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Abstract
The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis
of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a
potential to tackle large biological systems. Obstacles that hinder the current development of PB
based MD methods are concerns in accuracy, stability, efficiency and reliability. The presence of
complex solvent-solute interface, geometric singularities and charge singularities leads to
challenges in the numerical solution of the PB equation and electrostatic force evaluation in PB
based MD methods. Recently, the matched interface and boundary (MIB) method has been
utilized to develop the first second order accurate PB solver that is numerically stable in dealing
with discontinuous dielectric coefficients, complex geometric singularities and singular source
charges. The present work develops the PB based MD approach using the MIB method. New
formulation of electrostatic forces is derived to allow the use of sharp molecular surfaces.
Accurate reaction field forces are obtained by directly differentiating the electrostatic potential.
Dielectric boundary forces are evaluated at the solvent-solute interface using an accurate
Cartesian-grid surface integration method. The electrostatic forces located at reentrant surfaces are
appropriately assigned to related atoms. Extensive numerical tests are carried out to validate the
accuracy and stability of the present electrostatic force calculation. The new PB based MD method
is implemented in conjunction with the AMBER package. MIB based MD simulations of
biomolecules are demonstrated via a few example systems.
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1 Introduction
Since most biological processes, such as gene regulation, signal transduction, and protein-
protein interaction occur in aqueous environment, the solvent-solute interactions are
important to biological processes. The solvation process is typically described by explicit
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models and implicit models. Explicit atomistic description of biomolecules and their
aqueous environment, including solvent, co-solutes, and mobile ions, is prohibitively
expensive for large biomolecular systems, although a variety of advanced computational
methods, such as Ewald summations, Euler summations, periodic images and reaction field
theory, have been developed for molecular dynamics in the past few decades. In fact, our
central interest in most biomolecular studies is the behavior of biomolecules and their
interactions, instead of water molecules. As such, implicit solvent models [5,21] that treat
the solvent as an electrostatic continuum while admit an atomistic description for
biomolecules, are attractive multiscale approaches for the quantitative understanding of
large scale biological systems [16,23,32,55,58,62,65,71]. These approaches have become
increasingly popular in the biophysical and biochemical community since the earlier work
by Warwicker and Watson in the early 1980s [65], and Honig in the 1990s [32]. The most
commonly used implicit solvent models include the Poisson-Boltzmann equation (PBE) [5],
generalized Born (GB) [22] and polarizable continuum approaches. The most attractive
feature of these methods is their combination of atomic details of the biomolecule and a
mean field approximation of the solvent. The PBE describes the electrostatic potential under
a given charge assignment of the biomolecule and a Boltzmann distribution of the ionic
concentration in the solvent. The coulomb gauge for electrostatic potential, the Gauss’s
divergence theorem and law for the electric field are utilized to derive the PBE. The GB
theory is simple and is usually regarded as an approximation to the PBE.

The PBE has a wide range of applications, including the estimation of electrostatic solvation
free energies [24,36,59], pKα values [26,49,64], and the electrostatic analysis of interaction
surfaces. There has been a great deal of effort in developing PBE based electrostatic force
calculations for molecular dynamics (MD) [28,42,43,45,50,58] in the past two decades. The
basic theoretical foundation for such calculations was established by Gilson et al. [28] based
on the free energy functional derived by Sharp and Honig [58].

Most implicit solvent models, such as the Poisson-Boltzmann (PB) and GB models, utilize a
solvent-molecule interface to separate the continuum domain from that of the biomolecule.
Various biomolecular surface models, including the van der Waals surface, the solvent
accessible surface [37], the molecular surface (MS) [53], minimal molecular surface [6] and
more general geometric flow based biomolecular surfaces [7] are often employed for the
application of the PB method. Recently, smoothed molecular surfaces have been proposed
for implicit solvent models [14,66,27,76]. Variational approaches are utilized to determine
the profile of smoothed surfaces [14,66]. It was argued that care is required when use atomic
centered dielectric functions in implicit solvent models for solvation free energy calculations
[60,63]. However, as shown by Swanson et al. [61] and in our differential geometry based
models [14,66], a simple reparameterization of van der Waals radii can lead to accurate
solvation calculations from smoothed surface definitions. Therefore, at a coarse level of
approximation, sharp surfaces and smoothed surfaces produce similar results for many PB
applications. Thus, the selection of a surface is often dictated by the numerical convenience.

Nevertheless, the numerical instability of the sharp interface becomes a severe problem in
the calculation of solvation forces. In molecular dynamics simulations, solvation force has to
be evaluated for tens of millions of times. As such, numerical stability is particularly
important. To avoid the electrostatic force calculation involving the sharp solvent-solute
interfaces, Im et al. presented a smoothed dielectric boundary approach [33]. Using a
smooth surface approach, Lu and Luo demonstrated that PBE based methods can be
successfully and consistently applied to stable and efficient dynamics simulation of
unconstrained biomolecules [43]. Remarkably, Prabhu et al. reported a smooth-permittivity
finite difference PB method that is up to eight times faster than the explicit water
simulations [50]. However, so far, no force calculation and MD simulation have been
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carried out based on any sharp molecular surface definition, although sharp molecular
surfaces are widely used in all other PB applications.

The instability of the solvation force evaluation is inherently associated with the instability
in the numerical solution of the PBE. The use of sharp molecular surface has certainly
contributed to the instability. Many numerical methods have been used to solve the PBE,
including finite element methods [3,4,16,30,67], and boundary integral methods
[8,9,10,34,39,62,71,44]. The most commonly used PB solvers in the field are usually based
on finite difference methods [23,32,42,43,45,58,65,33]. Many popular software packages,
such as DelPhi [35,54], UHBD [18], MEAD [54], APBS [30,31,2], AMBER [13] and
CHARMM [12,46], adopt finite difference schemes, which offer the best combination of
speed, accuracy, and efficiency [5]. Although van der Waals surfaces, solvent accessible
surfaces and molecular surfaces were often used in popular software packages, most
traditional PB solvers neglect interface flux continuity conditions at the solvent-solute
interfaces. As a result, these methods may suffer from instability and slow convergence
when directly admit molecular surfaces or van der Waals surfaces. Therefore, stability
enhancement and convergence acceleration are pressing technical issues in the development
of PB methods.

Mathematically, the aforementioned problem is originated from elliptic equations with
discontinuous coefficients and singular sources. This is a very challenging problem in
applied mathematics and scientific computing. There has been much research interest in this
class of problems since Peskin’s pioneer work on immersed boundary method (IBM) [51]. A
number of elegant mathematical methods have been introduced in the past two decades,
including finite element formulations [1,11,40], the ghost fluid method (GFM) [20,41],
coupling interface method [15], and integral equation approach [47]. A remarkable
contribution was due to LeVeque and Li [38], who proposed the first second order accurate
immersed interface method (IIM). Their method has been applied to the PBE in two spatial
dimensions [52], among a variety of other interesting applications. These methods have not
been applied to the PBE in biomolecular context. An important problem in computational
mathematics is that many existing interface schemes may not work in biomolecular context,
due to the complexity in three-dimensional (3D) geometry and geometric singularities.

Recently, we have proposed a high order method, the matched interface and boundary
(MIB) method, for elliptic interface problems [72,73,74]. We have demonstrated fourth and
sixth order MIB schemes for curved interfaces in 2D [73,74] and 3D [69] applications. More
recently, we have developed three generations of MIB based PB solvers, MIBPB-I, MIBPB-
II, and MIBPB-III. The MIBPB-I presents a rigorous interface treatment for arbitrarily
complex biomolecular interfaces [75] by carefully implementing the flux continuity
conditions. However, it cannot maintain the targeted second order convergence because the
presence of geometric singularities, such as cusps and self-intersecting surfaces in protein
molecular surfaces [17,19,29,56]. To overcome this difficulty, we have developed an MIB
method that is able to solve elliptic equations with geometric singularities [68,69]. This MIB
scheme based PB solver, called MIBPB-II, is able to deliver the second order accuracy in
solving the PBE with molecular surface singularities [70]. The state of the art MIB method
is described in our recent paper [69].

Another problem in the development of advanced PB solvers is point charges in proteins,
which are represented by Dirac delta functions. As distributions, delta functions reduce the
regularity of the solution of the PBE. In most existing PB solvers, Dirac delta functions in
the PBE, or singular charges in a molecule, are redistributed to their neighboring grid points.
This approach is compatible with the neglect of interface flux continuity conditions in
commonly used PB solvers. However, in the MIBPB-II, accuracy reduction occurs when a
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grid point has both redistributed charge contribution and interface condition contribution.
This typically happens when the mesh size approaches half of the van der Waals radius, i.e.,
about 0.6Å, for smallest atoms in a protein. To overcome this difficulty, a regularization
procedure that separates the solution of the PBE into a regular part and an irregular part was
employed in our MIBPB-III [25]. The irregular part consists of the Green’s function, which
is the solution to the Poisson equation with the singular charges. The MIBPB-III was found
to be a few orders of magnitude more accurate and up to three times faster than commonly
used PB solvers in achieving the same accuracy [25].

The work described in this paper is a continuation of our endeavor in developing
mathematical methods for problems in molecular biology. The objective of the present work
is to develop stable and accurate algorithms for electrostatic force calculations based on the
sharp molecular surfaces. The MIBPB technique is utilized to solve the PBE with molecular
surfaces. The present work offers a number of new features. First, the present force
calculation is based on the molecular surface [53] or the minimal molecular surface [6],
without resorting to any surface preprocessing, such as the geometric smoothening and/or
the dielectric smoothening. Additionally, to directly evaluate solvation forces with sharp
interfaces, force density expressions, particularly the dielectric boundary force density, are
derived. The theoretical approach used in our present derivation is similar to that used in our
differential geometry based multiscale models [66]. Yet, the resulting force density involves
the evaluation of limiting values of the first order derivatives of the electrostatic potential
from both inside and outside the interface. Moreover, the molecular surface interface
contains reentrant surfaces which are detached from individual atomic spheres. Therefore,
forces from reentrant surfaces need to be distributed to nearby atoms, which touch the probe
when it forms the reentrant surface. Furthermore, accurate surface integrations are required
for the evaluation of dielectric boundary forces and ionic forces. These evaluations are to be
carried out along the complex interface and in the Cartesian grid. Finally, a PB solver that is
able to handle sharp interface without numerical instability is needed. This is done with our
MIBPB-II method.

The rest of this paper is organized as the follows. Theory and algorithm are presented in
Section 2. The derivation of electrostatic force density functions is based on a free energy
functional. Derivation of the density functions is discussed with respect to sharp interfaces
and molecular surfaces. A number of numerical algorithms, including the evaluation of the
force density as limiting values at the interface, accurate surface integrations in Cartesian
grids, and the distribution of dielectric boundary forces to the individual atoms, are
developed. Validation and numerical experiments are described in Section 3. The method of
accurate integration in Cartesian grid is tested with the area of molecular surfaces. The
proposed force algorithms are tested over many polyatomic systems. Section 4 is devoted to
the molecular dynamics applications. The present electrostatic forces are implemented in
conjugation with the AMBER force fields [13], particularly, in place of the AMBER PB
module [43,45] for molecular dynamics simulations. Three small biomolecules are used in
our demonstration. This paper ends with concluding remarks summarizing the results.

2 Theory and algorithm
This section describes the basic theories and algorithms that are required for the construction
of the proposed MIBPB based MD method. Electrostatic free energy functional and
electrostatic force were presented by Sharp and Honig [58], and Gilson et al. [28],
respectively. In the present work, we present new derivations that are appropriate for sharp
solvent-solute interfaces. Section 2.1 is devoted to the free energy functional for electrostatic
problems. In Section 2.2, we present a new derivation of electrostatic forces. Force
expressions for surface integrations are given in Section 2.3. These new force expressions
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involve left and right gradients of the electrostatic potential on the molecular surface, which
are to be computed by using the MIBPB method. To establish notation, Section 2.4 gives a
brief review of the MIBPB method. Finally, Section 2.5 provides details for calculating
dielectric boundary forces. Such calculations involve three techniques: gradient evaluation,
surface integral on Cartesian grid, and the distribution of force elements to related atoms.

2.1 Free energy functional
Consider an open domain Ω ∈ ℝ3. Let Γ be the interfaces which divides Ω into two disjoint
open subdomains, Ω = Ω− ∪ Ω+ ∪ Γ. Here Ω− is the biomolecular domain, and Ω+ is the
solvent domain. The starting point for the implicit solvent theory is a given set of atomic
coordinates for a molecule in ℝ3. The charge density of the molecule ρm(r) can therefore be
obtained by assigning charge to each atom according to its type and environment

(1)

where Qi is the partial charges of ith atom, and Nm is the number of charged atoms. The
positions of the charge ri is determined from experiments, such as X-ray crystallography,
nuclear magnetic resonance and computations. We introduce the biomolecular domain
characteristic function

(2)

Obviously, λ+ = (1 − λ−) characterizes the solvent domain Ω+. The permittivity ε(r)

(3)

is a function of position r ∈ ℝ3, and its value in the molecular domain (Ω−) differs from that
in the solvent domain (Ω+). Note that Eqs. (2) and (3) present a simplified treatment of the
ion domain. More appropriate treatment should include an additional ion exclusion zone
outside the biomolecular domain [25].

The charge density of the solvent ρs(φ(r)) is a function of the electrostatic potential φ. In
case of a multi-species system, a commonly used ionic density is the Boltzmann distribution
and is given by

(4)

where N is the number of ionic species, cj’s are the bulk concentration of each ionic species,
and qj’s are charges of each ionic species. The free energy of the electrostatic system can be
expressed as an integral
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(5)

where gelec is the free energy functional or energy density

(6)

Here ρ̄s(φ) = ∫ ρs(φ)dφ and ρ̄s(0) = 0. If ρs(f) is given by Eq. (4), then we have

(7)

To minimize the free energy, the energy functional gelec(x, y, z, φ, φx, φy, φz) must satisfy the
Euler-Lagrange equation

(8)

which gives rise to the PBE,

(9)

Obviously, there are flexibilities in the selection of ρs. In particular, the present choice does
not account for the effect of ionic correlation and ion-macromolecule interaction near the
interface.

For a sharp interface Γ, the permittivity values ε (r) at molecular domain Ω− and the solvent
domain Ω+ are different, as shown in Eq. (3). In most calculations, ε− and ε+ are set to 1 and
80, respectively. This jump in permittivity gives rise to discontinuous coefficients in the
PBE (9). To ensure the uniqueness of the solution, the PBE is to be solved with the
following continuity conditions at the interface

(10)

(11)

where n = (nx, ny, nz) is the outer normal direction and φ± are the limiting values at the
interface Γ. Here [φ] = 0 and [εφn] = 0 for the PBE therefore [φn] are non-zero. The interface
normal can be computed from given interfaces, such as the molecular surface of a given
protein.
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2.2 Electrostatic forces
The electrostatic force at a reference point, say the origin, denoted as Felec, can be expressed
as the volume integral of the gradient of the free energy density gelec

(12)

In this treatment, we assume that the system is at equilibrium so that the temperature T, the
ion concentration ci and their charge qi are position independent quantities. From Eqs. (6)
and (7), we have

(13)

The first term on the right hand side of Eq. (13) can be integrated by parts

(14)

where the product φρm vanishes at infinity. Using the product rule on the sixth term of Eq.
(13), we have

(15)

The first term on the right vanishes as a surface integral at infinity. The resulting force
expression becomes

(16)

where E = −▽φ is the electrostatic field vector. Recognizing that the terms in the square
bracket vanish because of the PBE (9), one arrives at the force expression
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(17)

where the force density is

(18)

This expression is to be further simplified for practical calculations.

Since ▽λ− gives rise to a Dirac delta function at the solvent-solute interface, the second
term φρm▽ λ− vanishes because ρm consists of delta functions away from the interface.
Similarly, the first term can be simplified as λ− ρm▽φ. Therefore, the total force can be
broken into three contributions Felec = FRF + FDB + FIB. The first term is the reaction field
force at the reference point and is often evaluated at the charge locations

(19)

In practical computations, FRF corresponding to the solvation is evaluated as the difference
of the solution gradients in solvent and in vacuum

(20)

where  is the reaction field force at ith atom, φs is the potential for solvated molecule and
φv is the that of molecule in vacuum. Note that it is , instead of FRF, that is evaluated and
used in molecular dynamics. The second term in Eq. (17) is the dielectric boundary force at
the reference point

(21)

The last term in Eq. (17) is the ionic boundary force at the reference point
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(22)

Both the dielectric boundary force and the ionic boundary force are to be evaluated on the
surface of the biomolecule.

2.3 Force expressions involving sharp interfaces
For the dielectric boundary force, the force expression involves the gradients of the
characteristic functions

(23)

According to Eq. (2), these gradients vanish away from the interface Γ. Let R(Γ) be a
general position vector on the interface Γ, and

(24)

where n ̂ is the unit normal vector at R(Γ). Note that R±(Γ) vary only along the positive and
the negative n ̂ directions. We therefore have

(25)

where r is the position variable in the unit normal direction. The dielectric boundary force at
the reference point is

(26)

By carrying out the integration over r, we have

(27)

(28)

where dS = n ̂dS is pointed at the surface normal direction n and 
is the dielectric boundary force density. Here, E± = −▽φ± are to be evaluated at the interface
Γ. It is noted that the full-scale integration of Eq. (28) will not be pursued. It is the local
forces at all intersecting points of the interface and meshlines that are needed. Such forces
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are evaluated by , where ΔS is the area of the surface element in a
given mesh.

For the ionic boundary force FIB, since λ+ has its non-zero value only in the solvent, ▽λ+

contributes to a delta function evaluated at points on the interface where the mesh lines and
the interface intersect. Consequently, the ionic boundary force is

(29)

(30)

where φ+ is to be evaluated at the interface Γ and  is the ionic
boundary force density. At these intersecting points, the values of φ+ can be obtained by the
interpolation of two grid points outside the interface and a fictitious point inside the
interface. When singular geometry occurs, interpolation using one grid point outside the
interface and two fictitious points inside can provide an alternative.

Here we mention that when a more appropriate ion exclusion zone is included, the notation
will become more complicated, but the derivation of the ionic boundary force is the same.
The calculation of the ionic boundary force is very similar to that of the dielectric boundary
force technically but it has less impact on the total electrostatic solvation force. Therefore,
we just mention this aspect briefly here without providing further consideration and
numerical results.

In this paper, we carry out dielectric boundary force evaluations by using technique based on
sharp molecular surfaces, which is developed in the next subsection. The molecular surface
is generated by using the MSMS [56]. A technique developed in Ref. [75] is used to convert
the triangle surface representation from the MSMS into the required Cartesian
representation.

2.4 The MIB solution of the Poisson Boltzmann equation
Rigorous interface technique, the MIB method, has been described in a series work for the
solution of Eq. (31) [25,70,75]. To establish notation, we present a brief description of our
MIB based PB solvers.

Assume that an interface Γ divides a domain Ω into two disjoint parts, a molecular
subdomain Ω− and a solvent subdomain Ω+. The outer boundary of Ω+ is chosen to be
regular. Without loss of generality, let us consider the linearized Poisson Boltzmann
equation (PBE) of the form

(31)
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where the ionic strength κ(r) is defined as . The continuity conditions of
the solution and its flux across the interface are given by Eqs. (10) and (11), respectively. In
the MIB method, these conditions are to be implemented rigorously in order to obtain the
highly accurate and fast convergent solution to the PBE. Dirichlet far-field boundary
condition φ (∞) = 0 is used for Eq. (31).

The essence of MIBPB solvers is the treatment of interface continuity conditions Eqs. (10)
and (11) in the Cartesian grid. The standard finite difference schemes cannot maintain the
designed order of convergence due to the discontinuity in the flux. To restore the
convergence, we compute the derivatives in the PBE near the interface without directly
using the function values across the interface. Instead, we use only function values on the
same side of the interface and their smooth extensions across the interface, which are often
called fictitious values, see Fig. 1. A fictitious value is needed when a finite difference
scheme reaches across the interface. To determine fictitious values, we make use of
continuity conditions at the interface. This in turn enforces the continuity conditions.

The MIB method takes the dimension splitting approach which reduces a multidimensional
interface problem into 1D ones. Therefore, unlike the IIM, the MIB method normally does
not use multidimensional interpolation or multidimensional Taylor expansion.
Consequently, the MIB method simplifies the local topological relation near an interface,
which is crucial for 3D problems with complex interface geometries.

Consider a case where the interface Γ intersects the grid in the x-direction at a point (io, j, k),
which has two nearest neighbor grid points (i, j, k) and (i + 1, j, k). Fictitious values f+(i, j, k)
and f−(i + 1, j, k) are required in a second order finite difference scheme in the x-direction
near the intersecting point. In general, at every intersecting point of the interface and mesh
lines, there are two original interface conditions and two additional first order interface
conditions. These four conditions can in principle determine four fictitious values. However,
these four interface conditions involve six first order derivatives , and .
The evaluation of these derivatives can be very difficult for a complex geometry. In the MIB
method, we simultaneously determine as few fictitious values around an intersecting point as
possible so that we have the maximal flexibility in avoiding the determination of many first
order derivatives, which are often difficult to evaluate due to the geometric constraint.
Nevertheless, we have to determine at least two fictitious values so that both of the original
two interface conditions can be implemented directly or indirectly. Consequently, we
determine only two fictitious values around an intersecting point and thus, use two interface
conditions to eliminate two first order derivatives. The remaining four derivatives are to be
approximated using appropriate grid function values near the intersecting point.

In order to derive two additional conditions, we define a local coordinate (ξ,η, ζ) such that ξ
is along the normal direction, and η is in the x – y plane. Two coordinates are connected by
the transformation

(32)

where θ and ψ are the azimuth and zenith angles with respect to the normal direction ξ,
respectively. Two additional continuity conditions are generated by differentiating Eq. (10)
along two tangential directions, η and ζ
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(33)

(34)

where pij is the ijth component of the transformation matrix p. From Eq. (32) we have [φξ,
φη, φζ]T = p · [φx, φy, φz]T, where T denotes the transpose. Three flux continuity conditions,
Eqs. (11), (33) and (34) can be cast in the form

(35)

where

(36)

where Ci represents the ith row of matrix C. As discussed above, there are six derivatives,
, and , in restricted subdomains. Some of these conditions are very

difficult to evaluate for complex biomolecular interface geometries. Therefore, in the MIB
method, we eliminate two derivatives as the follows. In Fig. 1(b) we illustrate a case where
the  is difficult to compute and is to be eliminated. In general, after the elimination of the
lth and mth elements of the array [ ], Eq. (35) becomes

(37)

where

(38)
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Finally, Eqs. (10) and (37) are used to determine two fictitious values near the interface,
together with the evaluation of four partial derivatives. This procedure is systematically
repeated to determine fictitious values along other mesh lines and at other intersecting
points. This dimension splitting approach effectively reduces a 3D interface problem into
1D-like ones locally.

For the situation depicted in Fig. 1(b), after elimination of , we compute . However, on
the line passing through (io, j, k) in the y-direction, there is no grid point. Therefore,  has
to be evaluated by using interpolation schemes with solution values from the neighboring
points. Specifically,  at (io, j, k) will be interpolated by using values at points (io, j − 1, k),
(io, j, k) and (io, j + 1, k). Because these three points are not normal grid points, we have to
further obtain the values at (io, j − 1, k) by interpolation using grid values at (i + 1, j − 1, k),
(i + 2, j − 1, k) and (i + 3, j − 1, k), and the value at (io, j + 1, k) by using grid values at (i +
1, j + 1, k), (i + 2, j + 1, k) and (i + 3, j + 1, k). For the value at (io, j, k), the fictitious value at
(i, j, k) and grid values at (i + 1, j, k) and (i + 2, j, k) will be employed for the interpolation.

There are some simple principles for the selection of two derivatives to be eliminated and
for the selection of the interpolation strategy. One is the feasibility of the scheme and the
other is matrix optimization. We eliminate those derivatives that are difficult to evaluate. For
a given local geometry, we will choose to compute one of two partial derivatives,  and ,
such that the evaluation in the x – z plane can be easily carried out. We select an appropriate
interpolation strategy such that the resulting MIB matrix is optimally symmetric and
diagonal for arbitrarily complex solvent-molecule interfaces with geometric singularities. A
detailed discussion of the matrix optimization and 3D MIB methods for geometric
singularities can be found in Ref. [69]. A rigorous validation of MIB based PB solver,
MIBPB-II, for molecular surface singularities can be found in Ref. [70]. For a detailed
treatment of charge singularities, the reader is referred to Ref. [25].

2.5 Dielectric boundary force calculation
There are two features in the present work that differ from any of the previous work in
electrostatic force calculation. First, our force calculation is based on the rigorous treatment
of the PBE with discontinuous solvent-solute interfaces. Therefore, our evaluation of the
dielectric boundary force density is to be based on Eq. (28), instead of Eq. (21), for sharp
interfaces. Second, due to the use of molecular surfaces, instead of van der Waals surfaces,
the distribution of reentrant surface effects in the dielectric boundary force to individual
atoms is a new issue. In the present calculation of the dielectric boundary force, three issues
are to be resolved. First, one needs to evaluate E± in Eq. (28), which involves partial
derivatives at the interface. Second, one needs to numerically carry out the surface integral
Eq. (28) along the interface. Finally, one needs to distribute the calculated boundary forces
from reentrant surfaces to individual atoms. For the first issue, the calculation of the surface
density function is actually at the intersecting points of the interface and the meshlines.
Some of these intersecting point values are actually computed in solving PBE, and by
modifying part of our MIB schemes. Derivatives of φ with respect to x, y and z-directions on
these points in both inside and outside of the interface can be conveniently computed. For
the surface integration, we employ the method developed by Smereka [57] with a minor
modification. In this method, the numerical surface integral is calculated by volume integral
with integrand supported by discrete delta functions defined only on grid points close to the
interface. For the issue of force distribution, since our numerical integral is in the form of
the summation of the product of the force density and curved small area, we can distribute
the force to individual atoms based on the location of the force density. The details of
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surface density evaluation, surface integration and force distribution are given in the
following three subsections.

2.5.1 Evaluation of dielectric boundary force density on the interface—The
dielectric boundary force on the interface as discussed in the previous section is given by
Eq. (28). To compute E+ and E−, we need to evaluate the gradient of φ on the interface from
both inside of the biomolecule denoted as “−”, and outside of the biomolecule but in the
solvent denoted as “+”, i.e.,  and .

Having obtained the solution φ to the PBE in the entire domain and supposing now one
wants to evaluate these partial derivatives at (xo, yj, zk) from Fig. 1(b),  can be interpolated
by values of φ at (i − 1, j, k) and (i, j, k), and the fictitious value of φ at (i+1, j, k), which is
the linear combination of values at some grid points. Meanwhile  can be interpolated by
the values of φ at (i + 1, j, k) and (i, j, k), and the fictitious value of at (i − 1, j, k). In our
MIB scheme, two of  and  can also be interpolated by values at one fictitious
point, two grid points and six auxiliary points (actually just regular grid points). Here, we
only need one derivative from these two, i.e., . Then, one can use Eq. (35) to compute

 and .

To this end, one rewrites Eq. (36) into the following form by block matrices

(39)

where CA and CB are the first three and last three columns of C, respectively. With this
setting, one can obtain the three unknown partial derivatives by

(40)

Note that under some rare situations, matrix CB could be singular, and one needs to first
compute four of six partial derivatives of φ by an interpolation with grid point and fictitious
values, and then use the interface jump conditions to solve the remaining two. Moreover, if
an intersecting point is exactly a grid point, some special treatments are required as
described in the MIB schemes [68,69]. These treatments are implemented in our software
package. Their description is lengthy and is omitted here.

2.5.2 Numerical surface integration in Cartesian grids—According to Smereka, the
surface integral of a density function in Cartesian grids can be approximated by [57]

(41)
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where (xi, yj, zk) is the coordinate of grid point (i, j, k), d(x, y, z) is the distance of a point (x,
y, z) defined in Ω from Γ, and f(x, y, z) is the surface density function defined in Γ. With Φ
as the level set function such that Φ = 0 defines the interface, i.e. Γ = {(x, y, z): Φ(x, y, z) =
0}, the first order discrete delta function at (i, j, k) is given by [57]

(42)

where

(43)

where  and  are upwind, downwind and central finite difference
schemes in the α-direction (α = x, y, z), respectively, and

 with ε = 10−10.

In our case, the function values are available only on the interface. Therefore, a modification
of the above formalism is required. After some derivation, we have the following integral
expression

(44)

where (xo, yj, zk) is the intersecting point of the interface and the x meshline that passes
through (i, j, k), and nx is the x component of the unit normal vector at (xo, yj, zk). Similar
relations exist between (xi, yo, zk) and ny, and between (xi, yj, zo) and nz, respectively. We
here define irregular grid points as points with neighbor from the other side of the interface.
Since Eq. (44) has already taken into account for the contribution from irregular grid points
outside the interface, the summation is restricted to I, the set of irregular grid points inside or
on the interface. Based on Eq. (41), the derivation of Eq. (44) is quite straightforward, and is

illustrated with .
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1.
In the expression of  and  are numerical approximations of

 and |nx|, which can be analytically evaluated since one knows the
interface location and normal information of the molecular surface at its
intercepting point.

2. For grid point (i, j, k) inside the interface with a negative Φ value, if its neighboring
point, e.g., (i+1, j, k), has a positive Φ value, the discrete delta function at (i, j, k)

will have a component corresponding to  in Eq. (43). Meanwhile, the discrete

delta function at (i + 1, j, k) will have a component corresponding to  in Eq.

(43). The sum of the two components at (i, j, k) and (i + 1, j, k) is exactly .

3. For a sharp interface, it is possible that both sides of (i, j, k, ) have positive Φ
values, then Eq. (44) will have two terms in the x-direction at ( , yj, zk) and ( ,
yj, zk).

4. In Eq. (41), the density function f is evaluated at grid point (xi, yj, zk). For our
application, the density function is defined only on the interface, therefore we use
interface values f(xo, yj, zk), f (xi, yo, zk) and f(xi, yj, zo) instead. In fact, the results of
surface integration evaluated at the interface are better than those evaluated at grid
points, according to our numerical tests.

5. Eq. (44) is also valid for the case where the interface exactly crosses a grid point.

2.5.3 The distribution of dielectric boundary forces to individual atoms—In the
previous two subsections, we discuss the evaluations of numerical surface integral and
dielectric boundary force. To compute dielectric forces on individual atoms, we need to
distribute each unit dielectric boundary force, i.e., the force density multiplied by the
associated area element, to related neighboring atoms and then collect all the forces on each
specific atom. This procedure requires to classify the interfaces points into several categories
since different treatments will be applied.

Fig. 2(a) shows an example of the molecular surface for a small system composed of 5
atoms. The red dots denote the centers of the probe, the “+” denote the centers of atoms, and
the capital letters denote the contacting points between the atoms and the probe. The
molecular surface consists of three type of facets. The contact surfaces are parts of atomic
surfaces that directly contact the probe. The toric surfaces are the collection of the curves on
the probe connecting two contact points, when the probe rolls over two contacted atoms, as
shown by the curved face CEDB on the graph. The reentrant surfaces are the curved facet on
the probe when it contacts more than three atoms, shown as ABC or DEF on the graph. It is
worth mentioning that conventionally both the reentrant surface and toric surfaces are called
an reentrant surface. Here, we differentiate them due to the need of different numerical
treatments.

We first classify interface points as two types, on-atom points and off-atom points. For
molecular surfaces, an on-atom point is a point that is on a contact surface while an off-atom
point is a point that is on a toric surface and/or a reentrant surface. For the first type, we just
need to find points which are within the distance of the atom radius from the center of an
atom, and attributing it to the atom. For the second type, we need to find out which atoms
the probe contacts with. Our method is to locate the probe center by a distance of the probe
radius from the interface point in the surface normal direction. If the distance between an
atomic center and the probe center is approximately the sum of atomic radius and probe
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radius, then the probe is regarded as contacting this atom. For numerically generated MSs, a
small tolerance (threshold) is used to classify interface points. In case of the MSMS surface,
the results of the classification can be checked by those reported by the MSMS program
[56]. Approximately, the optimal threshold is 0.013 when the MSMS density is set to 10,
and 0.0013 for density 100.

The integral method described in previous section can give a force element on a small part
of the molecular surface. A force element is directly attribute to an atom if the
corresponding interface point is an on-atom point. However, if an interface point is on a
toric or reentrant surface, we need to attribute the force element to all the contacted atoms.

For a toric surface, the normal direction of a surface element is in the same plane with
directions pointed from the centers of the two atoms to the center of the probe, the
distribution of the force element to two atoms can be calculated by

(45)

(46)

where F is the force from the surface point to the probe center, which will be distributed into
two forces F1 and F2 pointing from the two atom centers to the probe center, respectively.
Here, f, f1 and f2 are corresponding unit force vectors.

For reentrant surfaces, the probe might contact more than three atoms at a time. These
situations are dealt with as the following. First, if the probe contacts only three atoms, the
force vector is decomposed into three vectors pointing from each atomic center to the probe
center. The magnitudes of three components are computed by solving the following linear
system

(47)

where fi(j), i, j = 1, 2, 3, is the jth component of the unit force vector fi, F1, F2, and F3 are
the magnitude of the distributed force.

If the probe contacts more than three atoms, we need to distribute the force into more than
three directions. However, this distribution is not unique, except that all atoms have the
same distance from the probe. In the latter case, the force can be equally distributed.
Otherwise, the force will be distributed to three atoms that are closest to the force element.
Fig. 2(b) illustrates this scheme. Here, the interface point locates at point O, which belongs
to the probe surface ABCD, i.e., the reentrant surface, when the probe contacts four atoms at
points A, B, C and D. To avoid the difficulties of decomposing force vector P O to four
directions, we choose the closest three atoms at points B, C and D, and distribute the vector
P O into components P B, P C and P D. Our numerical experiments indicate this scheme is a
very good approximation.
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3 Validation
In this section, we validate our surface integration in Cartesian grids and overall force
calculation scheme.

3.1 Validation of the surface integration in Cartesian grids
The overall accuracy, stability and reliability of dielectric boundary force calculations
depend on the quality of PB solvers, the evaluation of six derivatives of the potential on the
interface, the numerical surface integration and the distribution of forces to related atoms.
The accuracy of MIBPB solvers has been extensively verified in the previous papers [70]
and [25]. The same MIB algorithm is modified to rigorously evaluate the six partial
derivatives at the interface. The basic numerical integration algorithm in Cartesian grids was
validated in [57]. However, this algorithm is modified so that it can be applied to our
situation. A major difference is that the density function values are defined and computed on
the interface, instead of on irregular grid points. Moreover, there is no analytical result for
the surface area of molecular surfaces in general. Therefore, we validate our Cartesian-grid
surface integration algorithm by calculating molecular surface areas of sphere, two-atom,
three-atom and eighteen-atom systems. Table 1 shows the validation of the surface
integration with spheres of radii 2 and 4Å. Numerical results are compared with exact
values. It is seen that errors essentially depend on the grid resolution. Change in the
curvature does not affect the result very much. Approximately, second order convergence is
observed, although the method was designed as a first order one.

For two- or multi-atomic systems, a common probe radius of 1.4Å with density 10 triangles
per Å2 is used in molecular surface generations except specified. Our results are compared
with those of the MSMS [56]. We also plot the molecular surfaces of the diatomic, three-
atom and eighteen-atom systems as illustrated in Fig. 3. Test cases conducted on these
systems will be provided in the later sections. The locations and atomic van der Waals radii
are (x y z rvdW) = (1.500 0.4 0.4 1.6) and (−3.000 0.0 0.0 2.0) for the two-atom system, and
(2.000 0.0 0.0 2.0), (0.000 −1.0 0.0 2.0) and (0.000 1.0 0.0 2.0) for the three-atom system.

Table 2 gives the results of our numerical integration. It is seen from the table that when the
mesh is refined, the computed total areas converge to those of the MSMS, which validates
the numerical integration carried out at the intersecting points of the interface and meshlines,
and using the corresponding normal directions. However, the areas of contact surface, toric
surface, and reentrant surface do not show a similar level of consistency with those of the
MSMS. This is due to the fact that the MSMS surface was not analytically given but was in
the triangular representation. We have used a threshold to categorize the MSMS molecular
surface points into contact surface, toric surface and reentrant surface. For different cases,
the best threshold may vary, which leads to errors. However, our tests indicate that the error
in classification does not substantially affect our force calculation because the projection of
a surface force element into atomic center directions is insensitive to the element
classification.

3.2 Validation of force calculations
3.2.1 Methods of validation—The validation of electrostatic force calculations is a
difficult issue because of the lack of analytical values even for small molecular systems.
However, there are two ways to evaluate electrostatic forces and to examine the consistency
of force calculations. In the first approach, an atom in a molecule is moved forward (or
backward) along an axis by a small distance, e.g., 0.005Å, at a time. The electrostatic free
energy of each configuration is evaluated and the electrostatic force corresponding to each
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movement can be computed. For example, the force due to a small displacement δ in the x-
direction on the ith atom centered at (xi, yi, zi) can be calculated as

(48)

The other way is to obtain electrostatic solvation forces of the same movement by summing
over components

(49)

where F(Sum) is the total force, and F(RXN), F(DB), and F(IB) are the reaction field,
dielectric boundary, and ionic boundary forces, respectively. The consistency of the
electrostatic forces calculated in two independent approaches, F(ΔG) and F(Sum), can be
used to validate force schemes. As the accuracy of the MIBPB solvers has been extensively
validated [75,70,25], the consistency in two independent force calculations provides a
reliable check for the proposed method of electrostatic force evaluation.

3.2.2 Test on molecules—Here we consider a few test examples to validate our force
calculation scheme. Normally, we let one atom of a molecule to move along an axis and
compute the corresponding reaction field forces and dielectric boundary forces. Molecular
surfaces are generated with the MSMS program at density 10, with a probe radius of 1.4Å,
except for Case 1, where the molecular surface is analytical.

Case 1: Two-atom system: The two-atom system is a benchmark test for the validation of
electrostatic force calculations [28,33]. Im et al. have provided a detail analysis for this
system using their PBEQ, the CHARMM PB solver, with smoothed dielectric functions
[33]. There is a tradeoff between accuracy and simplicity as these two methods are
compared. In the present project, we provide MIBPB based test results. We have set the
ionic strength to 0. The MIBPB-II is employed in our force evaluation.

Consider two atoms of radius 2.0Å. Each atom has a unit charge located at its atomic center.
One atom is fixed at (−3, 0, 0) and the other moves from (−3,0,0) to (4,0,0). The reason for
us to move the atom up to (4,0,0) is that at about (3.2,0,0), the MS breaks up into two pieces
and admits two cusps.

Fig. 4 depicts the results generated with MIBPB at different mesh size (h = 0.21Å for (a) and
(c), and h = 0.42Å for (b) and (d)). The units for the force are kcal/mol/ec and the probe
radius of 1.4Å is used to generate molecular surfaces. At different position of the center of
the moving atom, the total forces calculated by differentiating electrostatic free energies Eq.
(48) are given in red solid line. Meanwhile, the total forces calculated by summing of forces
components Eq. (49) are given in blue solid line. As in (a) and (b), the sums of forces
include the reaction field forces Eq. (20) in dashed green line and dielectric boundary forces
Eq. (28) in dotted-dashed brown line, which is decomposed into the contact forces in dotted
black line and reentrant forces in dotted-dashed pink line as shown in (c) and (d). From these
pictures, we could draw the following conclusions. 1) Total forces calculated by two
different approaches confirm each other, therefore validate the present method for this test
case; 2) The reaction field forces, as the leading component of electrostatic forces, are
smooth even for coarse mesh; 3) The dielectric boundary forces are composed of contact
forces, toric forces and reentrant forces (=0 for this case), suffers from numerical instability,
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especially when the mesh is coarse. However, in the view of an entire system, the dielectric
boundary forces are important components with acceptable perturbation; 4) The pattern of
both the reaction field forces and the dielectric boundary forces are consistent with the
physical interpretation of this test model.

We also provided the detailed comparisons of the results from MIBPB and PBEQ, the PB
solver in CHARMM as given in Fig. 5. Mesh size h = 0.21 is used to test these methods. The
results calculated by the PBEQ with smoothed dielectric boundaries and by the MIBPB with
sharp molecular surfaces are illustrated with dotted blue lines and shown with solid red
lines, respectively. From Fig. 5(a), one sees a similar pattern of the solvation free energy,
which confirms the reliability of two methods. We also noticed that there are about 30 kcal/
mol energy difference in two results, which is due to the fact that the PBEQ uses a smoothed
dielectric interface as discussed by [60,61,63].

The total forces obtained by the force density approaches are given in Figs. 5(b) for the
PBEQ and the MIBPB. The force curve from the MIBPB is almost completely smooth and
monotonically decay. The smoothness indicates that the present method is highly stable. The
monotonically decay in the total force curve is consistent with underlying physics of two
separating charged spheres.

Fig. 4(c) gives a comparison of the reaction field forces obtained with two methods. These
forces obtained from two methods have similar patterns. However, the peak force value of
the PBEQ is about 40% higher than that of the MIBPB. This is consistent with what reported
in the literature that the smoothed dielectric boundaries result in 10–40% over-estimation of
solvation energies and forces [63, 60].

It is difficult to obtain stable dielectric boundary forces as shown in Fig. 5. Physically, we
expect a smooth decay of the dielectric boundary forces as two atoms separate from each
other. The dielectric boundary forces of the MIBPB shown in Fig. 5(d) have a
monotonically decaying pattern, which leads to the same pattern in the total force
calculation. The dielectric boundary forces of the PBEQ shown in Fig. 5(d) slightly undulate
over the coordinate from −3 to 1.

Case 2: Three-atom system: Since molecular surfaces admit reentrant surfaces, it is
important to further validate our algorithm for a 3-atom system. In this case, one atom is
moved from (−2,0,0) to (2,0,0) in the x-direction while the other two atoms are fixed at
(0,−1,0) and (0,1,0), respectively. All atoms have radius 2.0Å and charge 1.0ec. From Fig.
6-(a), it is seen a good consistency of the x-direction forces on the moving atom obtained by
two different methods. The forces of contact surfaces (F(Contact)) are separated from those
of toric and reentrant surfaces (F(Toric+Reen)). The symmetric pattern about x = 0 confirms
the symmetric setup of the testing system. It is worth mentioning that the forces calculated
by electrostatic free energies show more oscillations, which in fact largely depend on the
quality of the MSMS surface generation. These oscillations can be observed with different
settings of the MSMS parameters. In contrast, the total forces calculated by the summation
of force components are much smoother and more stable. This is important for PB based
molecular dynamics simulations.

Case 3: Eighteen-atom system: As seen in Fig. 3, the eighteen-atom system, Cyclohexane,
is composed of 6 carbon atoms and 12 hydrogen atoms. The partial charges of these atoms
are artificially assigned to the atomic centers as 1 ec. In this test, we fixed the coordinates of
atom 2–18 while move the first one, a carbon atom located at (0.9540 −0.6510 1.7), in the x-
direction forward and backward 1 Å. In Fig. 6-(b), electrostatic forces on the first atom
obtained by the two different methods show a good consistency.
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Case 4: A biomolecule example: a Low-density lipoprotein receptor (PDB: 1ajj): The
final example is chosen as the molecular surface of a Low-density lipoprotein receptor
(PDB: 1ajj) with 37 residues and 519 atoms. Fig. 7(a) shows its structure. We move the
outmost nitrogen natively located at (−0.169, 7.698, 13.415) along the positive and negative
direction of the x-axis for a distance of 0.25Å. This movement cannot be too large, or it will
violate the physical limitation. The calculation results are shown in Fig. 7(b) where the
confirmation of results from two methods has been achieved.

3.2.3 Force correlation test—Finally, we provide an alternative way to confirm the
convergence of the resulting forces from our method. In Fig. 8, we plot the correlation of
forces obtained at different mesh sizes, i.e., 0.25Å, 0.5 Å and 1.0 Å, for 1ajj. All the forces
in x, y and z directions for each atom are plot here. From the figure, we can see a good
convergence of reaction field forces at mesh sizes of 1.0Å and 0.5 Å compared with that
obtained at 0.25 Å. For dielectric boundary forces, as well as their toric and reentrant
components, their accuracy is significantly reduced at the mesh size of 1.0Å, because of the
error in the surface integration conducted at such a coarse mesh. However, at 0.5Å, the
convergence is good as seen in Figs. 8(c)–(e).

4 Application to molecular dynamics simulations
4.1 The implementation of MIBPB based PB forces in the AMBER package

The present MIBPB calculates the electrostatic potential and provides electrostatic forces
asserted on each individual atoms for solvated biomolecules. However, to perform the
molecular dynamics simulation, it takes more computational modules such as other
components of the force field, initialization, randomness, time evolution and so on. In this
work, we implement the MIBPB in the AMBER package. Specifically, we replace the
original PB solver and force driver in the AMBER [43,45] with our MIBPB solver and
MIBPB force driver, respectively. We use igb = 8, a value currently not being used by
AMBER-GB modules, to switch the implicit solvent model to the MIBPB. We modified a
few files and included all the necessary files of MIBPB in the sander package of AMBER.
We plan to contact the authors of AMBER/CHARMM to see if they would officially contain
our package after our method becomes more stable and efficient.

It is also necessary for us to point out that the MIBPB, as still in the early stage of its
development, does not provide many options for the user. The molecular surface is obtained
by running the MSMS [56]. Charges are treated by trilinear interpolations which distribute
the charge at a location to its closest eight grid points with weights decided by the distance
between the original charge location and the grid point. The FFT is used to solve the PBE in
vacuum, and a preconditioned biconjugate method is used to solve PBE in solution.

In summary, to run the MIBPB module embedded in the AMBER, we change the algorithm
in providing reaction field forces, dielectric boundary forces, ionic boundary forces, and
electrostatic solvation energy while keep the force fields of bond, angle, dihedral, van der
Waals, Coulomb and all others intact.

4.2 Molecular dynamics simulations
In this subsection, we demonstrate MD simulations using the MIBPB based PB approach in
conjugation with the AMBER package. Three biomolecular systems are considered in our
study. To ensure the reliability of the PB results, all simulations are conducted at the mesh
size of 0.3Å. Time increment is set to 10−15s. All MD data, including the configuration for
computing RMSDs, are collected at each 50 time steps.

Geng and Wei Page 21

J Comput Phys. Author manuscript; available in PMC 2012 January 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Case 1: Alanine dipeptide—The first system is the alanine dipeptide with 22 atoms,
which was studied by Im et al [33]. As suggested by the AMBER tutorial, we started from a
pdb file with the first atoms (C,C,N) of the three residue/terminal (ACE, ALA, NME), and
used leap, one of the functional modules of the AMBER to generate parameters and
structure, and to add other 19 atoms. We relaxed the system with the graphic tools provided
by leap and minimized it with 200 steps of steepest descent runs and 300 steps of conjugate
gradient runs. After that, we run 300ps MD (i.e., 300,000 steps) simulations. We use the
AMBER option to remove translational and rotational motions after every 500 steps. The
results are given in Fig. 9. From the results, it is seen that the RMSD reduces after some
initial steps but keeps certain level of irregular oscillations, which are due to the small size
of the system. And later, with increased size of the system, we will seen more and more
stable results.

Case 2: WW domain binding protein-1—The other biomolecular system used is the
WW domain binding protein-1, the peptide bound to 65 KDA yes-associated protein. The
structure is obtained from the complex (1jmq) and has 10 residues (GTPPP-PYTVG), 138
atoms. We follow the AMBER procedure to obtain the pdb file and add hydrogens by using
the leap. The minimization and MD simulation have been run in the same setup as that of
the first system. The translational and rotational motions are removed after every 100 steps.
From Fig. 10, one can see that RMSDs shown in (a) and temperature shown in (d) are more
stable due to the increased size of the system. Most of ten residues in the chain are non-
polar, and a few of them are polar. There is no charged residue in the system. This kind of
polymer chains in the water will tend to fold due to the hydrophobicity, as confirmed by the
trajectory in VMD. It is found that structures obtained by the MIBPB based MD simulations
stay mostly in folded morphologies. We further verified our conjecture by checking the
averaged distances between all Cα atoms at the end of each 50 steps are plotted in Fig. 11(a).
The MIBPB based MD method predicts smaller Cα distances with time until convergence,
indicating a more compact packing of residues.

Case 3: Trp-cage miniprotein (1L2Y)—We further consider a Trp-cage miniprotein
(1L2Y) which has 95% folded structures in water at physiological pH [48]. This molecule
has 20 residues and 340 atoms, representing a novel fold, designated as the ‘Trp-cage’ motif.
It is known to be significantly more stable than other miniproteins reported [48]. The folding
of this miniprotein is synergic and is hydrophobically driven by the encapsulation of a Trp
side chain in a sheath of Pro rings. As a small protein-like molecule, this Trp-cage
miniprotein was advocated as a benchmark test for both experimental studies and
computational predictions of protein folding and unfolding pathways [48].

Our simulations were carried out in the same procedure as described in the last case. As
shown in Fig. 12, the biomolecule approaches to stabilized solvation energy and RMSD.
The averaged distances between all Cα atoms at the end of each 50 steps are plotted in Fig.
11(b), which confirms the folding and stabilizing procedure. Typical structures obtained
from NMR experiments, as the initial structure of MD simulation and that from the MIBPB
based MD simulation are also illustrated in Fig. 13. The molecule folded after the MD
simulation and this can be associated with the polarity and charge distribution of residues of
the molecule.

Finally, we point out that compared with the AMBER PB module, the present MIBPB based
MD method is a few times slower. There are a few reasons that hinder the efficiency of the
present method. First, at each time step, MIBPB based MD simulations require the
generation of the molecular surface by the MSMS, which is the bottleneck at present.
Additionally, AMBER typically has a seven-diagonal matrix, whereas to better resolve jump
singularity and geometric singularity, the MIBPB based PB solver has a more complicated
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matrix structure. Furthermore, the force computations in MIBPB based MD simulations use
more complicated algorithms. However, in this paper, we have provided a sufficient
evidence to demonstrate the advantage in accuracy and stability of the current method. We
hope this could arouse the attention from the mathematical community to further develop
powerful mathematical algorithms to improve the efficiency of implicit solvent models.

5 Concluding remarks
Multiscale implicit solvent models have attracted much attention in the past decade due to
its efficiency in reducing computational cost by modeling the solvent and mobile ions as
continuum. The Poisson-Boltzmann (PB) equation is a primary implicit solvent model and
has been widely applied in molecular biology and material sciences. PB based molecular
dynamics (MD) methods have a potential to tackle large biomolecules and have been
extensively studied in the past few decades. However, no interface based technique has been
applied to any of the existing PB based MD methods. The present work presents the first
development of an interface technique based MD method via the PB formalism. The
matched interface and boundary (MIB) method [68,69,72,73,74] is developed to handle the
sharp molecular surface (MS) in the PB based MD approach. This work is a natural
extension of our previous endeavor on the development of MIB based PB solvers
[25,70,75].

An MIB based PB solver, MIBPB-II [70], is employed to obtain electrostatic potentials. To
calculate the electrostatic forces associated with the use of sharp MSs, new force density
expressions are derived. To compute dielectric boundary forces, a complete set of potential
gradients are required at all the intersecting points of the interface and meshlines. These
gradients are calculated by extending our earlier MIBPB scheme. The surface integration in
the Cartesian grid is a crucial issue in the dielectric boundary force calculation that often
limits the accuracy and convergence. To this end, an advanced surface integration technique
developed by Smereka [57] is adopted with a minor modification. Unlike the van der Waals
surface where each facet belongs uniquely to an atom, the MS admits reentrant surfaces
which do not uniquely belong to a single atom. Therefore, forces from the reentrant surfaces
have to be assigned to related atoms. A set of force distribution schemes are introduced. The
resulting electrostatic forces due to the displacements of atoms are carefully validated by a
comparison with those obtained by differentiating the electrostatic free energy. A large test
set, including a diatomic system, a triatomic system, a cyclohexane, and a low-density
lipoprotein receptor, is utilized in our validation. Correlations of results obtained at different
mesh sizes are plotted to verify the convergence of the present method. The correlation
patterns indicate good convergence of reaction field forces at mesh sizes as coarse as 1.0Å.
For dielectric boundary forces, good convergence can be obtained at the mesh size of near
0.5Å. The MIBPB solver and its force calculation are then interfaced with the AMBER MD
package, Sander, parallelizing to its original finite difference based PB solver [43,45].

As our first attempt, the present MIBPB based MD package is far from mature and can be
improved in a number of ways. First, the MIBPB-III method [25] which employs the
Green’s function to alleviate charge singularity should be able to provide accurate
electrostatic potentials at much coarser meshes. Additionally, the current numerical surface
integral scheme is of first order in convergence and can be improved. The accuracy of
dielectric boundary forces is a limiting fact at large grid sizes in the present method.
Moreover, MSs are generated in triangular meshes by using the MSMS program [56] and
converted to Cartesian meshes by a scheme developed in our earlier work [75]. This setup is
normally stable during the MD simulation but does cause a stability problem on a very rare
basis. Furthermore, the preconditioned bi-conjugate solver is used in solving PB equation
and its matrix system has been optimized in MIBPB-II. However, the choice of a
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precondition matrix and even the decision about which linear system solver is to be used is
still worthy of further exploration. Finally, the most time-consuming part is the molecular
surface generation. There is a pressing need to speed up the molecular surface construction
in the Cartesian domain. Due to these reasons, the present MIBPB based MD package can
only meet the speed requirement of small-scale systems in relatively short simulation time.
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Figure 1.
An illustration of MIB schemes. The horizontal and vertical axes are the x and y directions,
respectively. (a) The grid extension near the interface in a second order scheme; (b) An
intersecting point at (io, j, k)
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Figure 2.
Dielectric boundary force calculation. (a) Illustration of reentrant surfaces, e.g. ABC and
DEF, and toric surfaces, e.g. CEDB in green, on the molecular surface; (b) Force
distribution from a reentrant surface to related atoms.
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Figure 3.
Molecular Surface generated from MSMS for (a) a diatomic system (b) a three-atom system;
and (c) Cyclohexane (18 atoms).
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Figure 4.
Electrostatic forces calculated for two separating charged atoms. The horizontal axis is the
position of the moving atom in unit Å and the vertical axis is the forces. (a) h = 0.21Å with
summed dielectric boundary forces; (b) h = 0.42Å with summed dielectric boundary forces;
(c) h = 0.21Å with decomposed dielectric boundary forces; (d) h = 0.42Å with decomposed
dielectric boundary forces.
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Figure 5.
Comparison of electrostatic forces on the moving atom of a two-atom systems obtained at h
= 0.21Å. The horizontal axis is the position of the moving atom in unit Å. Red solid line:
present MIB based method with molecular surfaces; Blue dotted line: PBEQ with smooth
interface. (a) Solvation free energy of the system; (b) Total force on the moving atom
calculated from the summation of reaction force and dielectric boundary force; (c) Reaction
force; (d) Dielectric boundary forces;
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Figure 6.
Forces calculated for (a) a three-atom system and (b) Cyclohexane. The horizontal axis is
the position of the moving atom in unit Å and the vertical axis is the forces.

Geng and Wei Page 33

J Comput Phys. Author manuscript; available in PMC 2012 January 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
A low-density lipoprotein receptor 1ajj: (a) Illustration of the molecule and the atom that is
moved; (b) Electrostatic forces. The horizontal axis is the position of the moving atom in
unit Å and the vertical axis is the forces.
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Figure 8.
Correlations of forces obtained at different mesh sizes by the MIBPB for protein 1ajj. (a)
Reaction field forces between mesh sizes of 0.25 and 0.5Å; (b) Reaction field forces
between mesh sizes of 0.25 and 1.0Å; (c) Toric forces between mesh sizes of 0.25 and 0.5
Å, (d) Reentrant forces between mesh sizes of 0.25 and 0.5Å, (e) Dielectric boundary forces
between mesh sizes of 0.25 and 0.5Å.
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Figure 9.
300 ps MD simulations of the alanine dipeptide obtained with MIBPB based methods. The
horizontal axis is time in unit of picosecond (ps). (a) RMSD; (b) Solvation free energies; (c)
Total potential energies; (d) Temperature.
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Figure 10.
A 120 ps MD simulation of the WW domain binding protein-1 obtained with the MIBPB
based PB method. The horizontal axis is time in unit of picosecond (ps). (a) RMSD; (b)
Solvation free energy; (c) Total potential energy; (d) Temperature.
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Figure 11.
A comparison of the averaged Cα atom distances. The horizontal axis is time in unit of
picosecond (ps) and the vertical axis is distance. The red line is the simulation result and the
blue line is that from NMR data. Results of the MIBPB are illustrated in red lines. (a) The
averaged Cα atom distances for WW domain binding protein-1 (Case 2); (b) The averaged
Cα atom distances for Trp-cage miniprotein (Case 3).
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Figure 12.
250 ps MD simulations of the Trp-cage miniprotein (1L2Y) obtained with the MIBPB
method. The horizontal axis is time in unit of picosecond (ps). (a) RMSD; (b) Solvation free
energy; (c) Total potential energy; (d) Temperature.
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Figure 13.
A comparison of typical Trp-cage miniprotein structures obtained from NMR experiments
and from MIBPB MD simulations. (a) Obtained from NMR experiments as the initialization
structure; (b) Obtained from the MIBPB based MD simulation as the final structure.
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