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The many-to-one mapping from representations in the speech articulatory space to acoustic space
renders the associated acoustic-to-articulatory inverse mapping non-unique. Among various
techniques, imposing smoothness constraints on the articulator trajectories is one of the common
approaches to handle the non-uniqueness in the acoustic-to-articulatory inversion problem. This is
because, articulators typically move smoothly during speech production. A standard smoothness
constraint is to minimize the energy of the difference of the articulatory position sequence so that
the articulator trajectory is smooth and low-pass in nature. Such a fixed definition of smoothness is
not always realistic or adequate for all articulators because different articulators have different
degrees of smoothness. In this paper, an optimization formulation is proposed for the inversion
problem, which includes a generalized smoothness criterion. Under such generalized smoothness
settings, the smoothness parameter can be chosen depending on the specific articulator in a
data-driven fashion. In addition, this formulation allows estimation of articulatory positions
recursively over time without any loss in performance. Experiments with the MOCHA TIMIT
database show that the estimated articulator trajectories obtained using such a generalized
smoothness criterion have lower RMS error and higher correlation with the actual measured
trajectories compared to those obtained using a fixed smoothness constraint.
© 2010 Acoustical Society of America. �DOI: 10.1121/1.3455847�
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I. INTRODUCTION

Acoustic-to-articulatory inversion refers to the mapping
of speech signal or model representations from the acoustic
space to the articulatory space. The acoustic space is typi-
cally defined by one of several popular spectro-temporal fea-
tures or model parameters derived from the acoustic speech
signal. Similarly, the articulatory space can be represented in
a variety of ways including through �1� stylized models such
as the Maeda’s model1,2 or the lossless tube model3 of the
vocal tract, �2� linguistic rule based models4–6 or �3� direct
physiological data based representations of articulatory
information.7 In this work, we consider the physiological
data based representation of the articulatory space, where
articulatory data �e.g., position of the lips, jaw, tongue, ve-
lum etc.� during speech production are obtained directly
from the talkers by means of a specialized instrument such as
an electromagnetic articulograph �EMA�, ultrasound, or
magnetic resonance imaging. Hence, in this paper, by
acoustic-to-articulatory inversion we refer to the problem of
estimating the articulatory positions �physiological data�
from a given acoustic speech signal.

Acoustic-to-articulatory inversion has received a great
deal of attention from researchers over the last several de-
cades, notably motivated by potential applications to speech
technology development. All acoustic-to-articulatory inver-
sion solutions are supervised, i.e., they require some knowl-
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edge about the possible articulatory positions for a given
acoustic signal from some training data. Such solutions often
provide complementary information to acoustics and, thus,
can help improve the performance of current automatic
speech recognition systems, especially in cases such as with
noisy, spontaneous, or pathological speech.8–11 In addition,
articulatory gesture representations are considered to have a
parsimonious description of the underlying dynamics for
producing acoustic speech signal4–6 and hence deriving these
gestures from the speech signal or from the estimated articu-
latory positions or tract variables12 can provide insight into
linguistic phonology.

It is widely known that the difficulty in the acoustic-to-
articulatory mapping lies in its ill-posed nature. It has been
shown that multiple distinct articulatory configurations can
result in the same or very similar acoustic effects. An empiri-
cal investigation of such non-uniqueness in acoustic-to-
articulatory mapping can be found in Ref. 13. Atal et al.14

also showed that an infinite number of articulatory configu-
rations can generate three identical formant frequencies. The
problem is highly non-linear, too; two somewhat similar ar-
ticulatory states may give rise to totally different acoustic
signals.15 One of the reasons for this non-unique mapping
may come from the limitation of modeling or parametric
representation of both articulatory and acoustic spaces. For
example, the non-uniqueness in mapping arises using only
formant based acoustic representation, but additional knowl-
edge about bandwidth in the acoustic representation reduces
the non-uniqueness. Nonetheless, non-uniqueness in inverse

mapping poses a serious problem in the estimation of articu-
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latory parameters from acoustic ones and, hence, motivates
investigation for a better solution to the inversion problem.

A common approach to address this ill-posed problem is
to use regularization16 or dynamic constraints while estimat-
ing the inverse mapping.17–21 Sorokin et al.17 chose a regu-
larizing term that prevents inverse solutions from deviating
too much from the neutral position of articulators. Schroeter
and Sondhi18 presented a method based on dynamic pro-
gramming �DP� to search articulatory codebooks with a pen-
alty factor for large “articulatory efforts,” that is, fast
changes in the vocal tract so that the estimated articulator
trajectories are smoothly evolving. They used LPC derived
cepstral coefficients as the acoustic feature and introduced a
lifter in the computation of the acoustic distance and dy-
namic cost in making a transition from one vocal tract shape
to another. Toda et al.21 used a Gaussian mixture model
�GMM� to perform the inversion mapping but formulated it
as a statistical trajectory model by augmenting observations
�mel cepstral coefficients� with first and second derivatives
features. Richmond22 proposed a trajectory model which is
based on a mixture density network for estimating maximum
likelihood trajectories which respects constraints between the
static and derived dynamic features. Similar methods using
dynamical constraints have been proposed based on Kalman
filtering and smoothing.23–25 Dusan et al.26 extended previ-
ous studies of estimating articulator trajectories by Kalman
filtering by implementing phonological constraints by mod-
eling different articulatory-acoustic sub-functions, each cor-
responding to a phonological coproduction model.

The essence of the regularization or smoothness con-
straints lies in the physical movement of the articulators. The
trajectory of the articulators during speech production is in
general smooth and slowly varying. Demanding smooth
changes in the articulators can reduce the non-uniqueness in
the inversion problem.18 For example, Toda et al.21 reported
that with lowpass filtering of the solution of the GMM based
mapping, they achieved lower RMS error. Similarly,
Richmond27 performed lowpass filtering as a postprocessing
step. It was shown that low pass filtering of the MLP output
by articulator specific cut-off frequencies indeed moderately
improved the result, i.e., the RMS error decreased and the
correlation score improved. Richmond et al.28 discussed the
usefulness of low-pass filtering on the articulator trajectory
as a smoothness constraint in the optimization. For example,
in Ref. 19, one such constraint was used as a part of the DP
search through the output of their network, which con-
strained the articulator trajectories to be as smooth as pos-
sible. Also in Refs. 29 and 30, the articulator trajectories are
constrained such that articulators move as slowly as possible.

The smoothing of a signal can be interpreted as linear
time-invariant �LTI� filtering, in which the high frequency
components of the signal are suppressed and low frequency
components are preserved so that the signal becomes
smooth. For example, authors in Refs. 18, 31, and 32 mini-
mize the DP cost function, which contains �At−At−1�2, where
At is the articulator variable at time frame t. By minimizing
�At−At−1�2 over the entire time, the energy of the difference
of the articulator variable is minimized. �t�At−At−1�2 can be

interpreted as the energy of the output of a discrete-time LTI
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filter with impulse response h= �1 −1� where the input is At.
h= �1 −1� is a high pass filter, whose 3 dB cut-off frequency
is Fs /4, where Fs is the sampling frequency. By minimizing
the energy of the output of this filter, the high frequency
component in the articulator trajectory is suppressed. How-
ever, a particular high-pass filter with fixed cut-off frequency
may not be optimal for different articulators. A more system-
atic approach would be to design appropriate high pass filters
for individual articulators and include them in the optimiza-
tion. However, note that an arbitrary high pass filter might
have large finite or an infinite impulse response. The com-
plexity of DP increases exponentially with the length of the
filter K and hence, it becomes computationally expensive
even for an FIR filter with K�2. When the smoothness con-
straints in the cost function involves an IIR filter, the cost
function cannot be solved using DP at all.

In this paper, we derive a formulation where any arbi-
trary high pass filter can be used in the inversion problem for
smoothing articulator trajectories. The cut-off frequency of
the filter can be adaptively tuned in such a generalized
smoothness setting and, hence, this formulation can provide
a more realistic articulator trajectory compared to that ob-
tained by a filter with fixed cut-off frequency. The formula-
tion is similar to the codebook search approach but under a
general smoothness criterion. Another key advantage of this
formulation is that the solution of the articulator trajectory
need not be computed all at once; rather, a recursive solution
can be derived without any degradation in performance.

The paper is organized as follows: Section II discusses
the data set and the required pre-processing on the articula-
tory data. The frequency domain analysis of the articulatory
data is described in Section III. This is done to obtain insight
into the nature of the smoothness of the articulatory data,
which in turn is used to design the filters used in the formu-
lation discussed in Section IV. The recursive solution to the
problem is discussed in Section V. In Section VI various
acoustic features are analyzed to obtain the best representa-
tive feature for this inversion problem. Experiments and re-
sults are discussed in Section VII followed by conclusions in
section VIII.

II. DATA SET AND PRE-PROCESSING

The Multichannel Articulatory �MOCHA� database7 is
used for the analysis and experiments of this paper. The MO-
CHA database consists of acoustic and corresponding articu-
latory ElectroMagnetic Articulography �EMA� data from two
speakers—one male �with a Northern English accent� and
one female speaker �with a Southern English accent�. The
acoustic and articulatory data were collected while each
speaker read a set of 460 phonetically-diverse British Eng-
lish TIMIT sentences. The articulatory data consist of X and
Y coordinates of nine receiver sensor coils attached to nine
points along the midsagittal plane, namely the lower incisor
or jaw �li_x, li_y�, upper lip �ul_x, ul_y�, lower lip �ll_x,
ll_y�, tongue tip �tt_x, tt_y�, tongue body �tb_x, tb_y�,
tongue dorsum �td_x, td_y�, velum �v_x, v_y�, upper incisor
�ui_x, ui_y� and bridge of the nose �bn_x, bn_y�. The last

two are used as reference coils. Thus, the first seven coils
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provide 14 channels of articulatory position information. The
position of each coil was recorded at 500 Hz with 16 bit
precision. The corresponding speech was collected at 16
KHz sampling rate.

Although the position data of seven articulators in the
MOCHA database have been already processed to compen-
sate for head movement, the data in this raw form is still not
suitable for analysis or modeling.27 The position data have
high frequency noise resulting from EMA measurement er-
ror, while the articulatory movements are predominantly low
pass in nature �we will see in the next section that 99% of the
energy is contained below �21 Hz for all the articulators�.
Hence the articulatory data of each channel is low pass fil-
tered with a cut-off frequency of 35 Hz. Since articulatory
data is low-pass due to the nature of the physical movement
of articulators, the choice of 35 Hz is sufficient to keep the
articulatory position information unaltered. To avoid any
phase distortion due to the low pass filtering on the articula-
tory data, the filtering process is performed twice �“zero-
phase filtering”�—the data is initially filtered and then re-
versed and filtered again and reversed once more finally.
After filtering, the articulatory data is downsampled by a
factor of 5 so that the frame rate is 100 per second. Since the
low pass cut-off frequency was 35 Hz, no aliasing occurs due
to downsampling.

Each utterance of both speakers has silence in the initial
portion and toward the end of the utterance. Since during
non-speech portions the articulators can assume any position,
considering data from these regions can increase the variabil-
ity in the inverse mapping. Hence, the silence portions were
manually selected and the corresponding articulatory data
were omitted. Of the 460 utterances available from each
speaker, data from 368 utterances �80%� are used for train-
ing, 37 utterances �8%� as the development set �dev set�, and
the remaining 55 utterances �12%� as the test set. In sum-
mary, for the two speakers, the number of frames of available
articulatory data are shown in Table I.

The mean position for each articulator changes from ut-
terance to utterance.27 A few reasons for this variation of
mean articulatory position have been stated in Ref. 27,
namely change in temperature and shift in the location of the
EMA helmet and transmitter coil relative to the subject’s
head. This means that even after low-pass filtering and
downsampling, the articulatory data are still not directly
ready for the modeling purpose. To make the data ready for
such use, we first subtract the mean articulator location from
the articulatory position for every utterance in a way similar
to Ref. 27. Finally, we add the mean articulatory position,
averaged over all utterances. These pre-processed articulator

TABLE I. Number of frames of articulatory data available for training,
development, and test set.

Speaker

No. articulator frames

Training set Dev set Test set

Male 85 673 8 866 14 553
Female 98 666 10 298 16 454
trajectories are used for further analysis and experiments.
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III. EMPIRICAL FREQUENCY ANALYSIS OF
ARTICULATORY DATA

The articulators in the human speech production system
move to create distinct vocal tract shapes to generate differ-
ent acoustic signals. The articulators, i.e., tongue, lips, jaw,
velum, are in general slow moving and thus the articulatory
data are low-pass in nature.33 The purpose of analyzing the
spectrum of the articulatory data is to understand the nature
of the articulatory movement and quantify the effective
maximum frequency content of such slowly varying signals.
This in turn would inform us about the smoothness of the
articulatory movement for designing appropriate smoothing
criteria for different articulatory data.

The frequency domain analysis is performed separately
on the articulator trajectories of each utterance in the training
set. There are 14 different articulator trajectories for every
utterance. Let �x�n� ;1�n�N� denote any one of these 14
trajectories for a particular utterance. We compute the
samples of its spectrum S�k�, k=0, . . . ,NF−1 using discrete
Fourier transform �DFT� with a DFT order NF=214=16384
as follows:

S�k� = 	�
n=1

N

x0�n�exp−j�2�/NF�kn	2

, �1�

where x0�n�=x�n�− 1
N�n=1

N x�n� is the dc removed articulator
trajectory. S�k� of all 14 articulator trajectories are found to
be low-pass, as expected. Since the sampling frequency of
x�n� is 100 Hz, the frequency resolution of the spectrum is
100 /NF=0.0061 Hz. The total energy of x�n� is �n=1

N x2�n�
= 1

NF
�k=1

NF S�k� �by Parseval’s theorem�. We would like to cal-
culate the frequency below which a certain percentage �say
�%� of the total energy is contained. This is performed by
finding Nc such that �S�0�+2�k=1

Nc S�k�� /�k=1
NF S�k�=� /100.

The corresponding frequency is fc=Nc100 /NF Hz. The
mean fc �along with standard deviation �SD�� averaged over
all utterances for �=90, 95 and 99 is tabulated in Table II for
all 14 articulators of both speakers.

From Table II, it can be seen that the mean fc of a
particular articulator is similar for both speakers except for
ul_x, ll_x, li_x. For a particular speaker, not all articulators
have the same mean fc for all �. For example, for �=90, the
mean fc varies from 3.33 Hz �ul_y� to 4.52 Hz �v_x� in the
case of the male speaker. For �=99, this variation is even
more. The same is true for the data of the female speaker.

It is well-known that the articulatory movements are for
the most part slow and smooth.33 However, not all the articu-
lators have equal degrees of smoothness as demonstrated by
the aforementioned empirical frequency analysis. These re-
sults will be invoked in selecting parameter values for
smoothness constraints for the different articulators in imple-
menting the inversion problem.

IV. GENERALIZED SMOOTHNESS CRITERION FOR
THE INVERSION PROBLEM

Let �zi ;1� i�T� represent the acoustic feature vectors
in the training set. Also let xi denote the corresponding posi-

tion value of any one of the 14 articulator channels. Now
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suppose, for the inversion problem, a �test� speech utterance
is given and the acoustic feature vectors computed for this
utterance are denoted by �un ;1�n�N�. The goal is to find
out the corresponding position values of each articulator
channel denoted by �x�n� ;1�n�N� from the �un ;1�n
�N�.

We need to minimize the high frequency components in
x�n� to ensure that the estimated articulatory position is
smooth and slowly varying. Hence, the smoothness require-
ment is equivalent to minimizing the energy of the output of
a high pass filter with input �x�n� ;1�n�N�. Also suppose,
based on the knowledge of the frequency content of the ar-
ticulator trajectory, the high pass filter h is given. h can be an
FIR or IIR filter. For an FIR filter the impulse response h�n�
is specified and for an IIR filter the rational transfer function
H�z�, the Z transform of h�n�, is specified. Let y�n� denote
the output of h with input �x�n� ;1�n�N�, i.e.,

y�n� = �
k=1

N

x�k�h�n − k� . �2�

Let L possible values of the articulatory position at the
nth frame of the test speech utterance be denoted by ��n

l ;1
� l�L�. These are obtained using a training set ��zi ,xi� ;1
� i�T� and un. Let pn

l denote the probability that �n
l is the

value of the articulatory position at the nth frame given that
un is the acoustic feature. L can be, in general, equal to T.
Then the inversion problem can be stated as follows:

�x��n�;1 � n � N� = arg min
�x�n��

J�x�1�, . . . ,x�N��

� arg min
�x�n��

�
�
n

�y�n��2 + C�
n

�
l

�x�n� − �n
l �2pn

l � , �3�

where J denotes the cost function to be minimized and y�n�

TABLE II. The mean fc �standard deviation in brack
TIMIT database.

Articulator
Male

�=90 �=95 �

ul_x 4.03 �1.77� 6.11 �2.10� 11.71
ll_x 4.02 �0.75� 5.07 �0.92� 9.63
li_x 4.15 �1.38� 5.81 �1.79� 11.00
tt_x 3.75 �0.66� 4.71 �0.79� 9.13
tb_x 3.64 �0.68� 4.60 �0.77� 8.64
td_x 3.56 �0.72� 4.53 �0.83� 8.12
v_x 4.52 �1.35� 6.93 �2.24� 21.68
ul_y 3.33 �0.67� 4.35 �0.85� 8.99
ll_y 4.40 �0.57� 5.23 �0.60� 9.27
li_y 3.37 �0.64� 4.23 �0.75� 8.26
tt_y 4.13 �0.71� 5.07 �0.77� 8.54
tb_y 3.60 �0.61� 4.43 �0.63� 7.44
td_y 3.71 �0.59� 4.52 �0.59� 7.55
v_y 3.88 �0.98� 5.62 �1.63� 15.53
is given in Eq. �2�.
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The first term �n�y�n��2 in the cost function is the en-
ergy of the output of the filter h. The second term
�n�l�x�n�−�n

l �2pn
l denotes the weighted cost of how differ-

ent x�n� is from �n
l , 1� l�L, where the weights are pn

l ��n
l

and pn
l are determined from the training set�. For example, if

pn
l =1 for l=1 and pn

l =0 for l�1, this means x�n� has to be
as close as �n

1. In other words, if it turns out that the prob-
ability of the articulatory position being �n

1 is very high
based on the training set, the solution x��n� has to be as close
as �n

1. More generally, the probability of x�n� being equal to
�n

l is pn
l , 1� l�L. C��0� is the trade off parameter between

these two terms. For minimization, we set

�J

�x�m�
= 0, m = 1, . . . ,N ,

⇒2
�
n
��

k

x�k�h�n − k�
h�n − m�

+ C�
l

�x�m� − �m
l �pm

l � = 0, m = 1, . . . ,N ,

⇒�
k

x�k���
n

h�n − k�h�n − m�

+ �C�

l

pm
l 
x�m� = C�

l

�m
l pm

l , m = 1, . . . ,N ,

⇒�
k=1

N

x�k�Rh�m − k� + �C�
l

pm
l 
x�m� = C�

l

�m
l pm

l ,

m = 1, . . . ,N ,

where Rh�m−k���nh�n−k�h�n−m�, the autocorrelation se-
quence of h�n�. The above set of N equations can be written

f articulatory data of two speakers in the MOCHA-

ean fc �SD�
�in Hz�

Female
�=90 �=95 �=99

1� 2.67 �0.71� 3.62 �0.96� 7.67 �3.31�
� 2.88 �0.72� 3.89 �0.91� 8.20 �3.10�

7� 2.69 �0.67� 3.66 �0.92� 7.77 �3.37�
� 3.36 �0.63� 4.29 �0.74� 7.60 �2.51�
� 3.27 �0.66� 4.14 �0.73� 7.15 �2.17�
� 3.43 �0.76� 4.43 �0.83� 7.81 �3.06�
0� 3.94 �1.31� 5.97 �2.72� 20.63 �15.52�
� 3.10 �0.67� 4.00 �0.78� 7.69 �3.14�
� 4.11 �0.55� 4.92 �0.61� 7.74 �1.92�
� 3.49 �0.57� 4.37 �0.67� 7.75 �2.98�
� 4.30 �0.71� 5.35 �0.76� 8.64 �1.65�
� 3.38 �0.57� 4.19 �0.63� 7.06 �2.33�
� 3.46 �0.59� 4.38 �0.68� 8.57 �3.05�

4� 3.80 �1.10� 5.34 �2.12� 15.74 �12.32�
et� o

M

=99

�3.1
�3.27
�3.0
�3.67
�3.05
�2.05
�12.7
�4.40
�3.26
�3.60
�2.33
�1.97
�2.53
�9.3
in matrix vector form as follows:
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�
Rh�0� + C�l

p1
l Rh�1� ¯ Rh�N − 1�

Rh�− 1� Rh�0� + C�l
p2

l
¯ Rh�N − 2�

· · · ·

· · · ·

Rh�− �N − 1�� Rh�− �N − 2�� ¯ Rh�0� + C�l
pN

l
�� x�1�

x�2�
·

·

x�N�
� =�

C�l
�1

l p1
l

C�l
�2

l p2
l

·

·

C�l
�N

l pN
l
� . �4�
Assuming pn
l are normalized such that �lpn

l =1∀n, �it
does not alter the solution, since any constant can be ab-
sorbed in C� we can rewrite Eq. �4�,

�R + CI�x = d , �5�

where R= �Rij�= �R�j− i��= �R�j− i�� �since the autocorrela-
tion is symmetric�, I is N�N identity matrix, x
= �x�1� , ¯ ,x�N��T, and d= �C�l�1

l p1
l , ¯ ,C�l�N

l pN
l �T . � · �T

denotes transpose operation.
Note that if C=0, the solution is x��n�=0, i.e., when

there is no information about �n
l and pn

l or we do not con-
sider any information from the training data, the solution is
zero. This is because the only way by which we can mini-
mize the energy of y�n� is by feeding a zero signal at the
input of the filter h. On the other hand, if h=0, i.e., no filter
is provided or no smoothing criterion is imposed, then
x��n�=�l�n

l pn
l ,, i.e., it is the convex combination of the pos-

sible values of the articulatory positions learned from the
training data. If pn

1=1 and pn
l =0, for l�1, the solution is

x��n�=�n
1, the only possible value of the articulatory posi-

tion. Thus, in general, the second term of the objective func-
tion �Eq. �3�� constrains the solution to be in the convex hull
of �n

l , 1� l�L. It is easy to show that the second term, in
turn, ensures that the acoustic feature vector corresponding
to x��n� is also in the covex hull of the acoustic feature
vectors corresponding to �n

l , 1� l�L under the assumption
of local linearity on the non-linear mapping between acoustic
and articulatory space. Thus, the acoustic proximity between
the estimated and the possible articulatory configurations is
indirectly considered in our proposed optimization frame-
work, although we do not directly consider an acoustic prox-
imity term in the objective function unlike that in dynamic
programming formulation.18

If both C and h are nonzero, then the solution of Eq. �5�
can be found as follows:

x� = �R + CI�−1d . �6�

Since R is an autocorrelation matrix and hence symmetric
toeplitz and since C�0, �R+CI� is always invertible and
hence the solution of x always exists.

Before concluding this section, we describe the strategy
to determine �n

l and pn
l , l=1, . . . ,L from the training set.

un denotes the acoustic feature vector at the nth frame of
the test speech utterance. ��zi ,xi� ;1� i�T� is the pair of
acoustic feature and articulatory position vector in the train-
ing set. Let �n,i= �un−zi�, 1� i�T. At each frame n, �n,i, 1

� i�T are computed and sorted in an ascending order. The
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articulatory position vectors xi in the training set correspond-
ing to the top L sorted �n,i are denoted by ��n

l ;1� l�L�.
That means ��n

l ;1� l�L� are the L articulatory position vec-
tors in the training set, the corresponding acoustic features of
which are closest to un. Let the top L sorted �n,i be denoted
by ��l ;1� l�L�. Then pn

l are computed as pn
l =�l

−1 /�l�l
−1.

This ensures that �lpn
l =1. pn

l computed in this way implies
that if the test acoustic feature vector un is closer to the
training acoustic feature vector zl1

compared to some other
zl2

, then xl1
is more likely to be the articulatory position than

xl2
at the nth frame of the test utterance.
As an alternative to normalized sorted distance, we con-

sidered the Parzen window based density estimation for de-
termining pn

l . In this approach, a probability density function
is estimated on the entire training space �joint space of zi and
xi� using the sum of Gaussian windows at each data point.
The probability density values at �zi ,xi� corresponding to top
L sorted �n,i were considered as pn

l . However, this approach
did not result in a better estimate of the articulatory posi-
tions. This could be due to the fact that the Parzen window
based pdf estimation is efficient only when large number of
data samples are available, particularly if the related space is
high dimensional. Also, the relation between zi and xi is
non-linear and hence the probability in the joint space might
not be a good measure of pn

l .

V. RECURSIVE SOLUTION TO THE INVERSION
PROBLEM

The goal of the recursion in the inversion problem is to
estimate the articulatory position at the �N+1�th frame using
the acoustic feature at �N+1�th frame and the estimated ar-
ticulatory positions up to the Nth frame, i.e., x�1� , ¯ ,x�N�.

Let xN= �x�1�¯x�N��T and let RN be the N�N autocor-
relation matrix of the filter h and we have the solution �using
Eq. �6��

xN = �RN + CI�−1dN, �7�

where dN is N�1 vector. Suppose we get dN+1= � dN

dN+1
�, we

−1
need to solve xN+1�=�RN+1+CI� dN+1� using xN.
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Let AN=RN+CI. AN+1 can be partitioned as follows:

=�AN JrN

rN
T Rh�0� + C


 , �8�

where

rN = �Rh�1�
:

Rh�N�
� and J = �0 ¯ 1

: 1 :

1 ¯ 0
� .

Using matrix partitioning,34

AN+1
−1 = �AN

−1 0

0T 0

 +

1

PN
�bN

1

�bN

T 1 � , �9�

where, bN=−AN
−1JrN and PN=Rh�0�+C+rN

TJbN. So

xN+1 = AN+1
−1 dN+1 = AN+1

−1 � dN

dN+1



= 
�AN
−1 0

0T 0

 +

1

PN
�bN

1

�bN

T 1 ��� dN

dN+1



= �xN

0

 + �bN

1

�N, �10�

where �N= �−xN
TJrN+dN+1� / PN. So if bN is known we can

compute xN+1 from xN without any matrix inversion. Thus
we need to derive a recursion for bN.

Let us define

aN � JbN �⇒bN = JaN�

= − JAN
−1JrN = − AN

−1rN. �11�

Thus we need to compute aN+1�=−AN+1
−1 rN+1� from aN.

aN+1 = − AN+1
−1 rN+1 = − AN+1

−1 � rN

rN+1



= − 
�AN
−1 0

0T 0

 +

1

PN
�bN

1

�bN

T 1 ��� rN

rN+1



= �aN

0

 + �bN

1

�N, �12�

where �N=−�aN
TJrN+rN+1� / PN. Thus if we know aN �or bN

=JaN�, we can compute aN+1 without matrix inversion. Thus,
if we know xN, we can compute xN+1 using xN using Eq. �10�
and �12�. No explicit matrix inversion is required in each
step. The steps in the recursive solution of Eq. �3� are given

below:
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Step 1 �Initialization�:

n=1, estimate �1
l and p1

l , l=1, ¯ ,L from
u1 .d1=C�l�1

l p1
l .

x1=x�1�=d1 / �Rh�0�+C�
r1=Rh�1�
b1=r1 / �Rh�0�+C� and a1=b1

P1=Rh�0�+C+r1
TJb1

n=2.

Step 2 �Recursion�:

Estimate �n
l and pn

l , l=1, ¯ ,L from un. dn=C�l�n
l pn

l

�n−1=−�an−1
T Jrn−1+Rh�n�� / Pn−1

�n−1= �−xn−1
T Jrn−1+dn� / Pn−1 and xn= � xn−1

0
�+ � bn−1

1
��n−1

rn= � rn−1

Rh�n� �
an= � an−1

0
�+ � bn−1

1
��n−1

bn=Jan and Pn=Rh�0�+C+rn
TJbn.

Step 3:

Increment n to n+1 and go to Step 2.

VI. SELECTION OF ACOUSTIC FEATURES FOR
THE INVERSION PROBLEM

Appropriate acoustic feature selection is crucial for the
inversion problem because, in every analysis frame, the
acoustic feature is used to determine possible articulatory
positions from the training set. In turn, from these possible
positions the smoothness criterion estimates the best position
so that the articulator trajectory is as smooth as possible for a
given h. The possible articulatory positions at every test
frame are chosen such that the corresponding acoustic vec-
tors in the training set are in the neighborhood of the acoustic
vector of the test frame �as discussed in Section IV�. The
more the correlation or dependency between the acoustic fea-
ture and the corresponding articulatory position, the more
accurate are the possible articulatory positions. Therefore,
quantifying the dependency between the acoustic feature and
the articulatory position is essential to compare different
acoustic features and select the best one for the inversion
problem.

We compute the statistical dependency between the
acoustic feature and the articulatory position by mutual in-
formation �MI�. Let Z denote the acoustic feature vector and
X be the vector whose elements are the position values of all
articulators at every frame. Since there are 7 articulators each
with x and y coordinates in our experimental data, X has 14
dimensions; the dimension of Z depends on the chosen
acoustic feature. For acoustic features, we consider mel fre-
quency cepstral coefficients �MFCCs�, linear prediction co-
efficients �LPCs�, cepstral representation of LPC �LPCC�,
and variants of LPC, i.e., line spectral frequency �LSF�, re-
flection coefficient �RC�, log area ratio �LAR�. Each of these

features were computed every 10 ms to match the rate of
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articulatory position data. Speech signal is pre-emphasized
and windowed using 20 ms hamming window before com-
puting frame-based features. For MFCC, Z is a 13 dimen-
sional vector. LPCs were computed using an order of 12;
thus, Z for LPC and LPCC is 13 dimensional, but for LSF,
RC, and LAR Z is 12 dimensional. In this paper, we only
consider static features; no dynamic features have been used.

Since the probability density functions of Z and X are
not directly known, we consider MI estimation by quantiza-
tion of the space of Z and X from the training data set with a
finite number of quantization bins, then estimating the joint
distribution of Z and X in the newly quantized finite alphabet
space using standard maximum likelihood criterion—
frequency counts;35 and finally applying the discrete version
of the MI.36 More precisely, let us denote the pair of acoustic
feature and articulatory position vectors in the training set by
��zi ,xi� ; i=1, ¯ ,T�, where zi and xi take values in RK1 and
RK2. The quantizations of these spaces are denoted by Q�Z�:
RK1→Az and Q�X�: RK2→Ax, where �Az�	
 and �Ax�
	
. Then the MI is given by:

I�Q�Z�,Q�X�� = �
qz�Az,qx�Ax

P�Q�Z� = qz,Q�X� = qx�

· log
P�Q�Z� = qz,Q�X� = qx�

P�Q�Z� = qz�P�Q�X� = qx�
. �13�

It is well known that I�Q�Z� ,Q�X��� I�Z ,X�, because
quantization reduces the level of dependency between ran-
dom variables. On the other hand, increasing the resolution
of Q� · �, implies that I�Q�Z� ,Q�X�� converges to I�Z ,X� as
the number of bins tends to infinity.37 However, this result
assumes that we know the joint distribution, which implies
having an infinite amount of training data and a consistent

TABLE III. Mutual information between various acoustic features and ar-
ticulatory position.

Z

I�Q�Z� ,Q�X��

Male Female

MFCC 1.8179 1.8594
LPC 1.3394 1.3931
LPCC 1.3339 1.4936
LSF 1.7025 1.6080
RC 1.6148 1.5309
LAR 1.6921 1.5834
learning approach. Consequently, for the finite training data
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scenario there is a tradeoff between how precisely we want
to estimate I�Q�Z� ,Q�X��, versus how close we want to be to
the analytical upper bound I�Z ,X�. We decided to have a
resolution of Q� · � that guarantees good estimation of the
joint distribution, and consequently a precise lower bound
estimation for I�Z ,X�. K-means vector quantization was used
to characterize the quantization mapping.36,35

For each acoustic feature vector and the articulatory po-
sition vector, K-means vector quantization with 512 proto-
types was used, i.e., �Az�= �Ax�=512. Table III shows the
mutual information between various acoustic features and
articulatory positions for both the male and female speaker.
It can be observed that the mutual information between
MFCC and articulatory position is maximum among all other
acoustic features for the data of both speakers. LSF has the
second highest MI with articulatory position, and the least
MI occurs for LPC. It should be noted that change in the
number of prototypes in K-means does not alter the relative
value of MI for different acoustic features. For example, we
computed MI using �Az�= �Ax�=64, 128, 256, 1024 and we
found MFCC to have maximum MI with articulatory posi-
tion in all cases. This is consistent for both speakers. It is
interesting to note that Qin et al.38 also achieved maximum
correlation between original and estimated articulator trajec-
tories by using MFCC features. Based on this observation,
we use MFCC as the acoustic feature for all of the following
experiments.

VII. EXPERIMENTS AND RESULTS

The acoustic-to-articulatory inversion experiments are
performed separately for the male and female speaker data.
The accuracy of inverse mapping is evaluated separately on
the test set for both speakers in terms of both root mean
squared �RMS� error and correlation between actual articu-
latory position in the test set xr�n� and the position estimated
by inverse mapping x��n�. The RMS error E reflects the av-
erage closeness between xr�n� and x��n�. The correlation �
indicates how similar the actual and estimated articulator tra-
jectories are. A minimum E does not always mean that the
trajectories are similar since the estimated one can be very
jagged although it might be close to the actual one. Jagged
trajectories are physically less likely during speech produc-
tion since articulators cannot move in such a way in real life.
Such jagged trajectories can be identified by poor � values.
We use Pearson correlation � between the actual and esti-

mated trajectory for each utterance, where
� =

N�
n

xr�n�x��n� − �
n

xr�n��
n

x��n�

�N�
n

�xr�n��2 − ��
n

xr�n�
2�N�
n

�x��n��2 − ��
n

x��n�
2
. �14�
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The development set is used to tune the cut-off frequency �c

of filter h and the trade-off parameter C. For our experiment
we considered L=200. Increasing L further did not improve
the result.

We considered an IIR high pass filter with cut-off fre-
quency �c, and stop-band ripple 40 dB down compared to the
pass-band ripple. A rational transfer function having order 5
for both numerator and denominator polynomials is con-
structed for the desired specification. The MATLAB function
cheby2 is used for this purpose. We choose an IIR filter so
that the roll-off of the high-pass filter is large and hence the
filter becomes close to the articulator specific ideal high-pass
filter. We chose �c and C from a set of values, which yield
the best performance on the development set. From Section
III, we observe that most of the energy of the spectrum of the
articulator trajectories is below 9–10 Hz; hence, we consider
the set of values for �c to be ��c�= �1.5+ ��k−1� /19��7.5� ;k
=1, ¯ ,20�, i.e., the set of values is 20 equally spaced points
between 1.5 Hz and 9 Hz. Similarly the set of values for C
was chosen to be �0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10,
50, 100�. The values of C were chosen to have a wide range
of orders. For every �c and C combination, Eq. �6� was
solved recursively using Eq. �10� and �12� for each utterance
of the development set. As a metric of performance of the
inverse mapping, we measure E between the actual value of
the articulatory positions and the estimated positions.

�c and C, for which the minimum value of the averaged
E �averaged over all utterances of the dev set� was obtained,
are shown in Table IV for each articulator and for both
speakers. We can see that the velum has a slightly higher �c

compared to other articulators to achieve the least E. The
values of the best C for different articulatory positions do not
differ in its order much.

To estimate the position of a particular articulator from
the acoustics in the test set, we use the corresponding �c and
C optimized on the dev set. For each utterance in the test set,
the articulatory positions from the acoustic signal are esti-
mated by solving Eq. �6� recursively as outlined in Section V
As a baseline, we estimated the articulatory positions using a
fixed filter h= �1 −1� with �c�=25 Hz=Fs /4�; C is opti-
mized on the dev set. The purpose of choosing such a base-
line is to investigate the change in performance when articu-
lator specific �c are used compared to a fixed �c.

We also implemented the dynamic programming �DP�
based inversion mapping with a cost function similar to that
outlined in the work by Richards et al.31 The cost function,
which is minimized, is as follows:

D = �
n=1

N

K�un − zn�2 + �xn − xn−1�2. �15�

At each frame n, the possible articulatory positions were �n
l ,

1� l�L, through which the best path was found. zn are cho-
sen from the acoustic feature vectors in the training set cor-
responding to �n

l , 1� l�L. K was optimized on the dev set
to achieve least average E. The solution of the DP based
inversion is low-pass filtered following the work by Toda et
al.39 The cut-off frequencies the low-pass filters for post-

39
processing are chosen to be the ones given by Toda et al.
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The cost in dynamic programming D �Eq. �15�� is dif-
ferent from the cost function in our proposed approach �Eq.
�3��. Thus, they are not directly comparable in terms of their
cost functions. The motivation for selecting DP followed by
low-pass filtering as a part of our experiment is to analyze
the quality of the estimated articulatory positions using the
proposed generalized smoothness approach with respect to
the positions obtained by the well-established DP approach
with smoothing as a post-processing.

14 trajectories corresponding to 14 different articulatory
positions are randomly picked from the test set, and their
estimates using both the proposed approach and the DP ap-
proach are shown in Fig. 1 overlaid on the actual position. It
can be seen that the estimated trajectories are smooth and, on
average, they follow the actual trajectories. The closeness of
the estimated trajectory to the actual one depends on the
corresponding ��n

l ;1� l�L� and �pn
l ;1� l�L�. The trajec-

tories estimated using the DP approach are also very close to
the actual one. For the examples chosen in Fig. 1, trajectories
estimated by the proposed approach and DP appear similar.
For clarity, we have not shown the trajectories estimated by
our proposed approach with a fixed �c. We evaluate the per-
formance of different approaches through error analysis over
the entire test set.

For a comprehensive error analysis, we computed the E
and � for all utterances in the test set. The mean E and �
�with their SD� between the actual trajectories and the esti-
mated trajectories by inverse mapping using generalized
smoothness criterion �for both fixed �c and articulator spe-
cific �c� and the DP �followed by low-pass filtering� ap-
proach are tabulated in Tables V and VI for the female and
male speaker, respectively. The tables also show the range of
the position values for each articulator so that the quality of
the inverse mapping can be understood from the mean E.

From Tables V and VI, it can be observed that the aver-
aged E values obtained by generalized smoothness criterion
are of the order of 10% of the range of the corresponding

TABLE IV. Best choices of �c and C for all articulatory positions optimized
on dev set.

Articulator

Best choices of �c �Hz� and C

Female speaker Male speaker
�c C �c C

ul_x 3.07 0.50 3.47 0.10
ll_x 4.26 0.10 4.26 0.10
li_x 3.47 0.10 4.65 0.10
tt_x 3.47 0.10 3.86 0.10
tb_x 3.86 0.05 3.86 0.10
td_x 3.86 0.10 3.07 0.50
v_x 5.05 0.50 5.05 0.50
ul_y 4.26 0.50 4.26 0.50
ll_y 4.65 0.10 5.84 0.10
li_y 3.07 1.00 5.05 0.50
tt_y 4.65 0.10 5.05 0.10
tb_y 3.07 0.50 4.65 0.10
td_y 3.07 0.50 4.26 0.10
v_y 6.23 0.50 5.44 0.50
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TABLE V. Accuracy of inversion in terms of RMS error E and correlation � �Female speaker�.

Articulators
Range
�mm�

Mean �SD� of E �mm� and �

Generalized smoothness
DP low-pass filteredArtic. specific �c Fixed �c

E � E � E �

ul_x 6.64 0.82�0.21� 0.58�0.15� 0.83�0.20� 0.52�0.15� 0.85�0.21� 0.51�0.22�
ll_x 10.71 1.27�0.34� 0.53�0.13� 1.30�0.33� 0.46�0.12� 1.38�0.35� 0.35�0.24�
li_x 7.22 0.75�0.18� 0.57�0.15� 0.77�0.17� 0.52�0.13� 0.84�0.20� 0.39�0.25�
tt_x 23.48 2.39�0.41� 0.76�0.10� 2.54�0.40� 0.70�0.10� 2.60�0.49� 0.69�0.16�
tb_x 26.19 2.24�0.41� 0.76�0.08� 2.35�0.40� 0.72�0.08� 2.41�0.49� 0.72�0.12�
td_x 24.40 1.95�0.39� 0.74�0.10� 2.04�0.39� 0.71�0.10� 2.15�0.45� 0.69�0.14�
v_x 5.31 0.33�0.08� 0.73�0.10� 0.34�0.08� 0.70�0.10� 0.34�0.09� 0.70�0.13�
ul_y 8.91 1.23�0.22� 0.58�0.18� 1.26�0.22� 0.54�0.18� 1.31�0.31� 0.49�0.25�
ll_y 29.23 2.78�0.61� 0.79�0.05� 2.87�0.60� 0.75�0.06� 3.27�0.66� 0.67�0.16�
li_y 13.26 1.23�0.28� 0.80�0.08� 1.27�0.27� 0.78�0.08� 1.41�0.31� 0.76�0.12�
tt_y 23.38 2.46�0.44� 0.78�0.08� 2.60�0.42� 0.75�0.08� 2.70�0.44� 0.75�0.11�
tb_y 20.85 2.38�0.47� 0.78�0.07� 2.49�0.45� 0.74�0.08� 2.64�0.52� 0.72�0.13�
td_y 18.61 2.38�0.47� 0.69�0.09� 2.45�0.44� 0.64�0.09� 2.64�0.53� 0.57�0.16�
v_y 4.61 0.36�0.10� 0.78�0.07� 0.37�0.10� 0.75�0.09� 0.40�0.11� 0.74�0.11�
20 40 60 80 100 120 140 160

−18

−16

u
l
_
x
(
m
m
)

20 40 60 80 100 120 140 160

−20

−18

l
l
_
x
(
m
m
)

20 40 60 80 100 120 140 160

−7

−6

−5

l
i
_
x
(
m
m
)

20 40 60 80 100 120 140

5

10

15

t
t
_
x
(
m
m
)

20 40 60 80 100 120 140 160
20

25

30

t
b
_
x
(
m
m
)

20 40 60 80 100 120 140 160
35

40

45

t
d
_
x
(
m
m
)

20 40 60 80 100 120 140 160

55
55.5

56
56.5

Frame Number

v
_
x
(
m
m
)

20 40 60 80 100 120 140 160
−56

−54

−52

u
l
_
y
(
m
m
)

20 40 60 80 100 120 140 160
−85

−80

−75

l
l
_
y
(
m
m
)

20 40 60 80 100 120 140 160

−82

−80

−78

−76

l
i
_
y
(
m
m
)

20 40 60 80 100 120 140 160

−75

−70

−65

t
t
_
y
(
m
m
)

20 40 60 80 100 120 140 160
−70

−60

t
b
_
y
(
m
m
)

20 40 60 80 100 120 140 160
−68
−66
−64
−62
−60
−58

t
d
_
y
(
m
m
)

20 40 60 80 100 120 140 160

−63.5
−63

−62.5
−62

−61.5

Frame Number

v
_
y
(
m
m
)

FIG. 1. �Color online� Illustrative example of inverse mapping: randomly chosen examples of the test articulator trajectory �dash-dotted� and the correspond-
ing estimated trajectory for 14 articulatory positions using generalized smoothness criterion �solid line� and dynamic programming �DP� approach �dashed
line�.
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articulator. Consistent higher values of � in the case of ar-
ticulator specific �c compared to fixed �c indicates that the
estimated articulatory trajectories are more similar to the ac-
tual ones when they are smoothed in an articulator specific
fashion. Similarly, lower values of E demonstrate that, on
average, the generalized smoothness criterion indeed im-
proves the inverse mapping accuracy compared to a fixed
smoothing. The mean E and the mean � obtained by the DP
�followed by low-pass filtering� approach also have a similar
order for most of the articulators. Note that the solution of
DP is optimal according to the DP cost function but once the
solution is low-pass filtered it is no longer necessarily opti-
mal and furthermore it is, in general, difficult to establish
what cost function the low-pass filtered trajectory might be
optimal to, if at all it is. In contrast, our proposed optimiza-
tion results in an optimal solution as per the objective func-
tion �Eq. �3�� for any arbitrary filter. The use of higher order
articulator specific smoothing filters in the DP cost function
�Eq. �15�� can further improve the accuracy of the estimated
articulatory positions but the complexity order increases ex-
ponentially with the length of the filter. DP has a complexity
order of LKN, where L is the number of possible articulatory
positions in each frame, K is the length of the impulse re-
sponse of the filter and N is the number of frames. Even for
our experiment where we choose L=200, choice of an FIR
filter h of length 5 makes the complexity order 3.2
�1011 N. Hence, we have not reported any results of apply-
ing DP when a higher order smoothness filter is used in Eq.
�15�. In contrast, the order complexity of the proposed opti-
mization scheme does not change with the filter type.

VIII. CONCLUSIONS

The generalized smoothness criterion proposed in this
paper can be useful to estimate any smooth trajectory beyond
the articulator trajectory. As long as the mapping between
two spaces under consideration can be locally linearly ap-

TABLE VI. Accuracy of inversion in terms of RMS

Articulators
Range
�mm�

Generalized
Artic. specific �c

E �

ul_x 7.48 0.76�0.19� 0.45�0.17�
ll_x 10.71 1.15�0.24� 0.70�0.12�
li_x 8.44 0.59�0.12� 0.63�0.13�
tt_x 25.55 2.41�0.64� 0.73�0.14�
tb_x 26.19 2.39�0.57� 0.69�0.13�
td_x 24.40 2.20�0.51� 0.67�0.14�
v_x 5.64 0.79�0.23� 0.60�0.17�
ul_y 9.74 1.20�0.21� 0.65�0.11�
ll_y 29.23 1.92�0.35� 0.81�0.08�
li_y 15.01 1.02�0.23� 0.73�0.08�
tt_y 25.23 3.08�0.70� 0.77�0.08�
tb_y 22.24 2.32�0.43� 0.78�0.08�
td_y 19.30 2.38�0.51� 0.71�0.11�
v_y 4.71 0.80�0.18� 0.56�0.15�
proximated, the smoothness criterion will find the best pos-
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sible smooth trajectory, using the knowledge about the pos-
sible solutions ��n

l ;1� l�L�. The flexibility in choosing the
filter h for the smoothness criterion is advantageous since it
provides a good way to analyze various degrees of smooth-
ness requirement for the trajectory to be estimated. Note that,
in the DP approach of articulatory inversion, an acoustic
proximity term �un−zn�2 is directly considered in the optimi-
zation; this is indirectly performed in our proposed optimi-
zation by choosing the candidate articulators based on the
acoustic proximity.

The recursive version of the solution of the articulator
trajectory estimate is a key feature of the formulation pre-
sented in this work. Recursive algorithms are very useful for
online processing and suitable for speech applications that
need an estimate of articulators on-the-fly.

We observed that the correlation between the original
trajectory and the estimated trajectory using generalized
smoothness criterion is better than that obtained with a fixed
smoothing filter, indicating the effectiveness of using the ar-
ticulator specific smoothing filter. It should be noted that for
each frame of the test utterance, the DP �without any post-
processing� approach selects the best possible articulator po-
sition from what were seen in the training set, while the
proposed technique does not. Rather, it provides a real val-
ued solution that best fits the smoothness criterion and data
consistency. In this work, we analyzed the smoothness of
articulators in a speaker specific manner; a study on smooth-
ness over a large set of speakers can be performed to obtain
a generic smoothness parameter for each articulator. We es-
timate each articulator in an independent fashion and do not
use their correlation explicitly although the candidate posi-
tions of different articulators from training data have corre-
lations between themselves. The correlation between differ-
ent articulators can be utilized to appropriately extend the
proposed optimization for estimating more realistic articula-

E and correlation � �Male speaker�.

n �SD� of E �mm� and �

othness
DP low-pass filteredFixed �c

E � E �

78�0.19� 0.37�0.15� 0.80�0.19� 0.29�0.33�
19�0.23� 0.64�0.11� 1.34�0.27� 0.51�0.20�
60�0.12� 0.58�0.12� 0.64�0.13� 0.53�0.21�
54�0.63� 0.66�0.13� 2.79�0.66� 0.58�0.22�
48�0.56� 0.62�0.12� 2.68�0.63� 0.51�0.22�
26�0.50� 0.62�0.13� 2.42�0.51� 0.57�0.22�
81�0.23� 0.55�0.16� 0.87�0.24� 0.40�0.30�
23�0.20� 0.59�0.11� 1.34�0.28� 0.49�0.24�
02�0.35� 0.76�0.08� 2.36�0.43� 0.67�0.14�
05�0.22� 0.70�0.08� 1.13�0.25� 0.68�0.15�
23�0.68� 0.72�0.08� 3.50�0.63� 0.69�0.14�
43�0.42� 0.73�0.09� 2.63�0.48� 0.71�0.14�
45�0.51� 0.66�0.11� 2.72�0.51� 0.59�0.20�
81�0.18� 0.51�0.14� 0.85�0.20� 0.46�0.22�
error
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