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Abstract
The application of psychological measures often results in item response data that arguably are
consistent with both unidimensional (a single common factor) and multidimensional latent structures
(typically caused by parcels of items that tap similar content domains). As such, structural ambiguity
leads to seemingly endless “confirmatory” factor analytic studies, in which the research question is
whether scale scores can be interpreted as reflecting variation on a single trait. An alternative to the
more commonly-observed unidimensional, correlated-traits, or second-order representations of a
measure's latent structure is a bifactor model. Bifactor structures, however, are not well understood
in the personality assessment community and, thus, rarely are applied. To address this, herein we: a)
describe issues that arise in conceptualizing and modeling multidimensionality, b) describe
exploratory (including Schmid-Leiman and target bifactor rotations) and confirmatory bifactor
modeling, c) differentiate between bifactor and second-order models, d) suggest contexts where
bifactor analysis is particularly valuable (e.g., for evaluating the plausibility of subscales, determining
the extent to which scores reflect a single variable even when the data are multidimensional, and
evaluating the feasibility of applying a unidimensional item response theory measurement model).
We emphasize that the determination of dimensionality is a related but distinct question from either
determining the extent to which scores reflect a single individual difference variable or determining
the effect of multidimensionality on IRT item parameter estimates. Indeed, we suggest that in many
contexts, multidimensional data can yield interpretable scale scores and be appropriately fitted to
unidimensional IRT models.
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Chen, West, and Sousa (2006, p. 189) write, “Researchers interested in assessing a construct
often hypothesize that several highly related domains comprise the general construct of
interest.” As a consequence, factor analytic evaluations of such measures often reveal some
evidence of a general factor running through the items (e.g., a relatively large first eigenvalue)
but also some evidence of multidimensionality (e.g., an interpretable multidimensional solution
that arises due to parcels of items that tap similar content domains). These common findings
invariably spark the age-old debate among researchers whether a given construct is unitary or
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multi-faceted. Does scale score variation primarily reflect variation on a single construct (and,
thus, scale scores are unambiguously interpretable) or reflect multiple non-ignorable sources
of variance (and, thus, subscales need to be formed)?

Consider, for example, the substantial amount of confirmatory factor analytic research devoted
to investigating the dimensionality of data from the Anxiety Sensitivity Index (Lilienfeld,
Turner, & Jacob, 1993; Zinbarg, Barlow, & Brown, 1997), Dispositional Hope Scale (Brouwer,
et al., 2008), Self-Monitoring Scale (Briggs, Cheek, & Buss, 1980), Life Orientation Test
(Robinson-Whelen, et al., 1997), Penn State Worry Questionnaire (Hazlett-Stevens, Ullman,
& Craske, 2004), Center for Epidemiologic Studies Depression Scale (Golding & Aneshensel,
1989), Beck Depression Inventory-II (Dozois & Dobson, 1989), Hamilton Depression Rating
Scale (Bagby et al., 2004), a self concept scale (Byrne & Shavelson, 1996), and the Toronto
Alexithymia Scale-20 (Gignac, Palmer, & Strough, 2007). For all of these instruments, at issue
is whether they measure a single construct or whether item responses are best thought of as
reflecting multiple, more or less correlated, individual differences.

The above-cited research represents only a very small percentage of the studies of instrument
structure and ultimately interpretability. One reason why the dimensionality issue appears to
cause such consternation is clear; researchers typically write self-report items to assess a single
construct. Nevertheless, they also recognize that constructs are substantively complex (e.g.,
depression); that is, indicators of the construct are diverse (in the case of depression, for
example, cognitive-affective versus somatic-performance symptoms). Consequently, to
validly represent the construct, items with heterogeneous content need to be included in the
measure. This places personality assessment researchers in the vexing position of trying to
measure one thing while simultaneously measuring diverse aspects of this same thing.

With that in mind, it is unsurprising that in many psychometric investigations, it is common
to observe evidence for a single dimension, and at the same time, to uncover evidence of
multidimensionality. Here are two examples from our own work. First, Reise and Haviland
(2005) in considering the application of a unidimensional item response theory (IRT;
Embretson & Reise, 2000) model analyzed a 25-item measure of cognitive problems. They
reported a 1st to 2nd eigenvalue ratio of 13.29 to 1.5, evidence of a very strong general factor.
Yet, they also reported that up to seven additional factors could be extracted from the data, that
these factors were interpretable, and that they led to an improved statistical “fit.” In Smith and
Reise (1998), a 23-item measure of stress reaction also was considered for application of a
unidimensional IRT model to explore hypotheses of differential item functioning. Again, a
very large 9.59 to 0.97 ratio of the 1st to 2nd eigenvalues was observed, strongly suggesting
unidimensionality. Due to content parcels included within the scale for content validity
purposes (see Tellegen & Waller, 2008), however, five interpretable correlated factors could
be extracted and interpreted.

In the above two examples, the authors argued that the evidence for the essential
unidimensionality of the measures was clear and that any observed multidimensionality due
to item content parcels (or mere doublets) was ignorable. They argued that it would be
indefensible, for example, to break the cognitive problems scale into seven super-homogeneous
subscales. With many other measures, however, the dimensionality and the scale score
interpretability issues seldom will be put to rest so clearly. To address such impasses, to
evaluate the psychometric properties of substantively complex measures, we propose that a
bifactor latent structure may be an excellent alternative to the more commonly-used
unidimensional, correlated-traits, or second-order representations of a measure's latent
structure. Bifactor latent structures appear not to be well understood in the personality
assessment community, however, and, thus, they rarely are applied.
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In the present paper, we: a) describe issues that arise in conceptualizing and modeling
multidimensionality, b) describe exploratory (including the Schmid-Leiman and target bifactor
rotations) and confirmatory bifactor modeling, c) differentiate between bifactor and second-
order models, and d) suggest contexts where bifactor analysis is particularly valuable (e.g., for
evaluating the plausibility of subscales, determining the extent to which scores reflect a single
variable even when the data are multidimensional, and evaluating the feasibility of applying
an IRT model). To accomplish these objectives, we make reference throughout to an observer
report measure of alexithymia (described below). This measure is an excellent example because
it has parcels of item content, but typically it is scored as reflecting a single common construct.

The Observer Alexithymia Scale (OAS)
The Observer Alexithymia Scale (OAS, Haviland, Warren, & Riggs, 2000; Haviland, Warren,
Riggs, & Gallacher, 2001; Haviland, Warren, Riggs, & Nitch, 2002) is a 33-item, observer-
rated alexithymia measure; each item is rated on a four-point scale: 0 = never, not at all like
the person; 1 = sometimes, a little like the person; 2 = usually, very much like the person; and
3 = all of the time, completely like the person. OAS scores, thus, can range from 0 to 99. Item
content was taken from the California Q-set Alexithymia Prototype (CAQ-AP; Haviland &
Reise, 1996). In CAQ-AP terms, the prototypic alexithymic person has difficulties
experiencing and expressing emotion; lacks imagination; and is literal, socially conforming,
and utilitarian. Moreover, alexithymic individuals are not insightful, are humorless, have not
found personal meaning in life, and anxiety and tension find outlet in bodily symptoms. These
various characteristics are a mix of what some call “core” features of alexithymia (Taylor,
2000) and observable expressions or consequences of being alexithymic. Specific OAS items
were written to correspond to the most and least characteristic items in the CAQ-AP. This
approach to generating an item pool differs from the more-common method; that is, to specify
broad features in advance and write several nearly identical items to represent that feature.

Exploratory and confirmatory factor analytic studies (Haviland, Warren, & Riggs, 2000;
Haviland, Warren, Riggs, & Gallacher, 2001; Berthoz, Haviland, Riggs, Perdereau, &
Bungener, 2005; Yao, Yi, Shu, & Haviland, 2005) provide modest evidence that the OAS has
a five (correlated) factor structure: distant (unskilled in interpersonal matters and relationships),
uninsightful (lacking good stress tolerance and insight or self-understanding), somatizing
(having health worries and physical problems), humorless (colorless and uninteresting), and
rigid (too self-controlling). It is important to note here that the subscale labels are terms of
convenience and to underscore that these features were not specified a priori.

In tests of substantive hypotheses, researchers use total, and not subscale, scores (e.g., Mueller,
Alpers, & Reim, 2006; Perrin, Heesacker, & Shrivastav, 2008). In other words, as with many
scales, the multidimensional structure caused by clusters of items with similar content is
ignored in practice. One objective of this paper is to explore the extent to which this practice
can be justified empirically. In the following section, we provide a foundation for bifactor
modeling by introducing two distinct views of multidimensionality. Data (N=1,495) for the
various illustrative analyses are from four OAS (English-translation) studies: ratings of people-
in-general (close friends and relatives) by undergraduate, graduate, and professional students
(Haviland, Warren, & Riggs, 2000; Riggs & Haviland, 2004) and outpatients being treated by
Ph.D.-level clinical and counseling psychologists (Haviland, Warren, Riggs, & Gallacher,
2001; Haviland, Warren, Riggs, & Nitch, 2002).

Conceptualizing and Modeling Multidimensionality
To illustrate the examples that follow, we display in Figure 1 four alternative structural models.
Model A is easily recognized as a unidimensional model – each item is influenced by a single
common factor (the target construct – alexithymia) and a uniqueness term that reflects both
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systematic and random error components. Note that Model A does not state that there is only
one reliable or systematic source of variance for each item, rather it states that there is only
one common source. For any item, it is likely that dozens of random and systematic factors
affect item performance, including response sets and reading proficiency, for example.
Importantly, Model A is neutral as to the size of the common factor; a model with all loadings
of .20 (and error variances of .96) and a model with all loadings of .70 (and error variances of .
51) both are unidimensional models. This is an important point because the size of a loading
on a single factor often is taken incorrectly as an indicator of “unidimensionality.” Of course,
sizeable loadings are necessary to reliably distinguish between individuals using a reasonable
number of items.

Model A in Figure 1 is the data structure assumed by all unidimensional IRT models
(Embretson & Reise, 2000) for either dichotomous or polytomous items. It also is the model
that scale developers hope is reasonably true, so that a summed score provides an unambiguous
interpretation of individual differences on the target construct. In terms of the present data,
Model A suggests that variation on each OAS item is affected by variation on alexithymia (the
target latent variable) and no other common variable. Unfortunately, strictly speaking,
McDonald (1981, p. 102) has noted that in regard to the prospect of finding perfectly
unidimensional assessment data, “Such a case will not occur in application of theory.” When
researchers believe that the restrictions in Model A are violated severely, alternative
multidimensional structures often are proposed.

To the degree that Model A is implausible, alternative multidimensional structures must be
found, and Models B through D in Figure 1 represent three alternatives. Herein, we refer to
the familiar and commonly-applied Model B as the “correlated traits” model. In this model, a
construct domain is broken apart into its separate, distinct/correlated elements (sometimes
called “primary” traits). Specifically, the variance of each item is assumed to be a weighted
linear function of two or more common factors. In exploratory factor analysis, the weights can
change depending on rotation choice. This model is most reasonable when a scale is composed
of multiple item parcels with similar content, such that the correlation among items within a
cluster is substantially larger than the average inter-item correlation. In such cases, multiple
(and interpretable) factors always can be extracted and, depending on the degree of correlation
among the factors, arguments for forming a single aggregate versus scoring subscales can be
made.

Model B, however, is not a measurement model per se. Specifically, in Model B there is no
one common target dimension (i.e., alexithymia) to be measured or that directly affects item
variance. In contrast to Model B, Model C places a measurement structure onto the correlations
among the factors. That is, the factors are correlated because they share a common cause. In
other words, this second-order model states that the target construct (alexithymia) is a
“second-” or “higher-order” dimension that explains why three or more “primary” dimensions
are correlated. Notice that as drawn in Figure 1, there is no direct relationship between the item
and the target construct, but rather the relationship between alexithymia and each item is
mediated through the primary factor (i.e., an indirect effect).

To determine the item variance due to the second-order factor, one must multiply the loading
of the item on the primary factor by the loading of the primary factor on the second-order factor
(see example below). Each item also is a function of the disturbance (i.e., that part of the primary
factor that is unexplained by or independent of the second-order factor). To determine how
much item variance is due uniquely to the primary trait (controlling for the second-order factor),
one must multiply the loading of the item on the primary trait by the square root of the
disturbance (also shown below).
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Finally, the remaining Model D in Figure 1 is a bifactor model (Holzinger & Swineford, 1939;
Schmid & Leiman, 1957). As shown, a bifactor model is a latent structure where each item
loads on a general factor. This general factor reflects what is common among the items and
represents the individual differences on the target dimension that a researcher is most interested
in (i.e., alexithymia). Moreover, a bifactor structure specifies two or more orthogonal “group”
factors. These group factors represent common factors measured by the items that potentially
explain item response variance not accounted for by the general factor. In some applications
of the model, the group factors are termed “nuisance” dimensions – factors arising because of
content parcels that potentially interfere with the measurement of the main target construct.
Group factors are analogous to disturbances in the second-order model.

In what we refer to as a “restricted” bifactor model (Gibbons & Hedeker, 1992), each item
loads on a single general factor, and at most on one additional orthogonal group factor. The
restricted bifactor model assumes that the items all measure a common latent trait (i.e.,
alexithymia), but that the variance of each item also is influenced by an additional common
factor caused by parcels of items tapping similar aspects of the trait. Thus, a chief virtue of the
bifactor model is that it allows researchers to retain a goal of measuring a single common latent
trait, but also models, and thus controls for, the variance that arises due to additional common
factors. In other words, the bifactor model, in theory, allows one to directly explore the extent
to which items reflect a common target trait and the extent to which they reflect a primary or
subtrait.

From the above model descriptions, it should be clear that if a researcher intends to both
recognize multidimensionality and simultaneously retain the idea of a single important target
construct, the second-order or bifactor models are the only choices. As we will explain in detail
subsequently, in some ways there is no meaningful distinction to be made between these two
models, whereas in other ways, they are vastly different. One difference is that second-order
models are fairly common in the literature and in textbooks (e.g., Bryne, 2006), whereas
bifactor models are not. Beyond this applied difference, another difference lies in how
multidimensionality is conceptualized under the two models.

Underlying the application of both Models B and its nested cousin C is the assumption that
common variance on an item can be partitioned into a weighted function of variation on two
or more correlated primary traits. Thus, under the correlated traits framework (and its extension
to a second-order model), the “target” latent trait is what a sample of more basic elements,
primary traits (or subdomains) have in common, not what items have in common. In contrast,
the bifactor model specifies that there is a single (general) trait explaining some proportion of
common item variance for all items, but that there also are group traits explaining additional
common variance for item subsets. The general and group factors are on equal conceptual
footing and compete for explaining item variance – neither is “higher” or “lower” than the
other. With this viewpoint, the target latent variable is what is in common among the items
(i.e., the common latent trait approach).

Both the correlated traits and the common latent trait approaches are reasonable conceptual
models for understanding multidimensionality in some contexts. Reckase (2009), for example,
has written an entire book on the utility of multidimensional IRT models of the correlated-
traits type in educational assessment contexts. We believe, however, that the common trait
perspective (and its corresponding bifactor structural model) is more amenable to
conceptualizing and studying: a) whether scale items measure a single common dimension, b)
how well the scale items measure a single common dimension, c) the effect of
multidimensionality on scale scores and, d) the feasibility of applying a unidimensional IRT
model in the presence of multidimensional data. We summarize and comment on our arguments
in the final sections of this paper.
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Independent Clusters and Cross-Loadings
In what follows, we describe and illustrate both exploratory and confirmatory bifactor
modeling. Throughout, we make reference to the idea of items being factorially simple (loading
on one and only one factor) versus complex (having cross-loadings on two or more factors).
We also make use of the concepts of independent cluster structure (IC) and independent cluster
basis (ICB). McDonald (1999, p. 460) provides precise definitions of these concepts:

ICB: “a factor pattern in a confirmatory factor/multidimensional item response model in
which each common factor is identified by two or more factorially simple variables (for
correlated factors) or by three or more factorially simple variables (for uncorrelated
factors).” (italics in original)

IC: “in a confirmatory factor/item response model, a model in which each variable loads
on just one factor. In an exploratory factor model, each variable has a nonnegligible
loading on just one factor.” (italics in original)

These concepts play two critical roles in bifactor modeling. First and more generally, they
provide a set of rules for identifying and meaningfully interpreting factors in the common factor
model (e.g., the correlated traits model). If a structure has an IC basis (and that basis is more
than just mere doublets), for example, we can justify substantively interpreting the factors, and
items that cross-load on multiple factors can be viewed as blends of two or more dimensions
(McDonald, 1999; 2000). Second, and more directly related to bifactor modeling, both
restricted second-order and bifactor models are viable to the degree that a given dataset has an
IC structure (i.e., no cross-loadings in a correlated traits solution). When data violate IC
structure, restricted models will display poor statistical “fit,” and more importantly, parameter
estimates (e.g., factor loadings or IRT discriminations) may be seriously distorted.

Software Programs
Many of the analyses that we present require software beyond the most widely-available
packages. Thus, it may be helpful to review the options available to researchers interested in
performing such analyses or replicating our results. The R Statistical Package (R Development
Core Team, 2010) is perhaps the most versatile existing statistical package. This program can
be freely downloaded from: http://cran.r-project.org/

Many of the exploratory analyses conducted herein used R software, including polychoric
correlation estimation, ordinary exploratory factor analysis, and Schmid-Leiman factor
rotation (all from the psych package; Revelle, 2009).

For target factor rotation (described below), we used the Comprehensive Exploratory Factor
Analysis program (CEFA; Browne et al., 2004), available free at:
http://faculty.psy.ohio-state.edu/browne/programs.htm

CEFA is capable of exploratory factor analysis using multiple extraction methods. We used
standard ML extraction on polychoric correlation matrices.

Finally, ordinary confirmatory factor analytic techniques do not apply to dichotomous or
polytomous data (Bryne, 2008). Instead, special estimation procedures are required (Wirth &
Edwards, 2008). There basically are three options for working with polytomous item response
data. The first is to compute a polychoric matrix and then apply standard factor analytic
methods (see Knoll & Berger, 1991). A second option is to use full-information item factor
analysis (Gibbons & Hedeker, 1992). The third is to use limited information estimation
procedures designed specifically for ordered data, such as weighted least squares with mean
and variance adjustment (MPLUS, Muthen & Muthen, 2009). For all confirmatory factor
analyses, we used EQS (v6.1; Bentler & Wu, 2003) to conduct maximum likelihood (ML)
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estimation with robust standard errors (Satorra & Bentler, 1994) based on a polychoric
correlation matrix. Thus, any fit indices reported herein are “robust” indices. This is important
to recognize because traditional benchmarks for structural equation modeling fit indices do not
necessarily apply when working with dichotomous or polytomous item response data and so
their interpretation must be treated with extreme caution (see Cook & Kallen, 2009).

Exploratory Factor Analyses of the OAS
As a lead into exploratory bifactor analysis, we first present alternative exploratory factor
representations of the models described above. Table 1 shows the unidimensional (ML
extraction) and five-factor correlated-traits (ML extraction, oblimin rotation) OAS solutions
(loadings < .20 not shown). The loading pattern in the unidimensional solution shows a great
deal of variation, with a few items having loadings greater than .70 (e.g., #1, #4, #7, #16, #24,
and #28) and a few items loading below .30 (#11 and #14). The former items have the largest
average inter-item correlations (and, thus, the highest estimated communalities), whereas the
latter have the lowest (the lowest estimated communalities), meaning it is the former that
disproportionally define the latent variable. The highest loading items appear to be
predominantly drawn from the distant content domain.

The five-factor oblique solution in Table 1 demonstrates that for the most part, items fall cleanly
into their respective content domains. The solution is far from a perfect IC structure (each item
loading on one and only one factor), and whether the solution has an IC basis depends on what
cross-loading value a researcher judges to be meaningful. McDonald (1999) cites a criterion
of .30 for a meaningful (cross) loading, and by this standard, each (correlated) factor does have
at least two items that load uniquely on that factor. Thus, the factors are meaningfully
interpretable. On the other hand, if one uses a more stringent criterion of .20 for a significant
(cross) loading, then factor five (rigid) is questionable, given that there are only two items (#5,
#33) loading simply on it.

Although not shown in Table 1, the factor correlations ranged from r = .07 (distant and
somatizing) to r = .49 (Distant and Humorless), and the average was approximately r = .30.
The size of these factor correlations suggests a common dimension of modest strength1 among
the primary factors. Clearly, the size of the factor correlations does not suggest that the content
domains are fungible indicators of a single construct. To model the factor inter-correlations,
the last row of Table 1 shows the loadings of the five primary traits on the general factor,
alexithymia. These loadings were derived by simply conducting a factor analysis of the
correlations among the primary traits. That is, these loadings in the bottom of Table 1 represent
the relationships between the second-order factor and the primary traits in a second-order factor
model. Note that disturbances for each of the primary traits are equal to one minus the loading
squared. In this model, factor five (rigid) has the highest loading (.71), whereas factor three
(somatizing) has the lowest. These results suggest that it is highly questionable whether
somatizing relates to alexithymia in the same way that the other features do (a point that we
return to after more testing).

1This does not surprise us given the nature of the alexithymia construct and how it is captured by the OAS. Alexithymia refers to deficits
in the processing of emotionally-charged information. The construct emerged from the clinical literature and has never, to our knowledge,
emerged in any empirically-based major taxonomies of personality or psychopathology. In short, its behavioral penetrance probably is
low and, thus, we do not expect indicators (which are very distal from the trait) to be highly correlated. Second, this is an observer-report
measure that attempts to indirectly capture the construct by collecting ratings of its observable manifestations in a variety of domains;
for example, interpersonal matters and relationships, insight and self understanding, health worries, humor, and rigidity. We recognize,
actually expect, that individual differences in alexithymia is just one possible common source of individual differences on these variables.
For this reason as well, we do not expect high factor intercorrelations.
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Exploratory Bifactor Modeling
The term exploratory implies that no restrictions are placed on a solution. In terms of bifactor
structures, exploratory means that items are free to load on the general and any number of
group factors. Familiar exploratory factor analytic rotation methods are designed to identify
simple structure solutions, but in a bifactor structure, items are free to load on a general and a
set of group factors. In short, researchers will not be able to identify an exploratory bifactor
structure using standard factor rotation methods such as oblimin or promax (however, see
Jennrich & Bentler, under review). There are two alternatives, each with its own strengths and
weaknesses, which we describe next.

Schmid-Leiman (SL) Orthogonalization—One method to obtain a bifactor solution is
the SL procedure (Schmid & Leiman, 1957). For the SL bifactor solutions, we used the
schmid routine included in the psych package (Revelle, 2009) of the R software program (R
Development Core Team, 2008). The schmid procedure works as follows. Given a tetrachoric
or polychoric correlation matrix, schmid:

a. extracts (e.g., minres, ML) a specified number of primary factors,

b. performs an oblique factor rotation (e.g., oblimin),

c. extracts a second-order factor from the primary factor correlation matrix, and

d. performs an SL orthogonalization of the second-order factor solution to obtain the
loadings for each item on uncorrelated general and group factors.

Specifically, assuming that an item loads on only one primary factor, an item's loading on the
general factor simply is its loading on the primary factor multiplied by the loading of the
primary factor on the general factor. In real data where loadings are never exactly zero, an
item's loading on the general factor is found by summing the products of the item's loading on
a primary factor with the primary factor's loading on the second-order. For Item #1, for
example, the actual loadings in Table 1 are .774, .013, .070, .104, and .060. In turn, the loadings
of the five primaries on the second-order are: .590, .574, .377, .713, and .575. The sum of the
products

is the loading on the general factor for Item #1.

An item's loading on a group factor simply is its loading on the primary factor multiplied by
the square root of the disturbance (the disturbance is variance of the primary factor that is not
explained by the general factor). For Item #1 and group factor 1 this value would be:

The loadings for this item on the remaining four factors follow a similar logic.

SL is a transformation of a second-order factor pattern, which in turn, is a function of a
correlated traits solution. Unsurprisingly then, to the extent that the items have IC loading
patterns (i.e., no cross-loadings) on the oblique factors in the correlated traits solution, the items
will tend to load on one and only one group factor in the SL. To the extent that the items lack
an IC structure in an oblique rotation, the loadings in the SL become more complicated to
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predict. Moreover, to the degree that the primary factors are correlated, loadings on the general
dimension in the SL will tend to be high.

To perform a SL, a measure should contain at least two (if the primary factors are constrained
to be equally related with the second-order) but preferably three parcels (so that the primary
factor correlation matrix can be factor analyzed). The loadings derived from a SL: a) are
affected by both the factor extraction and oblique rotation method selected, and importantly,
b) contain proportionality constraints (see Yung, Thissen, & McLeod, 1999). The
proportionality constraints emerge because the group and general factor loadings in the SL are
functions of common elements (i.e., the loading of the primary factor on the second-order
factor, and the square root of the primary factor disturbance).

Although the SL is easy to implement, there is a critical problem: because of the proportionality
constraints, the factor loadings produced from a SL typically are biased estimates of their
corresponding population values. In other words, if one were to assume that in the population,
the factor loading matrix had a bifactor structure, the SL only can recover the precise loadings
in real data if: a) the data have a perfect IC structure and b) the ratio of an item's group to
general factor loading is equal for items within each cluster (thus, retaining proportionality).
When these conditions are not met, the loadings in the SL may not accurately reflect the true
population loadings, even in models that display an excellent “fit” to the data.

To demonstrate, in the top portion of Table 2, we display (from left to right) three true bifactor
population loading patterns. For each of these patterns, we computed the implied population
correlation matrix and then conducted a SL orthogonalization. In the first set of columns, it is
clear that the SL will recover the population loading matrix with perfect accuracy when the
group and general factor loadings are proportional. The middle column displays the SL's lack
of accuracy when group factor loadings vary in their relation to the item's general factor. Most
important, the third set of columns shows the distorting effect of cross-loadings. Specifically,
for the items with cross-loadings, the SL overestimates the loadings on the general factor and
underestimates the loadings on the group factors. Despite this obvious limit of the SL, the
distortions in the SL are generally not of great concern if a researcher is primarily interested
in identifying the pattern of salient and non-salient loadings as opposed to estimating their
specific value in the population.

Target Pattern Rotation—If the proportionality constraints of the SL are a concern, a clear
alternative is to estimate an even less restricted model, such as a rotation to a target matrix.
Rotation of a factor pattern to a partially-specified target matrix (Browne, 1972a, b; 2001) only
is recently gaining popularity due to the availability of software packages to implement target
and other types of non-standard rotation methods (e.g., MPLUS; Asparouhov & Muthen,
2008; comprehensive exploratory factor analysis, CEFA; Browne, Cudeck, Tateneni, & Mels,
2004). In this study, we use the freeware CEFA program exclusively. This program allows the
user to specify a target pattern matrix where each element in the target factor pattern is treated
as either specified (0) or unspecified (?). Extracted factors then are rotated to this target.

The target matrix in a targeted rotation, “reflects partial knowledge as to what the factor pattern
should be” (Browne, 2001, p. 124). It forms the basis for a rotation that minimizes the sum of
squared differences between the target and the rotated factor pattern. The use of targeted
bifactor rotations raises two important questions. The first is how to form an initial target,
empirically or theoretically. Empirical preliminary analyses, for example, such as a SL or
cluster analysis, could be used to suggest the number of group factors and a bifactor target
structure. Alternatively, one may rely on theory to determine the number of factors and which
items belong to the various content parcels. In either case, the target pattern matrix will consist
of unspecified elements (?) in the first column to represent the fact that the general trait is
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related to every item and that each item will have zero (which means that the item is a pure
marker of the general trait) or one or more unspecified elements on the group factors.

One potential (and likely) challenge of target rotations is that a researcher must correctly specify
the target matrix. Unfortunately, there is no research on the robustness of target bifactor
rotations to initial target misspecification. The second question is, given a correctly specified
target pattern, how well can a targeted rotation to a bifactor structure recover the true population
loadings? The answer presently is not known. In Table 3, using the examples from Table 2,
we show that when an initial target matrix is correctly specified, a target rotation will recover
the true population loadings perfectly, thus avoiding the problems in the SL. On the other hand,
the recovery of bifactor loadings in the context of target rotations has not been thoroughly
explored under a variety of conditions. Although Reise, Moore, and Maydeu-Olivares (under
review) suggest reasonable accuracy with sample sizes greater than 500 if the data are well
structured and if the target matrix is correct, accuracy tests under other conditions are needed.

Exploratory Bifactor Rotations With The OAS
Table 4 displays two five-group-factor exploratory bifactor rotations of the OAS. Columns 2-7
show the SL, and columns 8-13 show the target rotation output from CEFA (loadings less than .
20 are not shown). The target pattern matrix for the target rotation was built according to the
proposed OAS structure, meaning that the results of the SL were not used to suggest which
elements should be (non-)specified in the target matrix. In the present data, the results of the
SL and the target rotation are very similar with one notable exception. Namely, the loadings
on the general factor almost always are higher in the target rotation than in the SL, and thus,
loadings on the group factors almost always are lower in the target rotation relative to
comparable values in the SL. Notice also that in each solution, there are items that display
cross-loadings on the group factors. This is not a major concern in these exploratory analyses;
they potentially are a major source of model misfit and item parameter estimation distortion
in restricted models, which we consider next.

Confirmatory Latent Structures
The above analyses involved models that were either completely unrestricted (e.g., correlated
traits) or partially restricted (Schmid-Leiman). In this section, we now shift and consider highly
restricted or (confirmatory) models. These multidimensional models are highly restrictive
because they assume that each item loads on a single factor or, in the bifactor, loads only on
the general and one and only one group factor. Table 5 shows parameter estimates (standardized
solution) based on fitting a unidimensional model to the matrix of polychoric correlations using
ML estimation in EQS. This model was identified by fixing the variance of the latent factor to
1.0. Note that this solution is exactly the same as the unidimensional solution in Table 1 (with
only one factor, of course, there is no distinction between the exploratory and confirmatory
models).

Unsurprisingly, the fit of this model by conventional benchmarks (which may or may not apply)
is not acceptable: overall model chi-square is 12,407 on 495 DF p. < .01, CFI = .83 and RMSEA
= .13. Also not surprising, the modification indices suggest that additional dimensions need to
be specified; specifically, items within a parcel have correlated residuals (the three largest are
between #14 and #3; #28 and #23; #12 and #6). As noted in the previous section, the OAS
includes five item content parcels and, thus, it is understandable that SEM fit indices would
lead to the rejection of such a model. These fit values, however, do not necessarily imply either
that a unidimensional IRT model is impossible to meaningfully fit to the data or that a researcher
cannot measure a single common “alexithymia” construct using these items. We will address
both of these issues below.

Reise et al. Page 10

J Pers Assess. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Table 5 shows the loadings and factor intercorrelations for a five-factor solution, where each
item is restricted to load on one and only one primary trait. For identification, each factor
variance was fixed to 1.0. The fit of this model is “acceptable” and much improved relative to
the unidimensional model: model chi-square is 4,447 on 485 DF p. < .01, CFI = .94 and RMSEA
= .07. Modification indices reveal that for several items, the restriction that they load on a
single primary trait was responsible for the lack of fit; for example, we needed to free up the
loading (i.e., allow cross-loadings) for #24 on rigid and #s 26 and 32 on distant. Finally, the
estimated correlations among the primary factors range between .76 (distant and humorless)
and .29 (distant and somatizing). These values are much larger than comparable values in the
exploratory analysis.

Table 6 displays the loadings of the OAS in a second-order model where each item is restricted
to load on a single primary factor. Model chi-square is 4,818 on 490 DF p. < .01, CFI = .94
and RMSEA = .08. The modification indices are a little more complicated in this model due
to all the restrictions. Modification indices suggested that we needed to free up the direct effect
between item #24 and the second-order factor (alexithymia). Moreover, the second-order factor
does not completely explain the correlation among primary traits as evidenced by the need to
free up the correlation between uninsightful and somatizing. As in Model B, a number of cross-
loadings still need to be estimated to reduce the overall model chi-square. Finally, inspections
of the paths among the second-order and primary traits reveal that distant, humorless, and rigid
are the most highly related to the second-order trait.

Table 6 also displays the loadings for the confirmatory bifactor model where each item loads
on the general and one and only one group factor. To highlight the items providing the best
discrimination on the general factor, we put the 15 items loading greater than .50 on the general
factor in boldface type. These items are mostly from the distant and humorless content domains.
Moreover, we put in boldface type the loadings on the group factors that were larger than an
item's loading on the general factor. These items are relatively better measures of the specific
group factor construct than they are of alexithymia. Note that some items (e.g., #6) are fairly
good measures of both general and group factors.

The fit of the bifactor model (see Table 6) also is adequate: overall model chi-square is 3,152
on 462 DF p. < .01, CFI = .96, RMSEA = .06. The rescaled chi-square difference test showed
that the bifactor model is a statistically significant improvement over the second-order model
in terms of overall model chi-square. In other words, restricting the direct effects among the
second-order factor and the items to be zero in the second-order model significantly worsens
the fit. In the restricted bifactor model, the three highest modification indices were due to: a)
the restriction that uninsightful and somatizing group factors be uncorrelated, which suggests
a model misspecification in the form of correlated group factors even after controlling for the
general factor, b) item #20 needed a cross-loading path to humorless group factor, and c) #13
requires a cross-loading on the rigid group factor. These needed cross-loadings undermine our
confidence in the parameter estimates; if these paths were freed, the magnitude of the loadings
could change meaningfully.

Bifactor Compared to Correlated Traits and Second-Order Models
When a measure contains multiple subdomains of item content (i.e., multidimensionality
reflecting the heterogeneous manifestations of the trait), the second-order and the bifactor
models are alternative structural representations. Chen, West, and Sousa (2006, p. 189), for
example, refer to the bifactor and second-order factor analytic models as “alternative
approaches for representing general constructs comprised of several highly related domains.”
Historically, second-order confirmatory factor models frequently are used in non-cognitive
domains, whereas bifactor models seldom are used. Of late, however, psychopathology and
personality researchers also have been making good use of these models (Brouwer, Meijer,
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Weekers, & Baneke, 2008; Chernyshenko, Stark, & Chan, 2001; Simms, Gros, Watson, &
O'hara, 2007; Steer et al., 1995; Zinbarg, & Barlow, 1996).

Despite these publications, there remains a great deal of confusion in the literature regarding
the bifactor approach and when and how it differs from the second-order method; thus, in this
section, we will explain some of the consequential differences. For lengthier summaries, see
Yung, Thissen, and McLeod (1999); Gustafsson and Balke (1993); Chen, West, and Sousa
(2006); and Rindskopf and Rose (1988). To begin, from the exploratory section, it should be
clear that there are no real differences between a second-order model and a SL
orthogonalization, due to the fact that the latter simply is a transformation of the former. In the
case of target bifactor rotations, there is no meaningful comparison to an analogous second-
order model because there is no such thing as a rotation to a second-order solution.

Although as detailed above, we believe that the second-order model and the bifactor are distinct
ways of representing a single construct (i.e., item variance explained by a weighted
combination of primary traits, as opposed to item variance explained by a general factor and
group factors). Gustafsson and Balke (1993) argue that the differences between second-order
and bifactor models rest more in appearance than in substance. They assert that, whereas in
the second-order model it may appear that the second-order factor is further removed from the
items and at a “higher level” of abstraction, this really is not the case. They believe that the
only real difference between second-order and primary factors is the range of variables they
affect. This perspective suggests that the difference between partitioning the general and group
factors in the bifactor and partitioning the second-order and primary dimensions in the second-
order model is minor. Gustafsson and Balke (1993) do point out differences in the models,
however, and in fact, they favor use of the bifactor in their studies of human abilities.

The main difference between the bifactor and second-order models emerges in confirmatory
models that compare Models C and D. First, the traditional second-order model is nested within
the bifactor model, and thus, the more general bifactor can be used to evaluate the decrement
in fit resulting from placing the restrictions inherent in the correlated traits, second-order, and
unidimensional models. Consider the OAS with 33 items and five group factors in a restricted
bifactor model. After fixing all factor variances to one, factor correlations to one, and factor
inter-correlations to zero, 99 parameters are estimated for the bifactor — 33 loadings on the
general factor, 33 loadings on the group factors, and 33 error variances — leaving 462 degrees
of freedom (561 - 99 = 462 df).

For the second-order model, with one second-order and five primary factors, fixing the factor
variances to one, 24 parameters are estimated — 5 loadings of primary on secondary, 33
loadings of items on primary, 33 error variances, and 5 disturbance terms — leaving 490
degrees of freedom (561 - 71 = 490 df). Notice, however, that in the traditional second-order
model, there are no direct effects specified between the second-order factor and the items (i.e.,
the only effects are indirect). If in the OAS data, one were to specify the 28 possible direct
paths (33 items minus 5 primary factors), then the second-order and bifactor are equivalent
models (see Chen, West, & Sousa, 2006, for a demonstration).

Finally, in terms of application, Chen, West, and Sousa (2006) list seven advantages of the
confirmatory bifactor relative to the second-order model:

a. Because it is the most general model, the bifactor can be used as a foundational model
for testing more constricted models.

b. The bifactor model allows the correct separation of general and domain specific
factors, whereas the second-order model “forces” a primary trait to be a domain
specific factor. In other words, even if a researcher mistakenly specifies a content
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parcel that ostensibly is unique in regards to the general trait, this easily would be
identified in the bifactor (group factor loadings would be zero, and the items would
load only on the general) but difficult to identify in the second-order model (where
an artificial separation between the primary trait and the general is forced on the
model).

c. The relation between items and group factors can be directly modeled by the bifactor.

d. In the bifactor, the contribution of the group factors to prediction of an external
variable can be studied independently of the general factor. This would be difficult
to do with the second-order model because it is difficult to estimate paths between
disturbances and external variables.

e. The bifactor model allows for tests of measurement invariance at both the general and
group factor levels. In the second-order, measurement invariance is studied at the
general factor level only.

f. In the bifactor model, group mean differences can be studied at both general and group
factor levels.

Applications
In this section, we demonstrate how the bifactor can be used to address important issues that
routinely arise in psychometric analysis of personality and psychopathology measures.
Specifically, using the OAS data, we demonstrate the utility of bifactor analyses for: a)
evaluating the plausibility of subscales, b) determining the degree to which sum scores reflect
a single factor, and c) evaluating the feasibility of applying a unidimensional IRT measurement
model. Finally, in the conclusion, we review the strengths and limits of bifactor modeling.

The Plausibility of Subscales and General Factor Dominance
Arguments whether a measure should be scored as reflecting a single construct or broken down
into subscales are very common in both cognitive and non-cognitive measurement contexts.
Typically, the technical details of this argument are sidestepped in the applied literature in
favor of simply reporting scores (and sometimes standard errors) for both subscales and the
total aggregate. Yet, this apparently pleasing compromise is problematic in several ways.

First, if the OAS (and like scales) were broken down into (correlated) subscales,
multicollinearity would interfere with our ability to judge the unique contribution of each of
the subscales in predicting some important outcome. In turn, if a heterogeneous aggregate score
were formed to represent alexithymia, we would not be confident that any external correlates
truly reflect the common trait of alexithymia rather than the effect of one or more components
of alexithymia. Second, and related to the first, a common argument for breaking a measure
into subscales is that the subscales may have differential correlates with external variables.
This is technically true but weak justification for “cutting up” a measure. Indeed, any two items
that are not perfectly correlated potentially have different correlations with external variables,
yet it would be silly to argue that one should investigate external correlates for each item
separately. Why, for example, would one break apart two correlated parcels to create two
unreliable specific measures that, when combined, can provide a reliable measure of one thing?

Third, a seldom recognized problem with computing subscales is that from a bifactor
perspective, subscale scores reflect variation on both a general trait (alexithymia) and a more
specific trait (rigidity). The effect of this is that the subscale may appear to be reliable, but in
fact that reliability is a function of the general trait, not the specific subdomain. Finally, as
argued in Sinharay and Puhan (2007), subscales often are so unreliable compared to the
composite score, that the composite score actually is a better predictor of an individual's true
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score on a subscale than is the subscale score. For this reason, these authors develop the
argument that subscale scores are seldom, if ever, empirically justified (although they may be
necessary for political/policy reasons).

Given that traditional psychometric practices fail to truly inform on the general score versus
subscale score issue, we argue that the bifactor model gives some guidance to argue for one
approach over the other (see also Gustafsson & Aberg-Bengtsson, 2010). At the most simple
level of analysis, because the general and group factors are uncorrelated in a bifactor model,
a simple inspection of the factor loadings on the general and group is informative. To the degree
that the items reflect primarily the general factor and have low loadings on the group factors,
subscales make little sense. In the case that the items have substantial loadings on both group
and general factors, a researcher should consider the computation of factor scores for all factors.
In either case, at the very least, the bifactor representation potentially provides one with a clear
view of the extent to which the items truly reflect a general construct (free of the
multidimensionality) and to what extent they reflect a more conceptually narrow construct
(controlling for the general).

In the present case, inspection of the loadings in Table 6 reveals that under the second-order
model, one could easily be fooled into thinking that there are five well defined and scoreable
subscales. Inspection of the bifactor results, on the other hand, clearly shows that after
controlling for the general factor, the group factor loadings generally are lower. As a
consequence, it would be difficult to squeeze out meaningful variation for some of these
subscales. For group factors #'s 1, 2, 3, and 5 in Table 6, for example, it would be hard to argue
that the number of items with high loadings supports computation of a factor score (or creation
of a subscale). Factor 1, for example, is defined by only two items with loadings > .50. On the
other hand, group factor #2 (uninsightful) has four items with loadings greater than .50.
Although some researchers may find this acceptable, our general advice for use of the OAS in
practice/research is to not estimate group factor scores or form subscale scores.

Relatedly, a second important issue that arises in psychometrics is the question, despite the
heterogeneity of item content, to what degree do scores reflect a single construct? When data
are perfectly unidimensional (Model A), coefficient alpha provides a direct index of general
factor saturation. In other words, under unidimensionality, coefficient alpha reflects the percent
of variance in sum scores explained by a single factor. When data are multidimensional,
Cronbach's alpha can be very misleading in regard to interpreting how well a measure reflects
a single construct (Cortina, 1993). This is simple to understand if one recognizes that in classical
test theory, the true score reflects all reliable sources of variance (including general, group,
and item specific sources). In short, under multidimensionality, coefficient alpha can lead a
researcher into a false sense of security as to how well a single construct is being measured.

Coefficient omega hierarchical (Zinbarg et al., 1997; 2005), on the other hand, is a statistic
based on a bifactor model representation that estimates the proportion of variance in raw scores
attributable to a single general target trait. In this framework, variation in scores attributable
to group and specific factors are treated as nuisance variance or error in measurement.
Specifically, given the results of a bifactor solution, coefficient omega can be calculated as:

(1)

Where λ are the “unstandardized” loadings of the items on the general factor in a bifactor model,
and VAR(X) is simply the variance of (unweighted) raw scores. Note that some debate exists
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in regard to whether VAR(X) should be based on the estimated covariance matrix or model
reproduced covariance matrix (Bentler, 2009).

Coefficient omega hierarchical is not a pure “unidimensionality” index per see (see below).
Nevertheless, the difference between the coefficients alpha and omega hierarchical is the extent
to which the reliability estimate is influenced by allowing group factors to figure into true score
variation. Moreover, Gustafsson and Aberg-Bengtsson (2010) demonstrate how indices such
as omega hierarchical can be used to argue that scores on achievement tests, despite being
clearly multidimensional in content, still reflect primarily a single dimension. Gustafsson and
Aberg-Bengtsson (2010) also argue that the effect of a factor on raw score variance is related
to the square of the number of items loading on a factor.

If a researcher were interested in a cleaner index of “unidimensionality”, defined as the percent
of unweighted raw score variance attributable to the general factor, then Equation 2 is
appropriate (explained common variance, EVC; ten Berge & Sočan, 2004; Bentler, 2009).

(2)

In Equation 2, the factors are assumed uncorrelated, and the denominator contains the sum of
the (unstandardized) loadings, squared, for all the K common factors including both general
and group. This is a superior unidimensionality index because it represents how much reliable
variance in unweighted raw scores is attributable to a single general factor.

Given the above, we now can see how the bifactor model guides us in interpreting the OAS as
an index of a single score. First, in terms of variance explained, in the confirmatory analysis
(Table 6), the general factor explains 30% total variance, and the five group factors explain,
4%, 6%, 7%, 3%, and 3%, with 47% error. Thus, the general factor accounts for nearly 57%
of the common variance extracted. Again, using the confirmatory bifactor results (Table 6), if
a composite were formed based on summing the OAS items, coefficient omega hierarchical
= .82 and EVC = .872,3 (see bottom row Table 6 for bifactor model); thus we conclude that
82% of the variance of this composite could be attributable to variance on the general factor.
The group factors would account for 3%, 4%, 3%, 1%, and 2% (5% error in the aggregate).
Thus, in our view, despite the empirical fact that the data are multidimensional, scores derived
from the OAS primarily reflect a single common source, alexithymia (depending, of course,
on further construct validity work). We recommend continuing the practice of using total, not
subscale, scores. We also recommend reporting a reliability of approximately .80 as opposed
to the somewhat deceptive reported alphas, which generally are > .90.

Judging the Feasibility of an IRT Model
Dimensionality issues are of paramount concern to researchers who wish to apply
unidimensional IRT (Embretson & Reise, 2000) measurement models. These models assume
unidimensionality (i.e., one and only one common factor underlies item responses) and local

2Technically this is “standardized” coefficient omega hierarchical, and the previously reported alpha is standardized alpha (i.e., based
on polychoric correlations). In this study, we worked exclusively with a polychoric correlation matrix to conduct the factor analyses, and
so our estimated factor loadings are standardized. The appropriate raw score aggregate for interpretation of coefficient omega hierarchical
in this case is the sum of standardized items.
3In theory, we could calculate omega based on the Schmid-Leiman results or the target bifactor rotation. In fact, the R psych package
omega command cited earlier makes this easy. In the present data, omega hierarchical drops to around .65 in the exploratory analysis.
On the other hand, as described previously, one cannot fully trust the exploratory results, especially the Schmid-Leiman parameters. For
this reason, we argue that omega is most widely calculated only after a confirmatory model has been established.
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independence (i.e., no correlated residuals -- after extracting a single common factor, item
responses are uncorrelated). Because, a) most IRT models used today assume
unidimensionality, and b) data are never truly unidimensional, there is constant debate in the
psychometric literature about how best to respond. Researchers have explored the robustness
of unidimensional IRT model parameter estimates to multidimensionality violations (e.g.,
Drasgow & Parsons, 1983; Reckase, 1979), and one conclusion is that if the data have a “strong”
common factor or multiple highly correlated factors, then IRT item parameter estimates are
not seriously distorted.

Accordingly, over the years researchers have developed a variety of schemes and rules-of-
thumb for judging whether a dataset is unidimensional enough for IRT model application,
including use of SEM fit statistics, inspection of residuals after fitting a one-factor model, and
comparing the ratio of 1st to 2nd eigenvalues. This is not the place to point out the strengths
and weaknesses of these “unidimensional enough” indices. Rather, suffice it say that the
ultimate goal of measurement is to assess individuals on the common construct underlying the
items. If data truly are multidimensional, then the general trait in the bifactor model is the most
reasonable approximation to that common construct. In turn, the ultimate goal of a
unidimensional IRT analysis is to correctly estimate the item parameters (e.g., item
discrimination) linking items with this common latent variable, even in the presence of
violations of perfect unidimensionality.

One method of exploring this issue is as follows: if one fit a unidimensional factor model and
a bifactor model to the same dataset, any discrepancy among the general factor loadings in the
bifactor model and the loadings in the unidimensional model are, by definition, an indicator
of problems with the unidimensional model parameter estimates. That is, if the two sets of
loadings are different, the loadings in the unidimensional model are ipso facto distorted by
virtue of forcing inherently multidimensional data into a unidimensional framework. Thus,
given that the factor analytic model easily can be transformed into an IRT model, Reise,
Morizot, and Hays (2007) and Reise, Cook, and Moore (under review) propose that in any
application of a unidimensional IRT model, a corresponding bifactor IRT model should be
reported so that reviewers can more readily tell whether multidimensionality seriously distorts
the parameter estimates in the unidimensional model.

Although not demonstrated here, note that it is quite possible a unidimensional IRT model may
well be adequate even in the presence of multidimensional data. One needs to be mindful that
the most important issue in applying an IRT model is not absolute “fit” of a unidimensional
model or whether a multidimensional model provides a superior relative fit. Rather, the most
important considerations are: a) is there a common factor running among the items, b) is the
common latent trait identified correctly; that is, does it reflect what is in common among all
the items or distorted by multidimensionality, and c) to what degree do the item parameters
reflect the relation between the common latent trait (purified of multidimensionality) and the
item responses. When items load highly on the general factor in a bifactor model, and content
(group) factors are roughly similar in size and item-intercorrelation, it may well be the case
that multidimensionality, indeed, is mere nuisance in terms of fitting a unidimensional IRT
model. In the present case, for example, notice that the loadings in the unidimensional model
(Table 5) are very similar to those on the general factor in the bifactor (Table 6).

Strengths and Limits of the Bifactor Model
We believe that a fair reading of the personality assessment literature supports the following:
when a scale is subjected to “confirmatory” factor analyses, the conclusion is, almost without
exception, that the data are multidimensional (or at the least, correlated residuals need to be
specified to achieve acceptable fit). In fact, authors of almost all the CFA articles cited in the
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beginning of this manuscript reach this conclusion. On the other hand, when a scale is being
considered for IRT modeling, the conclusion almost always is that the item responses are
“unidimensional enough” (see Reise & Waller, 2009, for a review of IRT applications). Perhaps
the mostly frequently encountered phrase in published IRT applications is, “Some evidence of
multidimensionality was found, but we concluded there was a strong single common factor,
and thus, the data are unidimensional enough for an IRT model.”

How the assessment community arrived at this point and why scale developers, critics, and
users remain somewhat at odds is beyond the scope of this paper. Suffice it to say, given the
challenges inherent in writing a set of scale items that: a) measure a single target construct but
are not entirely redundant (i.e., the same question asked over and over), b) are heterogeneous
enough to validly represent the diverse manifestations of the construct, and c) provide
acceptable reliability, it is not surprising that psychological test data often are consistent with
multiple models. Thus, by judicious selection of fit statistics and rules-of-thumb, and by
deciding whether to parcel items or allow correlated residuals, informed researchers basically
can conclude whatever they wish regarding dimensionality, the applicability of latent variable
models such as unidimensional IRT models, and the ultimate interpretability of scale scores.

How, then, are instruments best scored in real-world clinical and research settings, and what
guidance can we offer clinicians and applied researchers? Clearly, a central question we have
raised is whether more frequent and better use of a bifactor model can help resolve these issues.
In this regard, part of the problem in the traditional psychometric evaluation of scales is that
the wrong default model is used. That is, Model A (the unidimensional) not only is the model
required for application of unidimensional IRT models, it also is used as an “ideal” in
exploratory and confirmatory factor analytic investigations. Yet, item response data drawn
from substantively complex measures never will be strictly unidimensional. Moreover, it has
long been recognized (e.g., Humphreys, 1959) that even if achievable, Model A is not
necessarily desirable. To achieve Model A, one essentially has to write a set of items with very
narrow conceptual bandwidth (i.e., the same item written over and over in slightly different
ways), which results in poor predictive power or theoretical usefulness.

Given that the goal of measurement almost always is to scale individuals on a single common
dimension, perhaps the use of Model A as the default standard has been a mistake. Maybe the
bifactor model – which contains a single common trait but also allows for multidimensionality
due to item content diversity – provides a better foundational model for conceptualizing
dimensionality and for understanding what factors are influencing scores derived from a
psychological measure. Of course, we have not provided conclusive evidence for this assertion;
however, as argued above, among the advantages of adopting the bifactor model are that it:

a. allows researchers to scale individuals on a single trait but at the same time control
for the distorting effects of multidimensionality caused by item content clusters,

b. provides a framework for the computation of informative statistics, such as coefficient
omega. These statistics reflect the interpretability of scale scores as insular constructs,

c. assists in the study of the distorting effects of forcing multidimensional data into a
unidimensional model by comparing the results of a bifactor model with a
unidimensional model, and

d. makes it possible for one to study the unique contribution of the general and group
factors to the prediction of external variables.

Outside of cognitive testing, however, the bifactor model mostly has been poorly received by
personality, psychopathology, and health outcomes researchers. One obvious reason is that
there has never been a “bifactor” command on standard statistical software packages (but see
Wolf & Preising, 2005; Jennrich & Bentler, under review). Beyond this convenience factor,
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however, our experience tells us that researchers view bifactor structures with great suspicion.
In what follows, we consider three broad reasons: a) interpretation, b) specification, and c)
restrictions.

Interpretation
One issue with the bifactor structure is the conceptualization itself, that is, the view that there
is a general common trait, plus additional traits, and that all of these are orthogonal. One
colleague asked recently, what does it mean to say a task is mostly accounted for by intelligence
(general) but also accounted for by working memory that is “independent of” intelligence? In
what sense can there be a working memory that is independent of general intelligence? Cast
in present terms, what does it mean to propose a group factor of “rigidity” or “humorless” that
partially reflects alexithymia but also has a specific component that is independent of
alexithymia? In short, some researchers are skeptical that the model itself makes any sense.
Clearly one is free to ask such a question, but a perfectly reasonable response is to ask, in what
sense is the correlated traits model a more plausible or valid reflection of the nature of
psychological traits and behavior? In our view, the next generation of neuro-biological based
personality research may well provide insights into these issues.

Model Specification
Imagine a researcher considering the application of bifactor models to his/her item response
data as in the present study. The first questions that would need to be addressed are: how many
group factors should the model have, and once this is known, how and how well can the model's
parameters be estimated? The “number of factors to extract” has always been a vexing problem
in traditional factor analysis, and it can become even more complicated in bifactor analysis.
One reason is that, for a bifactor model, it would be wise to have at least three group factors,
for the group factors to be balanced in terms of the numbers of items, and for each group factor
to have at least three items loading simply.

What should a researcher do when the construct suggests only two conceptually meaningful
clusters, such as dispositional hope (see Brouwer et al. 2008)? What should be done in the
analysis of an existing measure when one content domain is represented by twelve items, a
second is represented by four, and a third appears to only have two potential marker items?
Can the bifactor still recover the “true” common latent dimension under these conditions?
Moreover, in applied data analysis, often it is very challenging to tell whether there is a group
factor or if a cluster of items is more a doublet or triplet (same item content stated in slightly
different ways). In the presence of such doublets and triplets, McDonald (1999) concludes a
data set cannot have any identifiable dimensionality and most certainly cannot have even an
IC basis. Finally, being the most general model, the bifactor contains the most paths to estimate
and thus the fewest degrees of freedom. Some would argue such a solution represents an
overdetermination of the data and is too clumsy for routine use in structural modeling.

Restrictions
Beyond the major assumption of orthogonality, the bifactor model also has restrictive
assumptions that need to be met for group factors to be identified, substantively interpreted,
and have parameters that are properly estimated. For a group factor to be identified, for
example, there must be at least three items that load on the general and only one group factor.
More important, although items displaying cross-loadings on the group factors are allowable
in exploratory solutions, such items lead to distorted and untrustworthy item parameter
estimates in restricted bifactor solutions. (This also is true of second-order models, but this has
not adequately been addressed/acknowledged in the literature.) Stated differently, a restricted
bifactor model demands not only that the data be multidimensional but also that the
multidimensionality be well structured (i.e., each item measures a general trait and one and
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only one subtrait). Lest one claim the second-order provides relief on this front, Wolff and
Preising (2005, p. 49) note, “When a variable is factorially complex – that is, it loads on several
factors – problems of interpretation are aggravated. In this case, higher order FA does not yield
total effects.”

Conclusion
“We have already concluded that one possible approach that could be used to deal with the
problem of representing aspects of constructs with different degrees of generality is hierarchical
factor-analytic modeling…. Still, the impact on practical applications has been
limited.” (Gustafsson & Aberg-Bengtsson, 2010, p. 104).

The above quote illustrates the point that many researchers over the years have made; that is,
models such as the bifactor provide an excellent framework for studying how measures
containing heterogeneous item content still can be understood as primarily measuring one
construct. We agree with Gustafsson and Aberg-Bengtsson that the bifactor model is poorly
understood and seldom used by applied researchers. This is unfortunate because, when working
with substantively complex constructs, a bifactor model can serve as an informative
psychometric tool as we have demonstrated throughout the present paper. Despite a promising
future, we believe that research is needed to further explore a) the strengths and weaknesses
of target (Browne 2001) and direct (Jennrich & Bentler, under review) bifactor rotation
methods, b) the issue of cross-loadings, and their potentially distorting effects on restricted
models, c) the robustness of the model to differential group factor strength, and d) how this
model can best be used to inform scale development, interpretations, and revisions.
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Figure 1.
Model A, A Unidimensional Model; Model B, A Correlated Traits Model; Model C, A Second-
Order Model; Model D, A Bifactor Model
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