
[15:30 6/10/2010 Bioinformatics-btq515.tex] Page: 2776 2776–2777

BIOINFORMATICS APPLICATIONS NOTE Vol. 26 no. 21 2010, pages 2776–2777
doi:10.1093/bioinformatics/btq515

Genome analysis Advance Access publication October 5, 2010

CopyMap: localization and calling of copy number variation by
joint analysis of hybridization data from multiple individuals
Sebastian Zöllner
Department of Biostatistics, Department of Psychiatry, University of Michigan, 1420 Washington Heights, Ann Arbor,
MI 48109, USA
Associate Editor: Dmitrij Frishman

ABSTRACT

Summary: The program package CopyMap identifies copy number
variation from oligo-hybridization and CGH data. Using a time-
dependent hidden Markov model to combine evidence of copy
number variants (CNVs) across multiple carriers, CopyMap is
substantially more accurate than standard hidden Markov methods
in identifying CNVs and calling CNV-carriers. Moreover, CopyMap
provides more precise estimates of CNV-boundaries.
Availability: The C-source code and detailed documentation for the
program CopyMap is available on the Internet at http://www.sph.
umich.edu/csg/szoellner/
Contact: szoellne@umich.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Copy number variants (CNVs) are segments of the genome that
exist in different copy numbers in the population. About 90% of
CNVs have two allelic states (McCarroll et al., 2008), the remaining
10% have multiple states. As CNVs encompass genes as well as
non-coding DNA, they are good candidates for functional variation
(Conrad et al., 2010). Commonly used method for identifying
copy number variable sites are Representational Oligonucleotide
Microarray Analysis (Lucito et al., 2003), Agilent competitive
genomic hybridization (CGH) (Barrett et al., 2004) and tiling
arrays (Geigl et al., 2009). These methods interrogate DNA using
a dense set of probes covering the non-repetitive regions of the
genome. However, the resolution of each individual probe is usually
low. As CNVs often extend over multiple probes, resolution is
improved by combining information across neighboring probes.
Hidden Markov model (HMM) methods are among the most
commonly applied tools to analyze such data. First proposed by
Fridlyand et al. (2004), these methods exploit the local correlation of
trait status and are computationally highly efficient. More complex
versions of these algorithms specifically designed for CNVs have
since been developed (Yin et al., 2010) and applied to large
datasets (Conrad et al., 2010). However, most HMM algorithms
analyze datasets one individual at a time. Thus, CNVs that are
shared among individuals are only identified after comparing CNV
calls between individuals. Conceptually, this approach has two
disadvantages: first, no detection power is gained by the fact that
multiple individuals carry the same CNV. In most regions of the

genome, CNVs are rare or absent and therefore models assign a
low probability of transitioning into the CNV state. However, at
a locus known to have variable copy number in one individual,
the probability that another individual has a variant copy number
at the same locus should be higher. Jointly analyzing individuals
results in a higher detection rate. Secondly, each time a CNV is
identified, its borders will be estimated independently of all other
individuals. Jointly estimating the borders from all carriers results
in a more efficient use of information. This idea has been applied in
several recent methods for mapping CNVs in selected regions from
genotyping data (Korn et al., 2008; Zöllner and Teslovich, 2009;
Zöllner et al., 2009).

I present the program CopyMap, an alternative HMM method
for CNV detection and CNV calling that jointly analyzes genome-
wide data for all individuals in a sample. CopyMap is specifically
designed for hybridization arrays, but it can also be applied to single
nucleotide polymorphism genotyping arrays.

2 DESCRIPTION
CopyMap models a hidden Markov process, where the copy number
at each probe has one of three hidden states (baseline, duplication
and deletion) and the hybridization intensity of that probe is the
observed signal. The program uses an expectation maximization-
algorithm similar to the classical Baum–Welch algorithm to infer
the location of CNVs. CopyMap has two novel features.

Location-dependent transition rates: uniform transition rates used
by classic HMMs model each locus in the genome to be equally
likely as a starting and end point of a CNV. CopyMap models
the process of generating CNVs in the sample as a time-dependent
Markov process and each individual in the sample as a realization
of this process. The rate of transitioning into CNV state is estimated
between every consecutive pair of probes jointly from all individuals
and can be considered as the population frequency of a CNV starting
at that locus. Hence, regions that show evidence for CNVs in some
individuals will be identified by a higher transition rate from the
baseline to the CNV state, combining the evidence for that region
to be copy variable across all individuals.

Markov-k process: individual probes of most arrays do not provide
sufficient information to call CNVs and short inferred CNVs are
often false positives. Therefore, it is a common practice to filter all
called CNVs, removing CNVs spanning less than k probes, with k
between 5 and 10. These filters are usually applied post hoc after all
modeling parameters were estimated. Hence, parameter estimates
are including likely false signals. In contrast, I allow the user to
initially set a minimum length k for CNV. Implementing a Markov-k
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Fig. 1. Comparison of CopyMap and classical HMM algorithms. The
horizontal axis shows the difference in signal strength δ between the CNV-
probes and probes with baseline copy number. I simulated a total of
100 CNVs. The vertical axis displays the number of CNVs detected using
CopyMap (CM, red line) and using a classic HMM (HMM, orange line).
It also shows the number of false CNVs detected (blue and grey line).

model, the transition probabilities depend on the last k states rather
than just on the present state. By restricting the transition matrix,
the computation time for this process is designed to be linear with k,
rather than quadratic as typical Markov-k models.

The program implements two methods for calling CNVs. Either
a Viterbi algorithm or a heuristic to identify regions with high
overall evidence for variable copy number and to then estimate the
posterior probability for copy number for each individual in that
region. Technical details of this algorithm are described elsewhere
(Henrichsen et al., 2009; She et al., 2008).

3 EVALUATION
CopyMap has been applied to several large studies, reporting error
rates between 95% (She et al., 2008) and 67% (Henrichsen et al.,
2009). To highlight the conceptual advantages of the algorithm,
I compared the performance of CopyMap with our implementation
of an HMM as proposed by Fridlyand et al. (2004) by simulating
a dataset of 10 CNVs with minor allele frequency 0.1 in a sample
of 100 individuals; each CNV was equally likely to be a deletion
or a duplication. Individuals were assessed by 10 000 consecutive
probes. I assumed the intensity of probes was normally distributed
and the mean intensity of probes covered by a CNV was shifted by
δ=0.5−2.5 SDs. I further assumed that the distributions of intensity
were known, so these results represent a best-case scenario (See
Supplementary online appendix for simulation details). Analyzing
each dataset required ∼1 min with HMM and ∼8.5 min with
CopyMap on a single 2.33 GHz processor. For intermediate values
of delta between 1 and 2, CopyMap is able to detect substantially
more CNVs than HMM (Fig. 1). For δ=1.5 CopyMap detects 76
of the 100 simulated CNVs, compared to 37 detected by HMM.

Both algorithms have comparable numbers of false discoveries;
CopyMap has 3–11 false discoveries while HMM has 0–11.

I compared the inferred boundaries of the CNV with the true
boundaries by calculating the boundary error. A boundary error
of 1 indicates that either the start or the endpoint of the CNV
was miscalled by one probe. CopyMap generates substantially more
precise boundary calls for all values of δ (Supplementary Fig. 1S);
for δ>1.25 the average boundary error is <1. Even for signal
intensities where both HMM and CopyMap have high power to
detect CNVs (δ≥2), CopyMap provides more precise estimates of
each CNV’s position.

4 CONCLUSIONS
CopyMap is a computationally efficient command line-driven
C-program that can be easily run on modern parallel cluster
architecture. By combining evidence across multiple individuals,
it has increased power to detect CNVs and it has higher
resolution to infer CNV boundaries. The source code and exten-
sive documentation is available at http://www.sph.umich.edu/csg/
zollner/software/.
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