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Abstract
Voxel-Based Morphometry (VBM) has been used for several years to study differences in brain
structure between populations. Recently, a longitudinal version of VBM has been used to show
changes in gray matter associated with relatively short periods of training. In the present study we
use fMRI and three different standard implementations of longitudinal VBM: SPM2, FSL, and SPM5
to assess functional and structural changes associated with a simple learning task. Behavioral and
fMRI data clearly showed a significant learning effect. However, initially positive VBM results were
found to be inconsistent across minor perturbations of the analysis technique and ultimately proved
to be artifactual. When alignment biases were controlled for and recommended statistical procedures
were used, no significant changes in grey matter density were found. This work, initially intended
to show structural and functional changes with learning, rather demonstrates some of the potential
pitfalls of existing longitudinal VBM methods and prescribes that these tools be applied and
interpreted with extreme caution.

Introduction
As early as 1960, researchers demonstrated that learning and experience could produce
profound changes in gross measures of brain morphology in rats such as brain weight and
cortical thickness (Krech et al., 1960; Rosenzweig et al., 1972; Klintsova and Greenough,
1999). Subsequently, it has been demonstrated that many aspects of brain structure and function
can be modified by learning — including synaptic density, neural and glial cell size and ratio,
vascularization, dendritic branching, fMRI activation, and neurotransmitter concentration
(Black, et al., 1990; van Praag et al., 2000; Poldrack, 2000; Floyer-Lea et al., 2006). In some
cases, these gross changes in brain structure can be detected after as little as 10 days of training
(Kleim et al., 2007).

Recently, an adaptation of voxel-based morphology (VBM) has been introduced that attempts
to non-invasively measure longitudinal changes in gray matter density using MRI (Ashburner
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and Friston, 2000; Draganski et al., 2004). This within-group approach is statistically more
powerful and does not require the large number of subjects traditionally used in VBM studies.
Using this approach Draganski et al. (2004) reported a localized 3% increase in gray matter
density in MT after 3 months of juggling practice. Draganski et al. (2006) reported both
increases and decreases in gray matter density associated with 3 months of studying for a
medical exam. Most recently Ilg et al. (2008) reported gray matter and functional increases in
right occipital cortex associated with 2 weeks of mirror-reading practice.

Many criticisms of VBM have been published since its introduction. Bookstein (2001),
Davatzikos (2004) and Crum et al. (2003) are primarily concerned with the automated nonlinear
registration technique used by VBM and the potential problems in establishing functional
homology between groups. (See Ashburner and Friston (2001) for a rebuttal to some of these
issues.) Although these critiques are focused on between group studies, they illustrate that
relatively minor differences in brain anatomy or other initial conditions can have significant
effects on final results. While a difference in brain anatomy is not relevant in a longitudinal
design, sensitivity to initial conditions such as field inhomogeneities may prove problematic
for both cross-sectional and longitudinal studies.

VBM analysis has recently been applied to diffusion tensor MRI (DT-MRI) where authors
have also found reason to be skeptical of the reproducibility of the technique. Jones et al.
(2005) notes the large impact of different smoothing kernel sizes in the analysis of DT-MRI
data. They also note the lack of normality in the residual images hampering the ability to make
statistical inferences using parametric methods. Most recently, Jones et al. (2007) demonstrated
that ten different groups analyzing a common DT-MRI dataset using voxel-based methods
drew widely disparate conclusions. This current state of controversy limits the conclusions one
can draw from VBM-based results in isolation. Because of these controversies, it is critical to
demonstrate the reproducibility and convergence with other methods to establish the validity
of VBM-based results.

In this work we use longitudinal VBM in combination with fMRI to explore functional and
structural changes associated with learning a simple visual–motor task. In contrast to other
longitudinal VBM studies, subjects participated in both the control and the learning phase of
the experiment thus controlling for false positives due to group differences. Since each subject
serves as his or her own control, this within-group approach provides an opportunity to explore
the robustness and sensitivity of longitudinal VBM that is independent from the problems
inherent in establishing homology between groups. We also explore the consistency of
longitudinal VBM results by comparing its implementation in three different software
packages: SPM2, FSL, and SPM5. We hypothesized that the regions which show learning
related changes in functional activation should also demonstrate changes (either increases or
decreases) in gray matter density. We also hypothesized that these results should be consistent
across implementations of VBM.

Methods
Subjects

Twelve healthy, right-hand dominant subjects were included in this study. (mean age: 32.5
years, range: 23–40, 6 men, 6 women). All gave informed consent according to a protocol
approved by the NIH IRB. Five other subjects were excluded due to poor quality scans or
missing scan sessions. All of the subjects analyzed participated in both the control and learning
phases of the experiment.
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Training paradigm
The experimental paradigm is illustrated in Fig. 1. Subjects initially underwent a baseline
structural MRI scan (scan 1). After a two-week control period the subjects underwent a second
structural MRI (scan 2) as well as four fMRI scans during which they alternatively performed
the mirror task and the control task (Fig. 1). The control task required the subject to follow a
randomly moving white dot on the screen using a joystick held in the right hand. The mirror
task was identical to the control task except that the left–right axis of the joystick was reversed.
After scan 2, subjects were trained on the mirror task for a total of 2.5 h over 2 weeks (six 25-
minute training sessions). At the end of the training subjects received both structural and
functional MRI scans identical to those in scan 2. Eight subjects performed the experiment in
a continuous four-week block. Four subjects had an interval of 2 to 12 weeks (mean 44.5 days)
between the control and learning phase of the experiment. An extra scanning session was
conducted on these subjects at the beginning of the two-week learning phase to serve as a
baseline for the learning comparison. Thus, all comparisons on all subjects were over a two-
week period.

Scanning protocol
All scans were collected on a 3 T General Electric (GE, HDx 14M3) Scanner using a GE eight-
channel head coil. Structural scans consisted of two FSPGR scans (256 × 256, 124 slices, 0.85
× 0.85 × 1.2 mm voxels, TI = 400 ms, TE = ∼5 ms). Functional scans consisted of four axial
EPI time series (64 × 64, 38 slices, 3.2 × 3.2 × 3.2 mm voxels, TR = 2.5, TE = 30). Each of
the four 6-minute scans employed a block design of alternating 30-second periods of
performing one of the two tasks with 30 seconds of fixation. Order of task presentation was
counterbalanced across subjects.

Functional analyses
The first level of fMRI analysis combined like sessions and produced parameter estimates for
each subject's activation compared to baseline in each task. This was carried out using FEAT
(FMRI Expert Analysis Tool) Version 5.63, part of FSL (FMRIB's Software Library,
www.fmrib.ox.ac.uk/fsl). A second higher level analysis performed a paired T-test to compare
subject's activation before and after training. This was carried out using FLAME (FMRIB's
Local Analysis of Mixed Effects) stage 1 only (Beckmann et al., 2003, Woolrich et al.,
2004). Z-statistic images were thresholded using clusters determined by Z>3.5 and a
(corrected) cluster significance threshold of p = 0.05 (Worsley et al., 1992).

Structural analyses
Pre-processing—For each scanning session the two FSPGR images were rigidly aligned
using a motion-correction algorithm from either SPM2, FSL, or SPM5 and averaged together.
In order to correct for image inhomogeneities, intensity bias correction was performed on the
average images using four iterations of the N3 algorithm (MINC Tools, Sled et al., 1998).

SPM2—The SPM2 analysis was performed in Matlab 7.4 using the VBM2 toolbox (v1.07,
http://dbm.neuro.uni-jena.de/vbm/) which implements an optimized VBM pipeline
(Ashburner and Friston 2000; Good et al., 2001). The first scan of each subject was used as
the “baseline” to create a custom gray matter template. All structural scans for a given subject
were fed through the longitudinal analysis pipeline of the VBM2 toolbox such that the first
scan was used as the source for spatial normalization (piecewise linear). The analysis was also
repeated using the scan immediately before training as the baseline for the template and the
source for spatial normalization. A third iteration was performed using the subject's mean
image aligned to the halfway point between scans 1 and 2 as the baseline. The halfway point
was determined by taking the square root of the alignment transformation (rigid, 6 DOF)
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between scans 1 and 2. This manipulation has been previously utilized in other structural
analysis packages such as SIENA (Smith et al., 2002).

Note that for the longitudinal stream the VBM2 toolbox does not “modulate” images (i.e.
multiply by the Jacobian determinate, Good et al., 2001). Default options were used for hidden
Markov random field (HMRF) weighting, bias correction, cutoff spatial normalization,
nonlinear regularization, and number of nonlinear iterations. Normalized gray matter images
were smoothed using default settings: an 8 mm full-width half-max (FWHM) Gaussian kernel.
An absolute intensity threshold mask of 0.2 was used to remove regions with minimal grey
matter intensity. Pseudo paired T-tests were used to compare scan sessions one and two (the
control period) and two and three (the training period). Cluster-based inference in VBM is
complicated by the lack of stationarity or uniform smoothness (Worsley et al., 1999). Hayasaka
et al. (2004) prescribe either non-stationarity correction or permutation-based methods
(depending on degrees of freedom) in order to draw statistically valid inferences on VBM data.
Both methods are employed here using either the nS toolbox from Hayasaka et al. (2004) or
the SnPM3 toolbox from Nichols and Holmes (2002). For all analyses an uncorrected height
threshold of p<0.001 was applied and an extent threshold of p = 0.05, corrected across space.
A 1 mm FWHM variance smoothing kernel was used for non-parametric analyses. See
Supplemental Fig. 1 for a flowchart of steps.

FSL—FSL-VBM (http://www.fmrib.ox.ac.uk/fsl/fslvbm/, version 1.0) has not been
specifically designed for longitudinal analysis but can be employed for this purpose with a
simple modification to the processing stream. The pre-processed structural scans for all
scanning sessions for a given subject were first rigidly aligned to the first scan using FLIRT
and a mean image was created. The analysis was run a second time using the halfway point
between scans 1 and 2 as the baseline (see above). In both cases, the default settings for FLIRT's
3D rigid body alignment were used (6 DOF) which includes a trilinear interpolation algorithm.
The average images were brain-extracted using BET (Smith 2002). Next, tissue-type
segmentation was carried out on the subject mean image using FAST (Zhang et al., 2001). The
resulting gray-matter partial volume images were then aligned to MNI152 standard space using
the affine registration of the IRTK (Rueckert et al., 1999, www.doc.ic.ac.uk/∼dr/software).
The resulting images were averaged to create a study-specific template. The brain-extraction
and segmentation steps were then repeated on the rigidly aligned structural scans from each
scanning session. The segmented native gray matter images were then non-linearly registered
to the template using the transformations calculated from the averaged images. The segmented
images were then smoothed with an isotropic Gaussian kernel with a sigma of 3.5 mm
(analogous to an 8 mm FWHM). Paired T-tests were used to compare scan sessions one and
two (the control period) and two and three (the training period). Permutation-based, non-
parametric testing was used (Randomise, http://www.fmrib.ox.ac.uk/fsl/randomise/, version
2.0 and 2.1, see Results), with a height threshold of p<0.001 and testing clusters for significance
at p<0.05, corrected for multiple comparisons across space. A 0.35 intensity threshold mask
was chosen to create a mask similar in size and shape to the SPM2 mask and a 1 mm FWHM
variance smoothing kernel was used. See Supplemental Fig. 2 for a flowchart of steps.

SPM5—The SPM5 analysis was performed using the VBM5 toolbox (v1.15,
http://dbm.neuro.uni-jena.de/vbm/). The unified segmentation algorithm in SPM5 warps
template images into the space of the image to be segmented so no custom template is needed.
As in the SPM2 and FSL analyses, spatial normalization was estimated using either the baseline
scan or a subject mean image aligned to the halfway point between scans 1 and 2. This nonlinear
spatial normalization was then applied to the segmented grey matter images. Defaults were
used for all toolbox options. SnPM5 was used for permutation-based non-parametric testing
forming clusters at p<0.001 and testing clusters for significance at p<0.05, corrected for
multiple comparisons across space. An absolute intensity threshold mask of 0.2 and a 1 mm
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FWHM variance smoothing kernel were used. All results reported are corrected on the cluster
level. See Supplemental Fig. 3 for a flowchart of steps.

Results
Behavior

Performance on the tracking task was measured by the average distance of the joystick cursor
from the randomly moving dot during the six-minute scans. For the mirror-tracking task, a
paired T-test comparing average distance before and after training showed a significant
decrease (p<0.0001). For the normal tracking task there was no significant difference in cursor
distance before and after training (p = 0.52, Fig. 2).

Functional results (fMRI)
Comparing functional scans associated with performance of the mirror-tracking task before
and after training showed several clusters of increased and decreased activation (Fig. 3 and
Table 1). The areas showing decreased activation included the middle frontal gyrus and a large
expanse of parietal cortex extending from precuneus to lateral parietal cortex. These regions
have been implicated in visual tracking tasks and mental rotation, respectively (Luna et al.,
1998;Cohen et al., 1996). Increased activity was seen in the medial frontal cortex and cingulate
cortex. These areas fall within the “default” or “resting state” network. Regions in this network
commonly show decreased activation during difficult tasks and a relative increase in activation
or no change during rest or simple tasks (Supplementary Fig. 4;Raichle et al., 2001). This is
consistent with our results as these regions showed greater decreases in activation relative to
baseline before training than after.

Structural results (VBM)
In the first run of the SPM2 analysis in which we used the baseline scan as the source for spatial
normalization, we found no significant increases or decreases in gray matter density during the
control period. During the learning period, one cluster of increased gray matter density was
found on the ventro-medial edge of primary visual cortex in the left hemisphere (Fig. 4A).
Another small cluster of decreased grey matter was found in the right pre-central gyrus. In the
second run of the SPM2 analysis in which we used the pre-training scan as the source for spatial
normalization, a small cluster of increased grey matter density was found in the right medial
frontal gyrus during the control period (Fig. 4B). During the learning period, one cluster of
decreased grey matter density was found in the left cerebellum.

The variability of our results depending on which scan was used as the source of spatial
normalization and the presence of a significant cluster in the control period led us to re-examine
the analysis pipeline used here and in other published longitudinal VBM studies (see
Discussion). We hypothesized that using any one of the scans as the target of the rigid alignment
and the source of the spatial normalization could bias the segmentation results of that scan. We
attempted to address this potential confound by aligning to the halfway point between scans 1
and 2 by taking the square root of the alignment transformation matrix. Using this method no
significant clusters of grey matter change were found during the control or training period (Fig.
4C).

We also noted that the non-stationarity correction method of statistical inference has been
demonstrated to be anticonservative for degrees of freedom less than 30 as is the case here
(Hayasaka et al., 2004). Hayasaka et al. recommend the use of permutation-based methods for
analyses with relatively small degrees of freedom. Therefore, we re-ran the analysis using
SnPM3 for statistical inference. Using this method resulted in no significant clusters of grey
matter change regardless of which alignment technique was used.
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A very similar pattern of results was found in the FSL-VBM analysis. We began by using the
initial scan as the target of the rigid alignment and the source of the spatial normalization. In
this analysis we found three clusters of decreased gray matter density and two clusters of
increased gray matter density during the control period (Fig. 5A). During the training period
five clusters of decreased gray matter were found. Re-running the analysis using the halfway
alignment technique resulted in no significant clusters of grey matter change during the control
period and a single small cluster of decreased grey matter density on the inferior edge of right
temporal cortex (Fig. 5B).

Although all FSL-VBM analyses are conducted using permutation-based methods for
statistical inference, FSL's “Randomise” program was recently updated to change the method
of dealing with confounds in permutation. The method previously used was demonstrated to
be very anticonservative (Nichols et al., 2008). Using this updated version of Randomise (2.1)
no significant clusters were found in either condition (Fig. 5C).

In the SPM5 analysis no significant clusters of grey matter change were found in either
condition regardless of whether scans were aligned to the initial scan or to a halfway point.

Discussion
In this study we have explored longitudinal structural changes as measured by VBM and some
of the potential pitfalls in the analyses of these data. Our approach to this question is unique
in that we have used the same pool of subjects for both the control and learning phase of the
experiment. Contrary to previously published studies, we found no statistically significant grey
matter changes associated with 2 weeks of training on a visuo-motor task even though
significant changes were found in fMRI activation and behavioral performance. We have
suggested modifications to the structural analysis stream used in previously published
longitudinal VBM studies. We have also carried out the longitudinal analyses using three
different software packages to evaluate the consistency of the structural results.

Initial analyses in both SPM2 and FSL revealed clusters in both learning and control conditions
that were ultimately determined to be artifactual. These clusters were determined to be due to
two factors. First by aligning all scan sessions to the initial baseline scan a difference in
interpolation is introduced, biasing the comparison. Scans that were interpolated are slightly
smoothed before segmentation while the baseline scan is not. This leads to artificial differences
in apparent grey matter density. When scans were aligned to a halfway point between the first
two scans no significant clusters were found. Secondly, the non-stationarity correction method
of statistical inference used in SPM2 is anticonservative for analyses in which the degrees of
freedom are less than thirty (Hayasaka et al., 2004). Performing the analysis using permutation-
based methods in SPM2 resulted in no significant clusters of grey matter change. Also, version
2.0 of FSL's permutation tool, Randomise, used an anticonservative method of handling
confounds (Nichols et al., 2008). The corrected method used in Randomise 2.1 results in no
significant clusters of grey matter change.

Analysis of the change in BOLD signal with training revealed several regions of decreased
activity with learning including inferior parietal, precuneus, middle cingulate cortex, and
bilateral middle frontal gyrus as well as several regions of increased activity including the
medial frontal cortex. The large cluster spanning parietal and precuneus has been implicated
in tasks involving spatial transformations while the middle cingulate cortex has been associated
with response inhibition (Cohen et al., 1996; Ridderinkhof et al., 2004). Training on the mirror-
tracking task enhances both of these skills. The changes in the activation of the middle frontal
cortical areas are possibly related to the motor transformations required for inverting the
movement of the joystick. Although our results on fMRI changes related to learning are
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statistically strong, they are challenging to interpret due to potential changes in the subjects'
strategy or changes in the relative difficulty of the task. Most fMRI studies of learning suffer
from similar difficulties (Poldrack, 2000).

The central goal of this study was to determine if functional and structural measures of plasticity
overlapped. We also sought to determine whether structural measures of plasticity were
consistent across VBM implementations. Ultimately no significant structural changes were
found, however it is still important to note there are significant differences in currently available
longitudinal VBM implementations which are illustrated in the processing flow charts in
Supplementary Figs. 1–3. Note that SPM2 performs the segmentation step after the brain has
been spatially normalized whereas SPM5 and FSL perform segmentation in the subject's native
space. However we believe the most important source of variance is the segmentation itself.
Fig. 6 shows the segmented gray matter images and cumulative image histograms from a single
subject using each of the three packages. The SPM2 segmented image differs from the others
in that a much higher proportion of voxels are classified as 100% gray matter density. The FSL
segmentation classifies voxel more continuously between 0 and 100% grey matter. In the SPM5
segmentation, the distribution of grey matter density appears to lie somewhere between the
sharp distinction of SPM2 and the more gradual curve of FSL. Note that SPM5 uses the “grand
unified segmentation” algorithm that does not rely on study-specific templates (Ashburner and
Friston, 2005).

Our results also demonstrated that interpolation related to the rigid alignment step had
significant effects on the final results. Interestingly, the histograms in Fig. 6 change very little
when they are generated using volumes that were rigidly aligned and interpolated. This
illustrates the point that the interpolation does not globally bias the grey matter density in one
direction or the other. Rather, at different locations within the volume, artifactual focal changes
in grey matter may be introduced in an unpredictable way. The changes balance each other out
when averaged over the whole volume, but when an interpolated volume is compared against
one that is not interpolated, false positives may be detected.

Currently all published longitudinal VBM studies of which we are aware have used the SPM2
pipeline (Draganski et al., 2004, 2006; May et al., 2007; Boyke et al., 2008; Ilg et al., 2008;
Driemeyer et al., 2008). In the analyses we performed we have made several small but
significant changes from the processing stream of these studies. First, rather than aligning each
scan to the initial scan, we align to a halfway point between the two scans being compared.
Note that this point is significant regardless of whether subjects are used as their own controls
or a separate group of controls is used. Second, we used non-parametric methods for all
statistical testing and multiple comparison correction as the non-stationarity correction method
has been demonstrated as anticonservative for analyses with relatively small degrees of
freedom (Hayasaka et al., 2004). We have demonstrated that these changes have a significant
effect on the ultimate results across different software packages. This provides an important
demonstration of the point made by Ridgway et al. (2008) that very detailed explanations of
VBM method are required for experiments to be replicable.

It should be emphasized that the animal literature leaves little doubt that it is possible for the
mammalian brain to undergo large scale changes in its structure (cortical thickness, synaptic
and capillary density, etc.) on a time scale of days to weeks (Klintsova and Greenough,
1999). Most of these studies have used histological techniques to measure these changes,
though some imaging work has been conducted measuring changes in cortical vascular in rats
in response to exercise (Pereira et al., 2007; Swain et al., 2003). Thus despite the
methodological concerns we have raised here, previously published studies may have provided
more favorable conditions for detecting grey matter changes. Several of these studies were
conducted on larger groups of subjects and employed longer periods of training that may have
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resulted in more dramatic grey matter changes. Nonetheless the contrary findings reported here
and the demonstrated susceptibility of longitudinal VBM to false positives warrants a more
careful examination of these methods. The development of a standard and robust method of
investigating within-subject structural brain change remains an important challenge.

In an effort to help produce such a standard, all of the raw data used in this experiment will be
made available on the SUMS database at Washington University (Dickson et al., 2001;
http://sumsdb.wustl.edu/sums/directory.do?id=6694686). We encourage other researchers to
download these data and reanalyze them with novel methods. It is possible that multivariate
analysis techniques may prove more sensitive than traditional univariate analysis. Some of
these methods have already been employed on cross-sectional VBM data (Kloppel et al.,
2008; Kawasaki et al., 2007). Future studies might employ focused, higher resolution scanning
or more targeted pulse sequences to obtain a more detailed picture of underlying changes
(Swain et al., 2003; van der Kouwe et al., 2008). We are confident that these techniques in
combination with rigorous statistical controls will one day make in vivo measurement of human
brain structure possible, opening up an entirely new technique in the study of learning and
memory.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Subjects initially underwent a baseline structural MRI scan (scan 1). After a two-week control
period the subjects underwent a second structural MRI scan (scan 2) as well as four fMRI scans
during which they alternated performing the mirror task and the control task. The control
task required the subject to follow a randomly moving white dot on the screen using a joystick
held in the right hand. The mirror task was identical to the control task except that the left–
right axis of the joystick is reversed. After scan 2, subjects were trained on the mirror task for
a total of 2.5 h over 2 weeks (six 25-minute training sessions). At the end of the training subjects
received both structural and functional MRI scans identical to scan 2.
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Fig. 2.
All subjects significantly improved on the mirror-tracking task as measured by average distance
of the joystick cursor from the tracking dot (paired T-test, p<0.0001). For the normal tracking
task there was no significant difference in cursor distance before and after training (p = 0.52).
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Fig. 3.
Clusters of increased and decreased activation after training on the mirror-tracking task. Z-
stats of increased activity are shown in red and decreased activity in blue. Areas of decreased
activity include task specific regions such as the middle frontal gyrus and posterior parietal
cortex. Increased functional activity occurred primarily in the medial frontal cortex which has
been implicated in response inhibition and the resting state network. Clusters are overlaid on
the MNI152. See Table 1 for a list of all clusters.
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Fig. 4.
Maximum intensity projections of gray matter increases (red) and decreases (blue) found in
the SPM2 VBM analyses. Background image is the MNI152 3D rendered in AFNI (Cox,
1996). Clusters of grey matter changes found with scans aligned to the baseline session (A)
were not consistent with clusters found when scans were aligned to the pre-training session
(B). (C) When scans were aligned to a halfway point between the two scans no structural
changes were found. See Supplemental Table 1 for a list of areas and coordinates.
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Fig. 5.
Maximum intensity projection of regions of gray matter change in the FSL-VBM analyses.
Clusters of grey matter change found when scans were aligned to the first session (A) were not
found when scans were aligned to a halfway point between scans 1 and 2 (B). C) Corrections
to the FSL permutation procedure eliminated all significant clusters of grey matter change. See
Supplemental Table 1 for a list of areas and coordinates.
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Fig. 6.
Comparison of a single subject's segmented gray matter images between FSL, SPM2 and
SPM5. The line graph shows cumulative percentage of pixels as a function of voxel intensity.
SPM2 produces a segmented image with a harder edge and many more voxels assigned to an
intensity value of 1 (i.e. 100% gray matter). The FSL (FAST) segmentation produces a more
uniform distribution of intensity values with softer edges. SPM5 falls between these two
extremes. Virtually identical histograms were produced when the source images were rigidly
aligned and interpolated.
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