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Abstract
Molecular dynamics simulations have become increasingly useful in studying biological systems of
biomedical interest, and not just in the study of model or toy systems. In this article, the methods and
principles of all-atom molecular dynamics will be elucidated with several examples provided of their
utility to investigators interested on drug discovery.

Introduction
Molecular dynamics simulations of proteins were initially developed in the early 1980's [1] to
harness the emerging power of computers to study the motions of proteins and other
biopolymers. Molecular dynamics simulations with a wide-variety of different approximations,
have been particularly successful in studying the protein folding problem, for example [2,3],
and the impact of protein motions on catalysis and ligand binding [4,5]. These latter studies
have been particularly influential as they have required considerable discussion of the interplay
of conformational change, such as changes in active site geometries in DHFR [4] or metallo-
beta-lactamases [5], and coupled protein fluctuations [4,6], which show that within a single
protein conformation, long-range coupling networks exist and are sensitive to interactions with
different ligands.

These two types of protein dynamics, both of which are thermodynamic in nature, changes in
protein conformations, and coupled fluctuations, are the two types of dynamics that are most
amenable to study by molecular dynamics simulations, and have become particularly relevant
to pharmacology with the development of the concept generalized allostery [7]. This seminal
generalization of the classic notion of allostery suggests that virtually all proteins are allosteric
in some sense; either due to coupling of conformational changes or due to long-range
communication between parts of proteins or protein complexes, and that this allostery can be
exploited in the drug-discovery process [7,8]

Basics of Molecular Dynamics Simulations: Structure, Forcefield and
Simulation Suite

Classical all-atom molecular dynamics simulations start simple as simulations where
Newtonian equation of motions are solved for each atom in the system, and the basics are well-
covered in advanced textbooks [9]. These simulations require only three items : initial
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coordinates, a potential, and algorithms for propagation. The initial coordinates can be obtained
from experimental structures, or from models, or some combination thereof. Systematic studies
of the effects of using different sources are rare; a typical solution is to use the best structure
available and to compare predictions from simulations with predictions from experiments, such
as by comparing NMR order parameters [6,10] or, especially when the initial coordinates
involve some model-building, to determine if residues predicted to mediate some functionally
important interaction actually affect function when those residues are mutated and the function
assayed [11]. The potential is obtained from a force field along with the coordinates.
Conceptually, a force field is simple; a parameterization of the energy surface of the protein.
However, given the complexity of the details of protein structure, protein force fields are
divided into multiple terms, built up from model-systems and transferability is assumed. Not
surprisingly, given that there are many different ways to develop model-systems and to
parameterize potential energy surfaces, there are many different force field models. The most
common currently used are the include the latest CHARMM [12] AMBER, [13] and
GROMACS [14] force fields. These force fields, which are associated with particular modeling
suites, have been used to simulate a wide-variety of macromolecules. There is little consensus
to suggest that one is preferable over the others for protein simulations, and often simulations
performed on the same structure with different force fields generate consistent results, for
example [15;5,6]

The choice of forcefield is therefore usually a combination of personal preference and choice
of molecular simulation suite. The four most commonly used simulation suites are the
CHARMM [16], AMBER [17], GROMACS [18] and NAMD [19] suites. These packages
share common basic features, but vary in their capacities, and underlying philosophies.
CHARMM at one extreme is a very complete modeling program that requires mastery of a
fairly complex scripting language, but within which one can conduct a wide-variety of
simulations and perform the widest variety of simulation analyses. However, this flexibility
comes at a cost; a steep learning curve, although there is an ongoing attempt to alievate this
with a GUI [28], and poorer parallel performance then, for example, NAMD. NAMD is in
many ways the opposite of CHARMM in usability; it has a much simpler scripting language
and reduced functionally. However, the reduction in functionally is in analysis and simulation
methods, but does contain the simulation methods needed for classical all-atom simulations.
Of the four packages, NAMD is the most capable of performing large classical all-atom
simulations, and has been used to perform simulate particularly large proteins and protein-
complexes, for examples [8,21,22,23]. GROMACS and AMBER are closer to NAMD in scope
and complexity, with GROMACS not using a scripting language, and possessing a large
number of external tools for trajectory analysis. Gromacs has the advantage of being the only
one of these four that is open-source.

Parameters and Solvation in Molecular Dynamics Simulations
The next crucial step in using all-atom molecular dynamics is to decide upon a solvent model;
two typical choices are between a Generalized Born implicit solvent model (GB) and explicit
solvent model. The second-generation of the GB models [24,25,26], which can be found in
both CHARMM and AMBER, have shown great promise and application over the past several
years [27-31], and are under active development [32,33]. These models have two key features:
1) the use of a semi-empirical potential which approximates the interaction between two
charges within a protein (or more precisely two charges in a single dielectric material embedded
within another dielectric) by extrapolating between two exact forms: the infinity-separated ion
pair and the unified ion, and 2) approximating the Born radius, i.e., the energy of placing a
single charge in a dielectric-embedded in water. Both approximations have been under active
development by attempting to best approximate solutions, at least numerically to the Possion-
Boltzmann equation [24,26,33-35]. The use of these approximations allows for longer
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simulations due to reduced computational need; there is no explicit computations of the
dynamics of water molecules.

Despite the great promise of the latest generation GB models, there has been no systematic
study of the influence of using an implicit solvent model on protein dynamics and there have
been indicates that the GB models are still lacking the accuracy needed for precise analysis of
conformations, especially of protein complexes [36-38].

The simplest and most common solvent model used is explicit solvation; in which the water
molecules and counterions are explicitly-represented in the forcefield. This model can be built,
for exampke, using VMD's [http://www.ks.uiuc.edu/Research/vmd/plugins/] solvate and
autoionize packages. The current “gold-standard” simulation protocol would be to then use a
constant-pressure and temperature algorithm, particle mesh ewald and images; all of which are
defaults in standard publically-avaliable NAMD scripts
(http://www.ks.uiuc.edu/Training/Tutorials/), for example. This combinations models the
protein-water-ion systems a periodic system in which the long-range electrostatics are
calculated on a grid with fourier transforms and where the pressure and temperature are kept
approximately constant with a thermostat and a barostat.

Analysis of Molecular Dynamics Simulations
With modern computers and modern algorithms, moderately-large complexes can be simulated
for tens of nanoseconds in full atomic detail; for example, ten million time steps (20ns) of a
151940 atom system consisting of two proteins with 1829 amino acids, a strand of DNA with
water molecules and counterions can readily be simulated in five weeks on 6 quad-core Intel
2.4GHz processors using NAMD and the CHARMM27 forcefield [unpublished work]. Such
a simulation would result in up to 10 million distinct protein conformations for analysis; though
since saving all those conformations would require ∼17TB of disk space, a common approach
is to save every 100th conformation and then to remove the water and counterions as
uninteresting; so that the number of conformations (100,000) is more manageable and the disk
space demands are more reasonable (∼34GB). The sheer number of conformations that can be
sampled with modern computers and algorithms require increasingly sophisticated methods
for analysis. These methods can generally be divided up into four types: 1) gross measures of
protein and simulation stability, 2) clustering analysis, 3) quasiharmonic and principal
component analysis, and 4) correlation function analysis.

The first, gross measures of protein and simulation stability, are used to check the simulation
integrity and estimate the equilibration timescale of the simulation; such as 1) calculations of
root-mean-square-deviation (RMSD) to quantitate how much the protein has changed, or how
much the protein conformations vary during the course of the simulation, 2) calculations of
average temperature and pressure and their fluctuations during the simulation to determine if
the simulation is physically-realistic or if some error has occurred during the simulations, likely
in the setup. These measures are standard and otherwise uninteresting for dynamics analysis.

Clustering analysis is commonly used to discover protein conformations in protein simulations,
for example [39]. Clustering analysis is most commonly done with respect to coordinate
RMSD, though can be done with other measures to such as in phi/psi space, The RMSD of
each conformation relative to another is calculated, so that for a full simulation as discussed
above would require the calculation of nearly 50 million RMSDs, which could easily require
more computer time than the original simulation. Though not all degrees of freedom need be
including a clustering analysis, for example, only a binding site could be included and the rest
of the protein disregarded, or only a subset of conformations could be examined, say every
1000th structure. The resulting matrix of RMSD is then used to divide the conformations into
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disjoint groups using either a k-means or hierarchical process. In a k-means approach, a specific
radius is specified so that, for example, all conformations within 1 Angstrom are clustered
together. Whereas, in the hierarchical approach, the entire set of conformations is divided into
groups, and then each group is subdivided and so on until a specified stopping criteria is met;
such as when the number of clusters reaches a certain predefined number [40,41].

The result of either clustering analysis is a set of clusters, perhaps arranged hierarchically, with
populations associated to each cluster and with each conformation identified to a specific
cluster. In principal, the specific populations could be used to estimate free-energy differences
between different conformations by estimating Boltzmann weights, but this is rarely done as
in both approaches clustering analysis is somewhat ad hoc, and different, equally valid, choices
of clustering can result in different clusters. Furthermore, there is also the question of how to
best represent the cluster; the center structure is commonly used to as a best approximation of
the conformations contained within a specific cluster as opposed to the average structure in the
cluster to ensure that the cluster representative is a physically-reasonable structure. While
clustering analysis represents the current standard method of identifying specific protein
conformations, it is indeed lacking, and development of more rigorous and less ad-hoc methods
of conformational analysis remain a challenge for the field.

Clustering is one method of reducing the size of the problem of conformational analysis by
partitioning the conformations sampled into disjoint sets, other methods can address this
problem not by reducing the conformations sampled but by reducing the number of degrees of
freedom. Two such methods include principal components analysis and quasiharmonic
analysis, both of which are used to select the “most-important” dynamical modes of the system
[42,43]. While these methods do not address the issue of identification of specific
conformations, instead they address of issue of what are the most important motions of the
protein, a useful complement.

In principal-component analysis, a matrix of atomic fluctuations is first constructed, and then
this matrix is diagonalized to find obtain modes; linear-combinations of atomic fluctuations
that account for the fluctuations observed in the system. While consideration of all the modes
are necessary to account for all the fluctuations, the lowest modes typically account for most
of the fluctuations, allowing for a possible reduction in the number of degrees of freedom that
need be considered. [42] Quasiharmonic analysis is virtually identical except for mass-
weighting, which results in obtaining exact normal modes when the system is purely harmonic.
[43] Although since force-fields are highly non-harmonic, there appears to be no real reason
to prefer quasiharmonic analysis over principal component analysis.

Correlations functions, in general, are simply a measure of how correlated two fluctuating
quantities are over time, see for example [9]. While there are many different types of correlation
functions that can be constructed, the most common types are bond-vector correlations and
correlations of atomic fluctuations. Bond-vector correlations can be used to calculate NMR
order parameters for quantitative comparison to experiments and characterizations of internal
motions of proteins [10], whereas correlations of atomic fluctuations are used to quantify the
correlations of motions of different residues in a protein, such as in [4,6]. A correlation function
is a time-series and a full set of correlation functions would have a time-series for each unique
residue pair in a protein. This is a wealth of detailed information about the time-evolution of
the protein, however, due to difficulty in analyizing such a large quantity of data, usually plots
are made of the first time-point of each atomic correlation function, resulting in a correlated
motion (or more properly a correlated fluctuation) matrix. [4,6] Such a matrix will demonstrate
whether distant parts of proteins, or protein complexes, move together, and increasingly more
and more proteins have been shown to exhibit such highly non-local coupled motions. [4,6,
23,39]
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Examples relevant to Pharamcology
Depending on the questions posed via different types of analysis and the simulations performed
molecular dynamics simulations may be useful in pharmacology in a variety of cases. One case
would be enabling the analysis of communication within proteins and protein-complexes [6,
10,23,44-46] with a future aim of enabling the development of drugs that might disrupt such
communication. Another case lies in analysis of the effects of known ligands on protein
dynamics; these studies help to elucidate the effects of ligand binding and can also provide a
cautionary note for structure-based drug design [10,47]. A third case is when molecular
dynamics simulations of can model protein conformations associated with specific cellular
function to enable the discovery of conformationally-selective ligands [11,48,49]

Analysis of these communication with proteins, but several studies have attempted to analyze
protein communication in detail by either linking correlated-motion matrices to functionally-
relevant fluctuating properties [45], or by mapping changes in correlated - motion matrices,
due to ligand-binding for example, onto structures [10,46], or by combining correlated motions
with information from sequence alignment analysis [23]. These are all potentially powerful
methods of merging functional or structural information with measures of dynamics, but have
yet to be studied systematically. Although there has been a recent attempt to classify
communication within proteins [44], which has the potential to lay the foundation for a general
theory.

In one example of the combining functionally-relevant information with measures of protein
dynamics [45], molecular dynamics simulations were combined with pKa calculations of an
activated cysteine in the active sites of a protein homodimer. The shifting of the pKa was known
to be critical to activity of this protein. The combined calculations showed that despite the
presence of two active sites in the homodimer, that the cysteine residues were dynamically
asymmetric; so that only one cysteine pKa was lowered at any point in time. Although over a
time-average, the monomers were nearly identical. The question of how the two active sites
were coupled arose immediately; what communicated the states of the active sites to one
another?

A pathway analysis method was developed to answer this question, and to find pathways of
connected and coupled residues more generally. First, paths of connected residues -- residues
close enough to interact -- were identified that connected the two activated cysteine; many such
paths exist. Second, paths were found were each residue's psi or phi angle fluctuations
correlated significantly with the difference in the active site pKas. The result was that two paths
were found that coupled the two active sites together; pathways where the backbone dihedrals
fluctuated with the different pKa states of the active sites predicting what residues controlled
the communication between the different active sites.

In another study [23], simulations where combined in the study of a large protein/tRNA
complex; the MetRS/tRNA complex. In this protein complex, communication occurs between
two different protein domains that are well-separated in space (∼7nm). Molecular dynamics
simulations enabled the determination of the correlated motions between the residues in the
MetRS protein. When combined with a network analysis on the simulated structures pathways
of communication between the activation site and the anticodon recognition site were found.
The detailed paths of communication were found to be consistent with experimental results on
mutation in the MetRS/tRNA complex.

Several different studies have mapped correlated motions, and their perturbations due to
mutation [50] or ligand-binding onto structures to link structural and thermodynamic changes
[6,47]. The ligand-binding studies are more relevant here, and these two recent exhaustive
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studies [6,47] have addressed questions relevant to the emergence of drug resistance. The first
[6] study examined the effects of a suicide-inhibitor on the dynamics and structure of a metallo-
beta-lactamase. These enzymes are involved enabling certain bacteria to become resistant to
penicillins, and so have attracted interest as drug targets. Multiple NMR and molecular
dynamics studies have been conducted on the enzyme from B. fragillis in particular, which is
particularly interesting in that it has a active site with two zincs, a flexible loop that has been
shown to fold onto the active site, and a deformable second loop that appears to change
conformation upon binding. A consistent picture of structural changes upon binding has
emerged from the NMR and molecular dynamics simulations [5,6,51] despite the simulations
using different program suites, and different force fields including rather different models for
the zinc coordination. In this picture, the flexible loop adopts variable conformations in the
apo form and distinct different conformations in the bound form, and the deformable loop
deforms slightly upon binding. There are also more subtle and slight rearrangements in the
zinc coordination spheres. A recent molecular dynamics study [6] examined both these
rearrangements in more details and also studied the effects of ligand-binding on protein
dynamics as probed by changes in correlated motions. The pairs of residues that exhibited the
greatest changes in correlated motion due to ligand binding were visualized on the protein
structure and paths of residues with changed correlations were discovered that radiated outward
from the two zinc atoms, where the inhibitor bound, through the rest of the protein. Intriguingly
some of the most drastic changes in correlated motions occurred in the absence of
conformational changes, indicating that dynamical changes can occur even in the absence of
structural changes; an observation that has been noted by the Nussinov group as well [52]. This
picture of a relatively simple active site that is plastic and which exhibits dynamic coupling to
the rest of the protein does provide a cautionary note for structure-based drug-discovery.

A less cautionary study [47] involved the study of multiple drug, Tamiflu and Relenza, to
multiple realted proteins; swine influenza A/H1N1, Spanish H1N1, and avian H5N1 flu N1
neuraminidases to also study possible mechanims of drug resistance, in a study which also
combined molecular dynamics with electrostatic analysis. In this study a molecular model of
the swine influenza A/H1N1 type-I neuraminidase was built based on the avian H5N1 type-I
neuraminidase and then all three neuraminidases were simulated in their apo form and with
the antivirals, Tamiflu or Relenza separately bound. When considered together the simulations
allowed for the identification of conserved and unique drug-protein interactions across all three
proteins mediated by hydrogen bonds. These hydrogen bond networks were analyzed to show
how mutations could lead to drug resistance by disrupting the protein-drug networks.
Furthermore, by examining an electrostatic pathway which is hypothesized to play a role in
controlling drug access to the binding pocket amechanism by which another mutation acquires
drug resistance was proposed.

A third example in which dynamics, especially conformational changes and changes in
coupling, can affect and even be exploited in drug discovery, is in the developing story of the
development of the MSH2/MSH6 protein complex as a drug target for chemotherapeutic
development [8,11,46,48,49]. This protein complex was found via a combined computational-
experimental study [8,11] to be multifunctional, acting as a sensor for both DNA damage and
mismatches; the complex then recruits additional proteins which lead to either DNA repair or
cell-death depending on the protein conformation. These initial studies lead to the thought that
it might be possible to screen for small molecules which bind specifically to the “death”
conformation of the protein complex. This was found to be the case [48,49]. The identification
of a conformationally-selective ligand required the identification of specific protein
conformations via molecular dynamics followed by structure-based screening; in this case the
molecular dynamics was required to specifically select only the “death” conformation.
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Conclusion
It has become increasingly evident that molecular dynamics simulations have become valuable
tools in probing details of protein structure and dynamics. The programs and methods
underlying simulations have become increasingly mature, leaving the much of the future in the
application and analysis of simulations. Increasingly large and proteins and protein-complexes
are amenable to simulation, and more attention has been paid recently to the development of
force-fields appropriate for simulations with a wide variety of drug molecules [53].

The promise is great for using molecular dynamics in drug-discovery and development, but
challenges remain. First, the development of a general method for finding conformations in
and determining the free energies from simulations, without the need for somewhat arbitrary
clustering methods, while not ignoring the multi-dimensional configuration space that protein
move in remains a challenge. This challenge is particularly important to address in order to
develop conformationally-selective drugs. Second, the analysis of protein dynamics is often
semi-quantitative.; While correlated motion matrices, or any desired correlation function, can
readily be calculated quantitatively, the results are often looked at visually and qualitatively.
The major difficulty here is the amount of information that can be obtained from simulations,.
Hopefully continued progress will be made in the application of statistical methods, and
analyses that integrate structural and dynamical information to make the analysis of simulation
data more quantitative and routine.
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