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Abstract
A concise, enantioselective synthesis of the Phase I anticancer agent, (−)-salinosporamide A, is
described. The brevity of the described strategy stems from a key bis-cyclization of a β-keto tertiary
amide, accomplished on gram scale, which retains optical purity enabled by A1,3-strain rendering
epimerization slow relative to the rate of bis-cyclization. The versatility of the strategy for derivative
synthesis is demonstrated by the synthesis of (−)-homosalinosporamide A.

Inhibitors of the human 20S proteasome are of continued intense interest due to their potential
as anticancer therapeutics and the recent FDA approval of bortezomib (Velcade) validates the
proteasome as a target for cancer chemotherapy.1 Salinosporamides (salino A/B, 1a–b) are
unique bicyclo [3.2.0] β-lactone-containing natural products of marine bacterial origin isolated
by Fenical and coworkers2 from the marine actinomycete, Salinispora tropica (Fig. 1). Salino
A is a potent nanomolar inhibitor of the proteasome and is currently in Phase I clinical studies
for multiple myeloma having shown potential in mouse models toward several cancers when
administered intravenously despite the potentially labile β-lactone.3 Salinosporamide A and
congeners, which bear close structural similarities to the terrestrial metabolites, the
cinnabaramides (e.g. cinnabaramide A, 2) and lactacystin-β-lactone (omuralide),4 have been
targets for total5 and formal6 syntheses, structure–activity studies,7 biosynthetic engineering,
8 and crystallographic studies with the 20S proteasome.9 The latter studies revealed an
intriguing mode of action for salino A involving O-acylation of the N-terminus threonine of
the proteasome by the β-lactone with concomitant cyclization of the incipient alkoxide with
the C13 chloro substituent leading to a tetrahydrofuran. Herein we disclose a versatile and
concise, enantioselective strategy to both (−)-salino A and (−)-homosalino A made possible
by the A1,3-strain of β-keto tertiary amides10 which enables retention of optical purity during
a key bis-cyclization process that simultaneously forms the γ-lactam and fused β-lactone core.

Building on our previously reported racemic synthesis of salino A,5e a key step in our strategy
is a diastereoselective, nucleophile-promoted, bis-cyclization (Fig. 2). This process delivers
the bicyclic-β-lactone pharmacophore 4 in a single operation from acyclic precursors and the
optical purity of the β-lactone would reflect the diastereomeric purity of β-ketoamide 5, derived
from acylation of serine derivatives with racemic ketene dimers 7. The C4 stereocenter in β-
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ketoamide 5 is lost during the bis-cyclization process, thus the integrity of the C2 stereocenter
dictates the optical purity of β-lactone 4 which we predicted would be preserved by A1,3 strain.

The synthesis of salino A began with reductive amination of commercially available (R)-O-
benzyl serine (8) (99% ee) with p-anisaldehyde, followed by esterification to provide allyl ester
(+)-9 (Scheme 1). After extensive optimization by careful control of reaction temperature and
time, the desired ester (+)-9 could be obtained with minimal racemization (98% ee) through
these two steps in 79% yield.§ The required unsymmetrical ketene dimer (±)-7a was obtained
by heterodimerization of acetyl chloride and 4-chlorobutanoyl chloride following the
procedure of Sauer.¶11 Acylation of serine derivative (+)-9 with this ketene dimer under
microwave conditions gave diastereomeric β-ketoamides 10a/10a′ (dr 1 : 1) in 80% yield.
Separation of the diastereomers by MPLC provided the required (R,R)-β-ketoamide 10a (45%,
dr 30 : 1, 98% ee). Conditions were identified to recycle the undesired diastereomer, (R,S)-10a
′, via epimerization (98% yield, dr 1 : 1) of the C2 but not the C4 stereocenter thus allowing
an effective resolution of ketene dimer (±)-7a and greater material throughput.||

Towards the required ketoacid substrate for bis-cyclization, mild and brief exposure of β-
ketoamide (R,R)-10a to Pd(0)-mediated deprotection provided keto acid (R,R)-5 with only
slight erosion of the diastereomeric purity (Table 2). At the outset, it was unclear whether the
A1,3-strain induced conformational bias in β-keto tertiary amides (~4 kcal mol−1) would be
sufficient to avoid epimerization of this center in the time frame and under the basic conditions
of the bis-cyclization. As expected, applying bis-cyclization conditions that were previously
developed for the racemic series to keto acid (R,R)-5 (dr 29 : 1, 98% ee) led to similar yields
and diastereoselectivity (40% yield, dr 2.5 : 1),5e however erosion of optical purity of adduct
3a was observed (85% ee). Towards exploring the impact of the chlorine atom on the acidity
of the C2-proton and the versatility of this strategy for derivative synthesis, we studied
variations of the C2-substituent by employing other heteroketene dimers for the synthesis of
ketoamide substrates 5b–c (see ESI† for details). Bis-cyclization of ketoacid 5b bearing a γ-
siloxy group (Table 1, entry 2) led to similar results as ketoacid 5a bearing a γ-chloro
substituent, however the δ-chloro ketoacid 5c led to a significant increase in yield (Table 1,
entry 3). These results are mirrored by the 1H NMR chemical shifts of the C2 protons of β-
ketoamides 10a–c, which show a Δδ of 0.4 ppm between γ- and δ-substituted substrates,
pointing to the inductive effects and resultant increased acidity imposed by these β-
heteroatoms.

Towards optimization of the synthesis of β-lactone 3a required for salino A, reaction
parameters were optimized extensively including alternative carboxylic acid activating agents.
Ultimately we found that mesyl chloride at lower temperature and less polar solvents led to
dramatic increases in both diastereoselectivity (7 : 1) and retained enantiopurity of bicyclic β-
lactone 3a (92% ee, 35% yield, 28% recovered keto acid, Table 2, entry 1). In addition, a yield
of 60% was obtained with longer reaction times under these conditions, however this led to
reduced diastereoselectivity and enantiopurity (dr 4 : 1, 88% ee, Table 2, entry 2). Importantly,
this reaction could be performed on gram scale with comparable diastereoselectivity and
retention of enantiopurity (52%, dr 5 : 1, 90% ee, Table 2, entry 3).

Completion of the salino A synthesis entailed hydrogenolysis, which facilitated separation of
the minor diastereomer 3a′ from the bis-cyclization, to provide alcohol (−)-12a in 75% yield

§Optical purities were determined by chiral HPLC analysis. See ESI.†
¶While ketene dimer (±)-7a was obtained in low statistical yield (13%, 52% of theoretical), its synthesis is readily performed on multigram
scale. See ESI.†
||Chiral HPLC analysis verified that epimerization occurred only at C2. See ESI.†
†Electronic supplementary information (ESI) available: Experimental procedures and all 1H/13C NMR spectra. CCDC 775264. See
DOI: 10.1039/c0cc00607f
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(Scheme 2). Modified Moffatt oxidation12 and addition of zinc reagent 135a gave
diastereomeric alcohols (dr 11 : 3 : 1 : 1) in 62% yield (2 steps) and final PMB deprotection
of the mixture of diastereomers led to pure (−)-salinosporamide A following recrystallization
(syn. [α]D −71.3; lit. [α]D −72.9).

The synthesis of homosalino A (14), a derivative with the potential to form a tetrahydropyran
upon acylation of the proteasome, followed an identical route as for salinosporamide A but
using heteroketene dimer (±)-7c with serine derivative (+)-9 to provide the homologous
ketoester (−)-10c (94% ee, dr 25 : 1) after MPLC separation (Scheme 3). Ester deprotection
and subsequent bis-cyclization provided the bicyclic-β-lactone (−)-3c/3c′ in 60% yield (dr 3.5 :
1, 2 steps). Subsequent hydrogenolysis again enabled separation of the minor diastereomer to
give alcohol (−)-12c in 62% yield (82% ee) and recrystallization led to enrichment of
enantiopurity to 89% ee (52% yield). Using an identical sequence as described for salino A,
the β-lactone core (−)-12c was converted to (−)-homosalino A (14). The structure and relative
stereochemistry of 14 was confirmed by X-ray analysis (Fig. 3).

In summary, we have developed a concise, 9-step enantioselective route to (−)-salinosporamide
A from O-benzyl serine. The key bis-cyclization of a β-ketoamide, amenable to gram scale,
constructs both the γ-lactam and the fused-β-lactone in one operation contributing to the brevity
of the synthesis. The ability of the described β-keto tertiary amide substrates to maintain
stereochemical integrity by virtue of A1,3 strain raises the intriguing question of how such
stereochemical integrity is maintained with β-keto secondary amides, known salino A
precursors, prior to and during related biosynthetic cyclizations or if a dynamic kinetic
resolution is operative.** The flexibility of the described strategy derives from the versatility
of bicyclic cores e.g. 3a–c obtained from alternative ketene dimers 7 which enable variation
of the C2 side chain as demonstrated in the synthesis of (−)-homosalinosporamide A.
Furthermore, the strategy allows for changes in the C4 side chain by addition of various
organometallic reagents, notably in the presence of the β-lactone. The synthesis of additional
hypothesis-driven salino A derivatives by the described strategy and their bioactivity will be
reported in due course.
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Fig. 1.
Structures of natural occurring bicyclic-β-lactone proteasome inhibitors.
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Fig. 2.
Enantioselective strategy to salino A and derivatives.
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Fig. 3.
X-Ray structure (ORTEP) of (−)-homosalino A (14).
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Scheme 1.
Reagents and conditions: (a) p-anisaldehyde, MeOH, 0 °C, 8 h; NaBH4, MeOH, 12 h, −10 °
C (97%); (b) p-TsOH, allyl alcohol, PhH, 100 °C, 8 h (82%); (c) (±)-7a, ClCH2CH2Cl,
pyridone, μW, 50 °C, 2 h (80%); (d) p-TsOH, MeOH : EtOAc (1 : 4), 45 °C, 48 h (98%).
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Scheme 2.
Reagents and conditions: (a) H2, Pd/C THF, 23 °C, 12 h (75%); (b) (i) EDCl, Cl2CHCO2H,
DMSO/PhMe, 23 °C, 5 h; (ii) 2-cyclohexenylzinc chloride (13), THF, −78 °C, 4 h (62%, dr =
11 : 3 : 1 : 1); (c) CAN, MeOH/H2O, 0 °C, 6 h (43%, dr 15 : 1).
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Scheme 3.
Reagents and conditions: (a) (−)-7c, pyridone, ClCH2CH2Cl, μW, 53 °C, 2 h (80%, dr 1 : 1);
(b) Pd(PPh3)4, morpholine, THF, 1 h, −5 °C; (c) TsCl, 4-PPy, PhMe, −5 °C, 3.5 h (60%, dr
3.5 : 1); (d) H2, Pd/C, THF, 23 °C, 12 h (62%, 82% ee; following recrystallization: 52%, 89%
ee).
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Table 1

Variation of the C2-side chain: inductive effects on efficiency of bis-cyclization with β-ketoacids 5a–c

Entry R1 β-Lact. % Yielda,b δHa, δHb
c

1 (CH2)2Cl 3a/3a′ 40 3.92, 3.94

2 (CH2)2OTBS 3b/3b′ 42 3.92, 3.95

3 (CH2)3Cl 3c/3c′ 62 3.52, 3.57

a
Yield for 2 steps (deprotection and bis-cyclization).

b
Yields refer to isolated, purified β-lactones.

c
Chemical shift of C2 protons (Ha/b) of diastereomeric ketoamide esters 10a–c.
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