton X-100: GAD65, 1:40;

Synaptophysin, 1:150; NeuN, 1:400; GFP, 1:200, L1, 1:100; and Gephyrin,

1:50. Sections were then incubated with fluorescein isothiocyanate

and/or Cy3-conjugated goat or donkey IgG (1: 100; Jackson Immuno-

Research) and mounted in Vectashield (Vector Laboratories, Burlin-

game, CA). For some experiments, sections were imaged by confocal

microscopy (Zeiss LSM510; Carl Zeiss, Tokyo, Japan) with a 363 oil

immersion objective at the University of North Carolina Microscopy

Facility (Dr Robert Bagnell, Director, Department of Pathology,

University of North Carolina School of Medicine). Scans from each

channel were collected in the multiple-track mode and subsequently

merged. Eight random images from layers II/III of the cingulate cortex

region were taken and analyzed. For each image, the perisomatic

signals (puncta rings) or neuropil area from at least 6 randomly selected

pyramidal neurons (pyramidal cell somata were identified by NeuN

immunofluorescence) were delineated, and then pixel density within

the delineated area was calculated using NIH imageJ software and

averaged as described previously (Huang et al. 1999; Brennaman and

Maness 2008). Perisomatic boutons around a pyramidal cell soma were

counted within a region 2 lm away from the soma membrane

(Chattopadhyaya et al. 2004). For morphometric analysis of basket

interneurons, EGFP-labeled basket interneurons in layers II/III of the

cingulate cortex of L1YH/GAD67-EGFP and wild-type GAD67-EGFP

littermate mice at P10, P21, and 2-month were imaged and recon-

structed on Olympus FV500 confocal microscopy using 320 objective

and 32 optical zoom. A z-stack across EGFP-labeled basket interneurons

was projected using a 1.0-lm optical section interval and 30--60

sections per z-stack. For each mouse, 30--50 individual basket

interneurons were fully imaged and reconstructed, and neurons were

traced from confocal z-stack images using Neurolucida software (MBF

Bioscience, Williston, VT), then analyzed using the NeuroExplorer

module. Morphological features including soma area, number of

processes, total number of ends, branching index, and Sholl analysis

were measured as described previously (Brennaman and Maness 2008).

Branching analysis did not extend to the most distal segments of

processes, where the signal to noise ratio of EGFP is too low to reliably

measure. At least 4 animals were used for each developmental age. Data

were expressed as the mean ± standard error of the mean (SEM) and

compared using Student’s t-test for statistical significance at P < 0.05.

Colocalization analysis of L1 with pre and postsynaptic markers was

done according to methods described previously with modification

(Ango et al. 2008). Briefly, the 2 channels of L1 and GAD65/gephyrin

double staining were transformed into 8-bit grayscale images and

thresholded. The grayscale images of L1 and GAD65/gephyrin were

then merged, and the total pixels of L1 (X), GAD65/gephyrin (Y), and

merged (Z) images were measured using Image J software. The

percentage of GAD65/gephyrin puncta that colocalized with L1 was

obtained as (X + Y – Z)/Y 3 100. For this analysis, 20 pyramidal cells

were analyzed for each case. Values were expressed as mean ± SEM.

Electron Microscopy
Two-month-old L1YH mice and wild-type littermates were deeply

anesthetized and were transcardially perfused with phosphate buffer

(0.15 M sodium phosphate, pH 7.4) followed by 2% paraformaldehyde

and 2.5% glutaraldehyde in phosphate buffer. The brains were postfixed

in the same fixative for 2 days, and 100-lm-thick coronal vibratome

sections were cut using Leica VT1200S vibratome. The vibratome

sections were postfixed in 1% osmium tetroxide with 1.25% potassium

ferrocyanide in phosphate buffer for 20 min, dehydrated in series of

ethanol, and flat embedded in epoxy resin. Semithin sections (1 lm)

were cut, stained with toluidine blue, and used for orientation pur-

poses. Ultrathin (70 nm) sections of cingulate cortex were cut using

a Leica Ultracut UCT microtome (Leica Microsystems, Inc., Bannock-

burn, IL) and mounted on 200-mesh copper grids (Electron Microscopy

Sciences, Hatfield, PA). Ultrathin sections were contrasted with uranyl

acetate and lead citrate and analyzed with a LEO EM 910 transmission

electron microscope (Carl Zeiss SMT, Inc., Thornwood, NY) at the
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University of North Carolina Microscopy Facility (Dr Robert Bagnell,

Director, Department of Pathology, University of North Carolina School

of Medicine). Synapses were defined by the presence of a clear

postsynaptic density facing a number of synaptic vesicles. Data were

expressed as the mean ± SEM and compared using Student’s t-test for

statistical significance at P < 0.05.

Results

Synaptic Development Is Impaired in Prefrontal Cortex
of L1YH Mutant Mice

To investigate whether loss of L1-ankyrin interaction impaired

synaptic development, the expression of synaptophysin, a pre-

synaptic terminal marker, was analyzed in layer II/III of

cingulate cortex of WT and L1YH mice at P10 (neonatal), P21

(adolescent), and P60 (adult) stages. As shown in Figure 1A,

synaptophysin immunofluorescence in the cingulate cortex of

WT mice was present as puncta rings around cell soma with

additional punctate staining in the neuropil. In the cingulate

cortex, synaptophysin immunofluorescence in perisomatic

puncta as well as in neuropil was significantly decreased in

L1YH mice compared with age-matched WT littermates at each

of the stages examined in equivalent rostrocaudal sections

(Fig. 1A and quantification at Fig. 1B). Because synaptophysin

localizes in presynaptic terminals of both interneurons and

pyramidal cells, it was of interest to investigate whether inhib-

itory and/or excitatory synapses were affected in L1YH mice.

The 65-kDa isoform of glutamic acid decarboxylase (GAD65),

which is enriched in presynaptic terminals of GABAergic

inhibitory neurons (Feldblum et al. 1993; Esclapez et al. 1994),

was compared for expression in L1YH mice and WT cingulate

cortex. In layers II/III of the cingulate cortex of WT mice,

prominent GAD65 immunofluorescence was evident in periso-

matic puncta rings, which represented presynaptic boutons of

GABAergic interneurons innervating soma of pyramidal and/or

nonpyramidal neurons (Fig. 2A). Quantitative measurement of

fluorescent pixel density of puncta rings surrounding the soma

and neuropil showed that in WT cingulate cortex, the GAD65

immunofluorescence intensity increased about 2-fold from P10

to P21, then remained at elevated levels in adult, an accord with

Figure 1. Synaptic puncta in the mouse prefrontal cortex increase postnatally during normal development but are reduced in L1YH mutant mice. (A) Representative confocal
images of synaptophysin immunoreactivity from WT and L1YH cingulate cortex (layers II/III) at postnatal ages. Scale bar: 10 lm. (B) Pixel densities of synaptophysin
immunoreactivity in perisomatic puncta and neuropil. In L1YH mice, synaptophysin immunofluorescence intensities in perisomatic puncta rings and neuropil were significantly
lower than those of age-matched WT mice at all ages examined. Error bars represent SEM; ***P\ 0.001 relative to WT mice. Four animals per genotype per stage were
analyzed.
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previous findings (Brennaman and Maness 2008). In L1YH mice,

GAD65 immunofluorescence at perisomatic puncta rings and

neuropil was significantly decreased compared with age-

matched WT mice at all ages examined (Fig. 2A and

quantification at Fig. 2B). These results suggested that loss of

L1-ankyrin interaction decreased GAD65-positive inhibitory

synapses surrounding cell soma and in neuropil of cingulated

cortex.

To confirm the loss of synapses by examining ultrastructure

in the cingulate cortex of L1YH mice, electron microscopy was

performed focusing on perisomatic synapses. The perisomatic

region of pyramidal cells receives almost exclusively GABAer-

gic synapses (Freund and Katona 2007). Innervation of pyra-

midal cell soma by interneurons was indicated by the presence

of symmetric synapses along the cell membrane, which ex-

hibited varicosities containing flattened vesicles (arrow heads

in Fig. 3A and B). The density of perisomatic boutons with

symmetric synapses in layers II/III of cingulate cortex was

quantified from serial ultrathin sections of P60 WT and L1YH

mutant mice. In L1YH mice, terminal boutons with symmetric

synapses were morphologically normal but the density of sym-

metric synapses around cell soma was reduced by ~40%
compared with WT littermates (WT, 4.95 ± 0.23 synapses/soma

section vs. L1YH, 2.92 ± 0.19 synapses/soma section, P < 0.001,

Fig. 3C). These results suggested that in L1YH mice, the basket

interneurons still contacted pyramidal cells and formed syn-

apses but at significantly reduced efficiency and density. In

contrast, the density of asymmetric synapses, which represent

excitatory synapses in the neuropil of L1YH cingulate cortex

(layers II/III), was the same as in WT (arrows in Fig. 3D,E and

quantification at Fig. 3F). This result suggested that inhibitory

synapses were preferentially affected in cingulate cortex of

L1YH mutant mice.

Impaired Branching of Cortical Basket Interneurons in
Developing L1YH Cortex

To explore the possible mechanism of reduced inhibitory

innervation in L1YH mice, L1YH heterozygous females were

crossedwith GAD67-EGFP BAC transgenicmales (Chattopadhyaya

et al. 2004) to generate L1YH/GAD67-EGFP mice and

Figure 2. Developmental increase in GAD65-postive perisomatic puncta and neuropil is decreased in L1YH mutant prefrontal cortex. (A) Representative confocal images of
GAD65 immunoreactivity from WT and L1YH cingulate cortex (layers II/III) at postnatal ages. Scale bar: 10 lm. (B) Pixel densities of GAD65 immunoreactivity in perisomatic
puncta and neuropil. In L1YH mice, GAD65 immunofluorescence intensities in perisomatic puncta rings and neuropil were significantly lower than those of age-matched WT mice
at all ages examined. Error bars represent SEM; **P\ 0.01 and ***P\ 0.001 relative to WT mice. Four animals per genotype per stage were analyzed.
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WT/GAD67-EGFP littermates, which enabled visualization of

GABAergic basket interneurons. In GAD67-EGFP mice, a sub-

population of parvalbumin-positive basket interneurons ex-

presses EGFPdriven by the GAD67 promoter (Chattopadhyaya

et al. 2004). These cells target the soma of pyramidal cells, as

shown in the primary visual cortex (Chattopadhyaya et al. 2004).

Immunofluorescence staining of L1 in layers II/III of the cingulate

cortex of P10WT/GAD67-EGFPmice showed that L1 colocalized

in part with EGFP in processes and soma of basket interneurons

but was also expressed throughout the EGFP-negative neuropil

(Fig. 4A). Moreover, double immunofluorescence staining of L1

and the presynaptic inhibitory synapse marker GAD65 (Feldblum

et al. 1993; Esclapez et al. 1994) in cingulate cortex of non-EGFP

expressing WT mice at P10 showed that L1 colocalized in part

with GAD65 (Fig. 4B). Quantitation of double staining using

a thresholding method (Ango et al. 2008) indicated that the

percent of GAD65 immunolabeling that overlapped with L1

immunolabeling at perisomatic sites was approximately 55.7 ±
2.4%. Double staining of L1 and the postsynaptic inhibitory

synapse maker gephyrin (Sassoe-Pognetto and Fritschy 2000;

Sassoe-Pognetto et al. 2000) showedmuch less colocalization (Fig.

4C). Quantitation of L1 and gephyrin double immunostaining

showed that the percent of gephyrin immunolabeling that

overlapped with L1 immunolabeling was approximately 9.5 ±
1.7%. These results suggested that L1 localized to basket

interneurons in cingulate cortex andoverlappedwith presynaptic

and to a lesser extent with postsynaptic inhibitory markers at

perisomatic regions where basket-cell terminals are located.

To investigate whether the loss of L1--ankyrin interaction

affects process extension and arborization of basket interneur-

ons, EGFP-positive interneurons of L1YH/GAD67-EGFP mice

and WT/GAD67-EGFP littermates were analyzed by confocal

microscopy during development at ages of P0, P10, P21, and

P60, representing newborn, neonatal, adolescent, and adult

stages, respectively. Images of EGFP-labeled basket interneur-

ons in the cingulate cortex layers II/III were reconstructed in

confocal z-stacks and analyzed using Neurolucida software.

Both dendrites and axons of basket cells are densely arborized

in the prefrontal cortex, and cannot be easily distinguished

because their dendrites have few spines (Hartwich et al. 2009),

thus both types of processes were analyzed as a group. EGFP-

positive basket interneurons extended primary processes from

the cell soma in both WT and L1YH mice at P10 with no

obvious morphological differences. Basket interneurons in WT

cingulate cortex developed extensively branched arbors from

P21 to P60, whereas L1YH basket interneurons showed much

less branching (Fig. 5). Quantification of basket interneuron

arborization showed that in WT/GAD67-EGFP mice, the

branching index (the total number of ends/total number of

primary processes for each neuron in z-stack images) of basket

interneurons increased from P10 to P21 and P60, whereas in

L1YH/GAD67-EGFP mice, it did not increase with age and was

significantly lower than that of WT at P21 and P60 (Fig. 6A).

Similarly, Sholl analysis revealed that the number of crossings

by L1YH basket interneuronal processes at a given distance

from the soma was similar at P10 but significantly less than that

of WT basket interneurons at P21 and P60 (Fig. 6B). The

reduced branching index of L1YH basket interneurons was due

neither to reduced numbers of primary processes emerging

from the soma (Fig. 6C) nor to somal area (Fig. 6D). Moreover,

Figure 3. Reduced perisomatic inhibitory synapses but not excitatory synapses in L1YH mice revealed by electron microscopy analysis. Electron microscopy was performed in
layers II/III cingulate cortex of L1YH mice and WT littermates at P60. At least 20 randomly selected pyramidal neurons and 6 neuropil areas per animal (n5 4 per genotype) were
analyzed. (A,B) Ultrastructural analysis showed perisomatic inhibitory synapses (arrow heads in A, B) along pyramidal cells in cingulate cortex of L1YH mice (B), with largely
normal morphology and organelle organization compared with WT (A). Scale bar: 0.5 lm. (C). Quantification of perisomatic inhibitory synapses along the somal perimeter of
pyramidal cells in cingulate cortex of L1YH mice revealed an approximately 40% reduction compared with WT. Error bars represent SEM; ***P\ 0.001. (D,E) Representative
images of excitatory synapses (arrows in D, E) in neuropil areas in cingulate cortex of L1YH mice (E) and WT littermates (D). Scale bar: 1lm. (F) Quantification of excitatory
synapses density in neuropil areas in cingulate cortex of L1YH mice and WT littermates. No difference was observed between WT and L1YH mice. n/lm2 5 number of synapses
per square micron of somal perimeter. Error bars represent SEM; ***P\ 0.001.
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basket-cell density in layers II/III of cingulate cortex was not

altered in L1YH mice compared with age-matched WT lit-

termates at any age (P10, P21, and P60) (Fig. 6E).

The Developmental Regulation of L1 Expression and
Phosphorylation in Brain

The reduced inhibitory synapse density and impaired basket

interneuron branching in L1YH mice cingulate cortex sug-

gested that L1--ankyrin interaction plays an important role in

inhibitory synapse development. Double immunofluorescence

staining of L1 and ankyrin B at P10 revealed a broad expression

of L1 and ankyrin B in layers II/III of cingulate cortex, including

colocalization at perisomatic sites in WT mice; however, there

appeared to be less colocalization in L1YH cortex (Fig. 4B).

Because the L1-ankyrin interaction is regulated by L1 phos-

phorylation (Garver et al. 1997; Tuvia et al. 1997; Gil et al. 2003;

Whittard et al. 2006) in vivo, the developmental regulation of

L1 expression and phosphorylation in the mouse brain was

further examined (Fig. 7). Western blotting of brain lysates

using an antibody against intracellular domain of L1 protein

(2C2, Abcam) detected full-length L1 (FL-L1, 200--220 kDa) and

an 80-kDa C-terminal plasmin-cleavage product (Burgoon et al.

1991; Nayeem et al. 1999) in WT and L1YH mutant brain from

P0 to P60. The expression levels of L1 in WT and L1YH

forebrain were similar from P0 to P21 relative to b-tubulin as

a control; however, the L1 level in L1YH was lower than that in

WT at P60 (adult stage) (Fig. 4C). The phosphorylation of L1 at

Tyr1229 was examined by immunoprecipitation of L1 from

brain lysates followed by immunoblotting with antibodies

specific for L1 phosphorylated at Tyr1229 (p-L1) in WT brain

at different ages. As shown in Figure 4D, the phosphorylation of

L1 occurred at highest level at P0 (p-L1/L1 ratio = 0.37),

decreasing at P10 and P21 (p-L1/L1 ratio = 0.11--0.12) and

almost undetectable at P60 (p-L1/L1 ratio = 0.02). The striking

decrease in L1 phosphorylation at Tyr1229 corresponded to

stages of elevated inhibitory synaptogenesis/remodeling (P20)

and synaptic maturation (P40) (Vincent et al. 1995; Flames et al.

2004). These results suggested that in WT mice, dephosphor-

ylation of L1 at Tyr1229, resulting in increased L1 binding to

the cytoskeleton through ankyrin, promotes inhibitory synap-

togenesis and stabilization.

Discussion

Our results provide evidence that a point mutation that

disrupts ankyrin binding in the adhesion molecule L1 leads to

impaired postnatal development of GABAergic perisomatic

inhibitory neurons in the mouse cingulate cortex. Loss of L1--

ankyrin interaction in L1YH mutant mice caused a striking

decrease in arborization of neuronal processes and a reduction

in the number of synapses in a subpopulation of basket cells

whose axons target pyramidal cell soma. Electron microscopy

revealed that perisomatic inhibitory synapses, but not excit-

atory synapses in the neuropil, were specifically affected. In the

cingulate cortex of wild-type mice, L1 colocalized with pre-

synaptic, and to a lesser extent postsynaptic, inhibitory markers

Figure 5. Reduced process elaboration by basket interneurons in cingulate cortex in
L1YH/GAD67-EGFP mice. Individual EGFP-labeled basket interneurons from layers II/III
of the cingulate cortex of L1YH/GAD67-EGFP and WT/GAD67-EGFP mice were imaged
and reconstructed from confocal z-stacks. Representative images of basket
interneurons at each stage are shown for each time point (P10, P21, and P60).
EGFP-positive basket interneurons initiated primary processes (axons and dendrites
exiting the soma) in both WT and L1YH mice at P10, and no morphological difference
was observed between WT and L1YH mice (upper panel). WT basket interneurons
developed extensively branched arbors from P21 to P60, whereas L1YH basket
interneurons show much less branching (middle and lower panels). Scale bar: 20lm.

Figure 4. L1 localizes to GABAergic inhibitory synaptic puncta in postnatal mouse
cingulate cortex. (A) Double immunofluorescence staining of L1 and GFP in cingulate
cortex (layers II/III) of WT/GAD67-EGFP mice at P10 showed L1 localized along
processes and somal membranes of EGFP-positive basket interneurons. Scale bar: 20
lm. (B) Double staining of L1 and GAD65, a presynaptic inhibitory synapse marker, in
cingulate cortex (layers II/III) of WT mice at P10 revealed L1 colocalized in part with
GAD65. Scale bar: 10 lm. (C) Double staining of L1 and gephyrin, a postsynaptic
inhibitory synapse marker, in cingulate cortex (layers II/III) of WT mice at P10 showed
less colocalization of L1 with gephyrin. Scale bar: 10 lm.
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at perisomatic sites. During the major postnatal period of

basket-cell synapse formation in the cingulate cortex, L1

phosphorylation on Tyr1229 decreased, correlating with in-

creasing ankyrin binding. Taken together, these results suggest

a novel role for L1 engagement with the actin cytoskeleton

in development of basket-cell connectivity within the mouse

cingulate cortex.

The reduction in perisomatic synapses of basket interneur-

ons in L1YH mutant mice might arise as a consequence of

decreased branching of processes during postnatal develop-

ment or of impairment in the formation and/or stabilization of

synapses. Decreased numbers of axonal branches of the

otherwise densely arborized basket cell would lead to cor-

respondingly reduced numbers of perisomatic synaptic puncta,

altering inhibitory/excitatory balance in the cortex. A possible

involvement of L1--ankyrin binding in branch initiation of

basket-cell axons in vivo is consistent with the demonstrated

role of L1--ankyrin association in initiation of neurites in neuron

cultures (Nishimura et al. 2003). L1 interaction with ankyrins

might instead function during synaptogenesis either to

Figure 6. Quantification of basket interneuron arborization in the cingulate cortex of WT and L1YH/GAD67-EGFP mice. Individual EGFP-labeled basket interneurons from layers II/
III of the cingulate cortex of L1YH/GAD67-EGFP and WT/GAD67-EGFP mice were imaged and reconstructed from confocal z-stacks, then analyzed using Neurolucida software. At
least 60 EGFP-labeled basket interneurons from 6 random selected fields per animal were analyzed, using 4 mice per stage and genotype. (A) In L1YH/GAD67-EGFP mice, the
branching index (the total number of ends/total number of primary processes for each neuron evident in the z-stack images) of basket interneurons did not increase with age and
was significantly lower than that of WT at P21 and P60. (B) Sholl analysis revealed that in L1YH/GAD67-EGFP mice, the numbers of crossings by basket interneurons processes at
a given distance from the soma were similar at P10 but significantly less than that of WT basket interneurons at P21 and P60 (mean number of crossings per neuron at Sholl
distance of 30 lm was shown). (C--E) The mean numbers of primary processes per neuron (C), mean soma area (D), and neuronal density (E) were not affected in L1YH mice.
Error bars represent SEM; **P\ 0.01.
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promote initial adhesive interactions between pre and post-

synaptic components or to stabilize synaptic contacts. Pre-

synaptic ankyrin (Koch et al. 2008; Pielage et al. 2008), as well

as spectrin (Pielage et al. 2005), is required for synaptic

stability. A role for L1-ankyrin binding in synapse stabilization is

consistent with the finding that the optic nerve of ankyrin B

knockout mice grows normally but later degenerates as L1 is

downregulated from the axons (Scotland et al. 1998). The

decrease in perisomatic puncta of basket interneurons in the

L1YH cingulate cortex is in accord with a reduction in the

number of perisomatic inhibitory synapses in the hippocampus

of L1 total knockout mice, which decreases inhibitory trans-

mission (Saghatelyan et al. 2004). Although we have not

directly measured neurotransmission in L1YH mice, functional

evidence for L1 in development of cortical as well as

hippocampal circuitry is suggested by the deficits in sensori-

motor gating and spatial learning in L1 knockout mice (Fransen

et al. 1998; Irintchev et al. 2004). It will be important to

evaluate functional consequences of the L1YH mutation

directly in future studies.

A role for related L1-CAMs in synaptic development of

GABAergic neurons has also been demonstrated for CHL1,

which is required for targeting of stellate GABAergic axons to

Purkinje cell dendrites (Ango et al. 2008). Synapse formation

between stellate cell axons and Purkinje cells cannot be

maintained in older CHL1 null mutant mice and results in

atrophy of axon terminals in accord with a role in synaptic

stabilization (Ango et al. 2008). In addition, Neurofascin and its

binding partner ankyrin G cooperate to direct axons of

GABAergic basket interneurons in the cerebellum to the axon

initial segment of Purkinje neurons (Ango et al. 2004). Al-

though L1--CAMs are the only Ig family members that associate

with the actin cytoskeleton through ankyrin, neural cell adhe-

sion molecule NCAM couples to actin by binding to spectrin

(Sytnyk et al. 2006) and promotes perisomatic innervation by

basket interneurons in the cingulate cortex (Brennaman and

Maness 2008). Involvement of ankyrin in neuronal branching

and/or synaptic contacts is likely due to its ability to stabilize

L1 in the plasma membrane and to inhibit retrograde actin flow

(Gil et al. 2003; Nishimura et al. 2003; Whittard et al. 2006).

A mutant allele of the Drosophila L1 family ortholog,

Neuroglian (Nrg849), which contains a Ser213Leu mutation in

the extracellular Ig2 domain, disrupts the morphology of

presynaptic terminals at a motor neuron synapse and impairs

neurotransmission (Godenschwege et al. 2006). This mutation

affects homophilic adhesion but also induces a 50% decrease in

phosphorylation of tyrosine residue Y1234, which is homolo-

gous to L1Y1229. Some Nrg849 mutants exhibit pathfinding

errors resulting in fewer synapses, similar to the L1YH

phenotype. However, expression of nonphosphorylatable

NrgY1234F mutant in Nrg849 mutant flies did not rescue the

Nrg849 mutant phenotype, whereas expression in wild-type

flies caused synaptic impairment (Godenschwege et al. 2006).

Because NrgY1234F binds ankyrin at half of normal levels

Figure 7. Regulation of L1 expression and phosphorylation in postnatal brain development. (A) Developmental regulation of L1 expression in mouse forebrain. Lysates of mouse
forebrain (75 lg) were analyzed at ages of P0, P10, P21, and P60 for L1 expression by SDS-PAGE and immunoblotting. The expression levels of L1 in WT and L1YH forebrain were
similar from P0 to P21; however, the L1 level in L1YH brain was lower than WT at P60 (adult). The data shown were representative of three independent brain lysates. Blots were
reprobed for b-tubulin as an internal control. (B) Developmental regulation of L1 phosphorylation on Tyr1229 in forebrain. L1 was immunoprecipitated from lysates of P0, P10, P21,
and P60 WT forebrain and subjected to SDS-PAGE and immunoblotting with antibody specific for L1 phosphorylated at Tyr1229 (p-L1 Blot), then reprobed for total L1 with
antibody specific for L1 protein (L1 Blot). Blots were densitometrically scanned, and band densities were analyzed using NIH Image J software. The ratios of phospho-L1 to L1
intensities are indicated below. (C) L1 colocalizes with ankyrin B in WT but not L1YH cingulate cortex. Double immunofluorescence staining of L1 and ankyrin B in layers II/III of
cingulate cortex of P10 WT and L1YH mice shows colocalization in WT but not L1YH cortex in merged confocal images. Scale bar: 10 lm. Insert in lower left panel shows control
staining of L1YH cortex with nonimmune IgG (nIgG).
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(Hortsch et al. 1998), unlike L1Y1229H, which does not

detectably bind ankyrin (Buhusi et al. 2008), the reduced

ankyrin binding of mutant NrgY1234F may not be sufficient to

rescue the Nrg849 phenotype, whereas synapse formation in

a wild-type background may be disrupted by competitive

interactions of NrgY1234F with wild-type Nrg. In any case, it is

difficult to directly contrast these studies due to differences in

organism (mammalian vs. Drosophila), neuron type (GABAergic

interneuron vs. motor neuron), and synapse (perisomatic

synapses in mouse cingulate cortex vs. giant fiber synapses).

Moreover, the functions of L1 and Nrg may not be identical

because there are 4 members of the mammalian L1 family,

which have diverse functions and Nrg is the single L1 ortholog

in flies.

Basket interneurons control synchronous firing of pyramidal

neuron groups (Freund and Katona 2007) and are important for

regulating prefrontal cortical functions such as working memory

(Spencer et al. 2003; Wang et al. 2004; Fuchs et al. 2007; Touzani

et al. 2007). Dysfunction of GABAergic inhibitory interneurons is

increasingly implicated in schizophrenia and bipolar disorder

(Brambilla et al. 2003; Benes et al. 2008; Kim and Webster 2008;

Lewis et al. 2008), diseases that have been linked to altered

regulation of L1 (Kurumaji et al. 2001; Laifenfeld et al. 2005;

Wakabayashi et al. 2008). The present findings show that L1,

through ankyrin/cytoskeletal engagement, is required for

appropriate regulation of neuronal branching leading to proper

development of inhibitory GABAergic interneuron synapses in

the mouse cingulate cortex, thus contributing to development

of cortical inhibitory circuitry.
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