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Abstract
Over 40% of cancer patients will require radiation therapy during management of their disease.
Although radiation therapy improves the survival of a significant number of cancer patients, both
acute radiation toxicity (that which manifests during a course of clinical radiotherapy or shortly
thereafter), and late toxicity (developing months to years after completion of radiotherapy)
compromise overall outcomes for successfully treated cancer patients.
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Introduction
Despite improvements in the development of clinical radiotherapy treatment planning and
treatment delivery technologies (Table I), there remains a significant toxicity of radiotherapy
to normal tissues and organs.(1–3) Improved local control of cancer by radiotherapy dose
escalation in patients with, for example, lung, esophagus, colorectal, pancreas or pelvic
malignancies is associated with significant acute toxicity and normal tissue damage; however,
higher radiation doses which are likely to be more effective cannot be used in these patients
owing to acute toxicities occurring during the clinical course of radiotherapy.(4–7) These acute
toxicities are associated with the tissue inflammatory response and are not always limited to
the normal tissue in the irradiation beam. Acute toxicity can extend beyond the treated area.
Examples include esophagitis (difficulty swallowing) and pneumonitis (cough, fever, lung
fluid accumulation) in the lung cancer patient, and intestinal and rectal irradiation-induced
inflammation (diarrhea, cramps, abdominal pain) in the colorectal cancer patient. Acute
toxicities are usually transient and symptoms resolve weeks after completion of treatment.
Indeed, acute side effects may limit the patient’s capacity to comfortably complete a treatment
course. Furthermore, there is renewed concern, about the occurrence of late-manifesting
toxicities (defined as those appearing months to years after completion of a successful treatment
course) in patients treated with radiotherapy. Late toxicity is usually limited to tissues treated
and does not usually affect survival; however, late effects including fibrosis (scarring) and
organ functional failure may ensue depending on the volume of tissue treated and dose of
irradiation delivered.(5–7) Therefore, to ameliorate these toxicities and thereby improve the
therapeutic ratio (that is ratio of cancer cell killing to normal tissue toxicity caused by a given
dose), radioprotective drugs are receiving significant interest.(1–2,8–11)

The molecular pathways that are utilized for radiation protection follow on current knowledge
regarding the molecular biological mechanisms of ionizing irradiation induced cell killing at
the level of single cells, tissues and organs (Figure 1). Ionizing irradiation, hits oxygen and
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water molecules in cells and results in production of radical oxygen species (ROS) such as
superoxide and hydroxyl radical which deplete cellular antioxidant stores, most prominently
glutathione.(8,9) Replacement of cellular antioxidant capacity by increasing levels of the
enzyme Manganese Superoxide Dismutase is an example of one radioprotector strategy at the
cellular level.(10–11) Both dying and surviving cells within an irradiated tissue cell release
inflammatory cytokines which can act as cytotoxins at both the local tissue level and also
through the blood circulation, can affect distant sites via action on specific cellular surface
receptors.(3–4) Agents which limit cytokine binding or action at the cellular receptor level
include the TLR5(12) receptor agonist and provide another strategy for radiation protection.
Therefore, recognition of potential radioprotective pathway targets is based on understanding
the underlying molecular biology of irradiation cellular killing.

This article will address current and future strategies for development of radioprotective agents,
both systemically delivered and organ specific targeted radioprotectors. Radioprotectors are
being developed for the purpose of both reducing acute radiotherapy side effects and
minimizing late chronic radiation toxicity in the cancer patient.

Ionizing Irradiation Clinical Effects
Ionizing irradiation causes significant toxicity at the single cell, tissue and organ level, and the
clinical effects of therapeutic irradiation depend upon the dose delivered and the volume of
tissue exposed.(1,3,6–7) For example, if a tumor volume is large, this necessitates ionizing
irradiation delivery to a significant volume of normal tissue. There is a non-linear relationship
between dose of irradiation and cell death.(3) Cell phenotype within a tissue and tissue specific
differences in irradiation response determine the shape of the cell killing curve. For example
lymphoid tissues such as the thymus are relatively radioresponsive compared to skeletal muscle
tissue. Dose rate (the quantity of irradiation delivered per minute), fraction size (dose delivered
per treatment session) and level of oxygenation of the tissues treated directly increase cell
death.(3) Irradiation not only kills tumor cells, but also proliferating normal cells. Both normal
and tumor tissue contain a subset of dividing cell populations, and quiescent or non-dividing
subsets. Quiescent cells are relatively resistant to ionizing irradiation killing.(3) Rapidly
dividing normal and tumor cell populations are more susceptible than those cells which are
either slowly proliferating or non-proliferative. However, unlike normal tissues, rapidly
dividing tumor cell subsets can outdistance their blood supply and become hypoxic.(3,13,14)
Since oxygen is a main molecular target for irradiation production of ROS, hypoxic cells in
tumors show relative radioresistance.(13–14 )

Release of cytotoxic inflammatory cytokines from irradiated tissue can also recruit
inflammatory cells including lymphocytes, macrophages and polymorphonuclear leukocytes
which then infiltrate tissues and cause further normal cell killing(4,15–16) through the
generation of yet other inflammatory cytokines and byproducts, including more ROS.(17–
18) The cellular and tissue specific pathways involved in irradiation killing are shown in Figure
1.

Ionizing Irradiation Toxic Effects
Acute Effects of Ionizing Irradiation

Depending on the anatomic site treated (Figure 2) acute effects may include: nausea and
vomiting, tiredness, fatigue, diarrhea, headache, as well as normal tissue swelling, skin
erythema, cough, difficulty swallowing and difficulty breathing.

The acute effects of irradiation are based on both normal tissue response and tumor cell killing
following on the underlying molecular biological effects of ionizing irradiation. Within tissues

Greenberger Page 2

In Vivo. Author manuscript; available in PMC 2010 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and organs, ionizing irradiation kills dividing cells by both stochastic (random) and
determinative (microenvironment induced) mechanisms.(19) Dividing cells in the DNA
synthetic or (S) phase of the cell cycle are relatively less sensitive to radiation killing compared
to those in mitosis (M) or in the second gap (rest phase between DNA synthesis and mitosis).
(3) Those cells in metabolic quiescence (non-dividing) and those in relatively hypoxic areas
are less sensitive to irradiation killing.(3,13) Direct irradiation killing leads to elimination of
those cells from the tissue and organ. Both direct and indirect (mediated by cytokine and ROS
release from dying cells) irradiation killing effects are significant in influencing the magnitude
and duration of acute side effects. In cells that repair irradiation damage and survive, release
of inflammatory cytokines including transforming growth factor β1 (TGFβ1), Interleukin 1
(IL-1), and tumor necrosis factor α (TNFα) act both locally within the irradiated tissue/tumor,
and enter the systemic circulation where tissues outside the irradiation beam can experience
cell killing.(4,15,20) Inflammatory cytokine binding to specific receptors on sublethally
irradiated or unirradiated cells (outside the irradiation volume), leads to cell death through the
apoptosis (programmed cell death) pathway(17–18,21), autophagy(22) and necrosis(4) death
pathways.

Cells and tissues recover from irradiation acute effects in a variety of ways. Surviving cells
within irradiated tissue and those in adjacent unirradiated tissue, particularly in the primitive
or stem cell compartments are induced to proliferate and repopulate areas in the tissue that
were depleted by irradiation killing.(3) In addition, stem cell or progenitor populations from
outside the irradiated tissue migrate into the irradiated volume and facilitate repopulation or
replenishment of tissue function.(23–25) Stem cell populations involved in regeneration of
irradiated tissue (epithelial progenitor cells for example in the irradiated oral cavity, esophagus
or intestine) include those which home to sites in the vacated tissue microenvironment, depleted
by irradiation killing. For example, endothelial cell progenitors of bone marrow origin migrate
in and repopulate blood vessel endothelial cells killed by irradiation.(25) Repair and
replenishment of irradiated tissue is also facilitated by migration into the irradiated area of
lymphocytes, macrophages and neutrophils which elaborate reparative cytokines including
vascular endothelial growth factor I (VEGF-1), hepatocyte growth factor (HGF), fibroblast
growth factor (FGF) and epidermal growth factor (EGF).(26)

Thus, recovery from acute irradiation effects occurs at the cellular level by restoration of
antioxidant pools through biochemical synthesis of glutathione and upregulation of antioxidant
enzymes(8,17–18), and at the tissue level by stem cell mediated repopulation through both
proliferation of in situ cells and by migration into tissues via the circulation of progenitor cells
from distant sites.(3,23–25)

Chronic Effects of Ionizing Irradiation
Chronic irradiation effects are critically important in all patients, but particularly in those who
receive total body irradiation (TBI). Total body irradiation is utilized in some cancer therapies
particularly for patients who require a bone marrow transplant.(27–29) TBI is delivered either
in single fraction or in multiple fractionated courses designed in part to clear space in the bone
marrow by causing apoptotic death of a sufficient number of hematopoietic stem cells and their
progeny for homing and proliferation of donor hematopoietic stem cells that are injected
intravenously. Observing responses to total body irradiation in both experimental animal
models and in clinical radiotherapy patients demonstrates multiple chronic effects including
features common to premature aging such as hair graying, skin thinning and dryness, formation
of cataracts, early myocardial fibrosis, myocardial infarction, neurodegeneration and
osteopenia/osteomalasia.(3,30) In pediatric and adult long term cancer survivors, who received
total brain irradiation, neurocognitive defects have been detected.(3,31–33) Radiation may
induce life shortening by decreasing endocrine function through glandular cell death or by
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system wide depletion of antioxidants which are exhausted by perpetual response to persistent
ROS production in tissues.(34–35) During aging, ROS production is persistent, so the
requirements for continual replenishment of antioxidant stores including glutathione,
superoxide dismutase, catalase and glutathione peroxidase increase.(34) Furthermore,
accumulation of increased levels of p53, p21 and BAX in naturally aging cells or those
prematurely aging after irradiation may slow proliferation and return more cells to quiescence.
(30,35) Therefore, long-term consequences that follow the cellular, tissue and organ responses
to ionizing irradiation, are common to those of aging.

Chronic or late effects depend upon the organ treated, but are also directly related to irradiation
dose and volume treatment(3) (Figure 2). Response to irradiation acute effects may contribute
towards the manifestation of chronic effects.(3) After recovery from the acute effects of
irradiation, tissues appear normal in situ and under the microscope.(3,30,35) There may be no
obvious sign of irradiation injury. Current experimental evidence suggests that both endothelial
cells in blood vessels recovering within irradiated tissues and those supplemented by
endothelial progenitors which migrate into the tissues from bone marrow origin are depleted
of intracellular levels of thrombomodulin.(36) Irradiated tissues which recover from the acute
effects continue to produce ROS which may continually deplete thrombomodulin.(20,36)
Upregulation of cell-destructive proteases can also initiate a second wave of apotosis.(36)
Endothelial cell death has been associated temporally with accumulation in irradiated tissues
of fibroblast progenitor cells migrating in from the bone marrow microenvironment.(37) The
signals that elicit this migration are unknown, but accumulation of fibroblast progenitor cells
leads to their proliferation in irradiated tissues, and functional inactivation in that organ by
replacement of functioning areas with scar tissue.(4,15,20)

Mechanistic models for irradiation chronic effects have been aided by observations in animal
models. For example, there is a relative decrease in histopathologic evidence of late irradiation
fibrosis, in animal strains genetically altered to mask the expression of inflammatory cytokines
such as (TGFβ)(38–40), or deleted for expression of enzymes required for generation of free
radicals (nitric oxide synthase-1, neuronal NOS,) as in mitochondrial NOS knockout mice.
(41) Animals deficient in the signaling response to irradiation induced TGFβ (SMAD3-
deficient mice) demonstrate decreased irradiation-induced late fibrosis in skin and lung.(38–
39) Chronic side effects are not limited to fibrosis, but include abnormal blood vessel formation
called telangiectasias(19), ulcerations and organ failure.(42–44)

A prominent chronic effect of ionizing irradiation is carcinogenesis/leukemogenesis. The
irradiated tissue microenvironment can prevent apoptosis of damaged proliferating cells by
cell to cell contact.(30,45–53) Irradiation induces cell cycle growth delay by both a G1 (gap
in the cell cycle between mitosis and DNA synthesis) and a G2 (block in the cell cycle following
mitosis) growth arrest.(3) Holding cells in growth arrest creates a condition of quiescence.(3,
16) Prolonged production of ROS in cells of the microenvironment of the irradiated lung(54)
and bone marrow(55–56) months to years after irradiation can potentially induce genetic
change in other quiescent cells. Furthermore, migration of a stem cell population from distant
sites into an irradiated microenvironment can expose those homing stem cells to ROS released
from irradiated stromal cells causing mutations and even malignant transformation.(24–25,
57–58) Therefore, the persistent elaboration of both ROS and humoral cytokines by surviving
cells within an irradiated tissue/organ facilitate chronic interaction with other cells that are
attempting to repopulate and restore that tissue and organ.

Systemic Effects—Systemic effects of ionizing irradiation have been well described in
subtotal body as well as total body irradiated experimental animals and in humans.(3,27–30)
Systemic effects include both acute and chronic effects as described above, but with several
unique features. In particular, systemic effects include symptoms in areas that were not
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irradiated including overall tiredness and easy fatigability, and are probably caused by the
persistent elaboration through the circulation of inflammatory cytokines.(4,16,20)

Systemic effects apply to the response to subtotal body or regional irradiation such as a thoracic,
abdominal or pelvic irradiation volume, as well as total body irradiation effects and are
described as syndromes. The experience from clinical radiotherapy, principally total body
irradiation to prepare patients with leukemia, lymphoma or disseminated cancer for a life saving
marrow transplant, led to description of several syndromes of radiation toxicity.(59) A common
principle with many of these syndromes is that partial body shielding greatly decreases the
severity and the experience of the syndrome. A second basic principle is that protection from
each syndrome is associated directly with reduced radiation dose rate and total dose.(3)

The central nervous system syndrome is associated with doses above 800 cGy total body
dose or higher doses to the head and presents with signs and symptoms of brain swelling
including nausea and vomiting, headache, sweating, rapid heart rate and rapid death. The
gastrointestinal syndrome associated with TBI doses above 500 cGy presents with nausea,
vomiting and diarrhea, and is associated with destruction of intestinal crypt and endothelial
cells in the intestine, dehydration, severe abdominal pain, infection and blood loss.(69) The
hematopoietic syndrome is associated with TBI doses above 300 cGy and a decrease in
peripheral white blood cell count, platelet count, red blood cell count, and in the absence of
source of bone marrow transplantation to replace damaged hematopoietic stem cells, may lead
to death from infection, hemorrhage, weakness and fatigue.(59) The immunosuppression
syndrome is associated with TBI doses as low as 100 cGy. Lymphocytes are the most
radiosensitive cells in the peripheral blood, and thus a basic radiological biomarker dose
sustained involves the magnitude of a decrease in slope of a peripheral blood lymphocyte count.
Lymphocyte decrease can be associated with immunosuppression and susceptibility to
infection, weakness and fatigue.(3)

Other systemic clinical effects are associated with partial body irradiation, such as the high
dose irradiation induced cutaneous syndrome skin burns (beta burns) caused by local high
doses above 30 Gy by electron irradiation or from the accumulation of radioactive isotopes on
the skin. This syndrome is associated with erythema/redness, ulceration of the skin, heat loss,
extravasation of fluids, lymphedema, hemorrhage and secondary infection.(3)

Details of the Hematopoietic Syndrome reveal many important radiobiologic principles. It is
a collection of symptoms and signs associated with suppression of bone marrow function. This
results in reduction of the number of peripheral blood red cells, platelets, and leukocytes (white
cells). Individuals experience tiredness associated with anemia (low red cell count), propensity
for bleeding (associated with low platelets), and inability to fight infections (associated with
decreased white blood cell count). Shielding of as little as 10% of the bone marrow volume
during total body irradiation can result in successful repopulation of the entire hematopoietic
system by bone marrow stem cells that were in the protected microenvironment and can
ameliorate or even prevent the Hematopoietic Syndrome.(3,59) The production of
inflammatory cytokines including TNFα, TGFβ1 and IL-1 correlates with the severity of
suppression of hemopoiesis.(4,20) Within the dose range required to cause the hematopoietic
syndrome in humans (200 – 600 cGy total body dose) there are individuals who show reduced
severity of depression of hematopoiesis (less of a decrease in white cell, platelet and red cell
counts as well as immunosuppression by reduction of T-cell and B-cell numbers). These
individuals may have less systemic cytokine production by irradiated tissues compared with
others that develop severe hematopoietic depression.(59) The reason for individual patient
variation in susceptibility to the Hematopoietic Syndrome is unknown, but genetic factors tend
to make some individuals more sensitive. These include individuals with ataxia, telangiectasia
(60–63), Fanconi anemia (64–66), Werner’s Syndrome(67), Blooms Syndrome(67–68) and
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other categories of radiation sensitive individuals also termed “hyper-responders”(61) with no
known genetic defect, but with an exacerbated response to irradiation doses compared to other
individuals.

With all syndromes, genetic predisposition to irradiation toxicity can shift the radiation dose
response curve to the left in effect giving the individual a greater chance of experiencing the
toxicity at a lower sustained dose of irradiation. Other conditions known to increase sensitivity
of individuals to side effects of irradiation include those associated with DNA strand break
repair such as ataxia telangiectasia(60), Werner’s syndrome(67), Bloom’s Syndrome(68) and
Fanconi Anemia.(66) Of importance to the physician, there are subsets of individuals with no
genetic markers, but with greater sensitivity to ionizing irradiation called “hyper-responders”.
(3,61) Whether these individuals have a greater irradiation induction of inflammatory cytokines
or defect in regulation of endothelial cell function is unknown. Patients likely to develop
pulmonary complications of lung irradiation include those with increased serum levels of
TGFβ detected within the first weeks of radiotherapy.(15)

Acute, chronic and systemic responses to ionizing irradiation illustrate many common
pathways in normal cellular, tissue and organ tissue repair. Knowledge of the underlying
molecular biological pathways initiated by irradiation-induced DNA strand breaks, cellular
apoptosis, and cell to cell interaction, including the elaboration of inflammatory cytokines,
helps define several pathways for development of radioprotective agents.

Radioprotective Pathways—The mechanistic/biological basis for development of a
radioprotective strategy necessitates an understanding of the molecular biology underlying the
mechanism of the cellular, tissue and organ specific radiation damage response. Examples of
the pathways for focus are shown in Figure 3 and include: nuclear DNA strand breaks,
communication of nuclear stress responses through the cell cytoplasm to mitochondria,
mitochondrial response to nuclear signaling, and mitochondrial initiation of apoptosis.(47–
48,69) Finally other cells respond to the inflammatory cytokine cascade that follows cell killing
in a second wave of cell death.(3) This second wave may slowly persist or may occur in a
delayed but severe fashion leading to the rapid onset of what is called chronic effects described
above.

Agents delivered prior to the initiation of radiotherapy would be the ones expected to target
critical biochemical pathways in cells yet to be exposed to irradiation, and to either decrease
the magnitude of a response pathway or convert the response to an alternate biochemical
pathway.(70) Use of such an agent would be critically dependent on time of delivery, specificity
of uptake in the tissues to be protected and delivery to the intracellular sites of interest. Organ
specific targeted delivery of an antioxidant therapy is one example of such an agent.(11,55)
Intraorgan administration of MnSOD-PL to the oral cavity, esophagus, lung, bladder and
intestine has been shown to be a potentially successful approach to localized radioprotection.
(71) Other antioxidant agents which can be delivered locally or systemically are listed in Table
II.

There are several possible targets for design and application of a radioprotector. These are
shown in Figure 3.

Blocking nuclear DNA damage and its communication to the mitochondria
Overlapping pathways of cellular protection from ionizing irradiation, ultraviolet irradiation
and heat have been revealed in the discovery of damage repair genes, genes for induction of
antioxidant proteins(72–76), free radical scavengers, and by study of the evolution of heat
shock proteins.(72) A common pathway in defense against ionizing irradiation involves
protection of single and double strand nuclear DNA breaks, which lead to induction of the self-
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destructive pathways of apoptosis, autophagy and mitotic arrest(3,73) as well as delayed
mutations. There is evidence that all phyla in both the plant and animal Kingdoms maintain
common genetic functions for adjusting to conditions of low level ionizing irradiation.(72–
76) A radioprotector could well be one that protects against DNA strand breaks.

Mitochondrial Stabilization
Development of radioprotectors has also followed on knowledge of the intrinsic radiation
resistance of specific transgenic mice that display overproduction of a mitochondrial localized
antioxidant protein.(77) Also of importance was the observed relative radiosensitivity of a
knockout strain of mice deficient in production of an antioxidant radioprotective protein such
as MnSOD.(70–71) Agents which increase the cellular antioxidant pool anticipating large
quantities of irradiation induced ROS, thus anticipate the need to neutralize these molecules.
Such radioprotective agents include MnSOD transgene therapy(70–71,78), and small
molecules MnSOD mimics.(79) Other strategies to elevate cellular antioxidant stores, would
be to deliver the immunostimulant TLR5-Flagellin(11) or another biological agent or derived
product that elicits a stress response in cells including upregulation of MnSOD gene
transcription and its protein production to achieve the goal of increasing the cellular antioxidant
response capacity. Yet other relevant approaches would include small molecules that could act
as ROS scavengers.(80–83) (Table II)

Other examples of therapeutic agents which have been developed along the lines of protecting
the mitochondria in cells from initiating apoptosis doso by elevating antioxidant levels in
response to irradiation such as WR2721 (Amifostine) which was designed as a ROS scavenger
molecule.(83–85) (Table II)

Blocking caspase activation and poly ADP-ribosyl-polymerase (PARP) cleavage
These are two theoretical targets for future research, based upon knowledge of the post-
mitochondrial events in single irradiated cells.(86) (Figure 3)

Decreasing systemic cytokine mediated cell death—Experimental approaches to
ameliorate late irradiation effects have been identified in animal model systems administration
of novel counteracting cytokines, anti-cytokines and immune stimulation with or without stem
cell transplantation as well as dietary antioxidant strategies.(15,20,87)

Radiosensitizers—Reversing the strategy described for radiation protectors could result in
development of radiosensitizers or agents that increase the cellular capacity to respond to
ionizing irradiation. This strategy has been utilized in the development of tumor
radiosensitizers designed to deliver specifically drugs that would sensitize the tumor relative
to normal tissue.(3) An agent which specifically sensitizes tumor cells can also appropriately
affect the therapeutic ratio (greater tumor toxicity compared to normal tissue toxicity). Such
tumor radiosensitizing agents include: Bromo-deoxyuridine, BUDR, Taxol, Cis-Platin,
Cytoxin and analogs, and recent anti-angiogenic drugs designed to target tumor vasculature or
tumor cells.(3,88–89) A major challenge for the development of tumor radiosensitizers has
been the difficulty in finding tumor cell specific targets that do not overlap significantly with
normal tissue functions. Currently available radiosensitizers have exploited tumor cell
deficiencies or their overexpression of specific radiation damage response proteins.(90) The
overlap between normal tissue and tumor cells has been significant and application of these
new agents to experimental models or clinical trials has met with significant normal tissue
toxicity.
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Strategies and issues of concern
Long term side effects of radioprotectors have been a concern. Since the irradiation response
of cells and tissues cause many cells to remain in a quiescent state protected from cell division
by their residence in the microenvironment, there is a possibility that uptake of a radioprotective
agent in those cells might alter their biological behavior while in the quiescent state. During
the transition from recovery from the acute irradiation effect, radioprotective agents could have
a second function that might be deleterious. For example, a small molecule capable of
neutralizing ROS might be metabolized intracellularly to another molecule that could function
as a carcinogen. Recent data indicates that MnSOD-PL administration systemically for
protection against the hematopoietic syndrome, leads to an increase in survival of C57BL/6J
mice with no detectable increase in carcinogenesis.(35)

New areas of research are showing particular promise including an understanding of the
difference in redox chemistry and metabolism of oxygen between hypoxic regions within
tumors and surrounding normal well oxygenated tissue. Oberley and colleagues(91–97) first
described the difference in redox chemistry between tumor cells and normal tissues.
Particularly in patients with large greater than 1 cm diameter squamous cell tumors of the lung,
head and neck region, esophagus, and other bulky tumors of the pelvis such as cervical and
endometrial cancer, and large abdominal tumors such as pancreas cancer or colon cancer, there
has been appreciation of a shift in tumor cell metabolism from oxic to hypoxic conditions. Any
unregulated growth of cancer cells beyond blood vessels produces areas of hypoxia and anoxia
leading to necrosis.(3) Delivery of radioprotector drugs by the intravenous route may not reach
a significant portion of the tumor volume. In addition, delivery of antioxidant drugs including
some compounds that scavenge free radicals including superoxide, hydrogen peroxide, and
peroxynitrite may halt the production of hydrogen peroxide products in normal cells.(94)
Normal cells have an increased capacity to neutralize hydrogen peroxide through catalase and
glutathione peroxidase while tumor cells, particularly in hypoxic or anoxic regions show down-
regulation of these enzymes.(91–92)

Entry of antioxidant agents into tumor cells which result in the generation of hydrogen
peroxide, can produce additional tumor selective toxicity through limited capacity for
metabolism of hydrogen peroxide.(94–97) Furthermore, limited effectiveness of cancer blood
vessels, as well as altered tumor redox metabolism in the cancer cells, may enhance relative
levels of antioxidant drug delivery to normal tissues for radioprotection in the cancer patient.
(88) An increased understanding of the metabolic differences between tumor cells and normal
tissue with respect to capacity to activate radioprotectors could lead to the same strategy used
in the development of the hypoxic cell cytotoxin Tirapazamine.(98) With this drug, normal
oxygen concentration metabolizes the drug into a non-toxic moiety while hypoxic regions of
tumors suffer the toxic effects of the unmodified drug.

The administration of a radioprotective agent to a target tissue must take advantage of the time
course for reaching target cells at risk and must include a delivery system designed to penetrate
deep enough into the tissue to reach the proliferating stem cell populations. For example, in
the prevention of irradiation-induced esophagitis, or oral cavity mucositis, intravenous
administration of a radioprotector drug might be expected to reach all tissues, but may not
provide a high enough level of uptake in the stem cell populations in those critical target tissues.
In contrast, intra-oral or intra-esophageal localized administration using a delivery system
known to penetrate several cell layers into a particular tissue, should provide a higher
concentration of drug or transgene product to that site.(23) In contrast, the goal of protection
of all normal tissues from total body irradiation might require intravenous administration or
transdermal administration with effective absorption such that blood levels would reliably
achieve effective systemic levels within the appropriate time prior to irradiation.(35)
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Overproduction of a radioprotective antioxidant transgene product, or DNA repair enzyme, if
administered too far in advance of irradiation can lead to compensatory down regulation of
other antioxidants or DNA repair pathways and potentially remove the desired radioprotective
effect.(82) Similarly, the administration of a radioprotective agent after radiation exposure
might be ineffective due to the overwhelming amount of ROS produced by the oxidative stress
of irradiation.(70–72) A list of representative radiation protectors, radiation damage mitigators
and radiation damage treatment agents currently under consideration or development is shown
in (Table II).

Conclusions
The success in development of radioprotective agents will depend increasingly on an
understanding of the molecular biology of radiation damage, cellular, tissue, organ responses
to irradiation, the effect of comorbid factors, and differences between tumor and normal cell
biology. Strategies for developing tumor radiosensitizers and normal tissue radioprotectors
have in the past relied upon known differences in tumor specific vs. normal cell biology in
terms of cell cycle, expression of specific growth factor receptors, cell surface adhesion
molecules, or other biological or immunological characteristics. Molecular targets of new
radioprotectors should concentrate on the mechanisms of action on irradiation-induced
damage, after nuclear DNA strand breaks are repaired, focusing instead on distal steps in the
cellular response, including nuclear to mitochondrial transport of signaling molecules, and
steps in induction of the cell death pathways including autophagy, apoptosis and necrosis. New
strategies to identify metabolic differences between normal tissue and tumor cells will also be
critical to the design of new classes of radioprotectors for clinical use.

Of equal importance is the concern of potential delayed deleterious effects of radioprotective
agents in preventing the removal of irradiation damaged cells the survival of which may lead
to an increase in unacceptable chronic side effects including organ failure and carcinogenesis.
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Figure 1. Cell, tissue and organ specific pathways of ionizing irradiation toxicity
Subtotal lung irradiation is shown as an example. Single alveolar pneumoncytes from an area
within lung tissue are shown relative to total lung irradiation. Individual cells experience
ionizing irradiation-induced production of radical oxygen species (ROS) including superoxide,
hydroxyl radical, nitric oxide and peroxynitrite from the interaction of ionizing irradiation with
oxygen and water. ROS interaction with pyrimidine and purine bases nuclear DNA produces
single and double strand breaks, initiation of DNA repair, communication of DNA damage
through the cell cytoplasm to the mitochondrial membrane via (stress activated protein (SAP)
kinases) and then translation of pro-apoptotic, BCL2 family members from nucleus to
mitochondria.(86) Then follows mitochondrial membrane permeability, cytochrome c
disassociation from cardiolipin, and cytoplasmic leakage of cytochrome c which leads to
activation of the caspase-3 pathway and apoptosis.(17–18,86) Both dying and irradiated but
recovering cells release ROS and inflammatory cytokines including IL-1, TNFα and TGFβ,
which directly (through cell to cell contact with other cells in the tissue), and indirectly (via
the circulation to cells at distant sites), produce acute local tissue and systemic effects
respectively. Within the irradiated tissue differences in radiosensitivity of different cell
phenotypes (endothelial cells, alveolar pneumocytes, alveolar macrophages and
bronchopulmonary stem cells) contribute to the magnitude of tissue damage. The volume of
tissue within the lung that is in the irradiation beam determines as does irradiation dose the
magnitude of acute and chronic normal tissue effects.
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Figure 2. Organ specific acute and chronic radiation toxicities
Acute tissue toxicity experienced during a radiotherapy treatment course or shortly thereafter
is described as symptoms and signs of tissue damage for each organ (left side). Chronic
radiation side effects occurring months to years later are also shown (right). Severity and
duration of both acute and chronic side effects depends on radiation dose, dose rate, quality of
irradiation (greater for high LET radiation beams – See Box 1) and volume of tissue treated.
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Figure 3. Targets for development of radioprotector agents based on molecular pathways of the
irradiation response
The molecular mechanism of irradiation damage in single cells (effects #1 – 4) and released
inflammatory cytokines (effect #5) is defined by several target points where efforts for
development of radioprotector drugs can focus. Radioprotectors could target the DNA damage
step(121–122): (1); molecular translation of the DNA damage event to the mitochondria
through the cytoplasm, (2); mitochondrial stabilization by preventing membrane permeability
and leakage of cytochrome c, (3); activation of caspases to cause apoptosis(123), (4); or
intracellular communication of cellular and tissue damage by elaboration of cytokines, (5).
Examples of radioprotector drugs currently under development or in clinical trial are correlated
to each irradiation effect and are shown in Table I.
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Table I

Radiotherapy Technologies Currently Utilized

1 External beam radiotherapy (Intensity modulated radiation therapy – IMRT, Image Guided Radiotherapy – IGRT)

A. X Irradiation (Photon Beam Therapy)

B. Electron Beam (Beta Irradiation)

C. Proton Irradiation, High Linear Energy Transfer (LET) Particles

2 Stereotactic Radiosurgery

A. Gamma Knife

B. Linear Accelerator Mediated Frameless Stereotactic Radiosurgery

C. Robot Arm Controlled X Irradiation Delivery System

3 Radioisotope Radiotherapy for Organ Specific or Cancer Cell Specific Uptake

4 Radioisotope Bound to Monoclonal Antibody for Tumor Targeted Radiotherapy

5 Brachytherapy (Interstitial or Intracavity) High Dose Rate Radiation Source implantation

6 Permanent Radioactive Seed Implantation for Organ Specific Dose Delivery
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Table II

Categories of Radiation Dose Modifying Agents

Protectors Examples References Irradiation Effect Target Opportunity In Fig. 3

Sulfhydryl Compounds Cysteine WR2721 (1,83,85)
(84–85) (2)

1–3
1–3

Antioxidants Tempol 3

Targeted Mitochondrial MnSOD Mimics mn – (79,99) 3

Agents porphryn based

GS-Nitroxides, (80–81) 3

Eukaryon-134-SOD mimic (99) 3

Molecules

Cryoprotective Agents DMSO (100)

Immunomodulators Histamine H2 receptor (101) 5

Antagonists 5

Polysaccharides (102–103) 4–5

Heat killed lactobacillis (103) 1–5

Synthetic chemicals (102) 3–5

Flagillin (12) 3–5

B-Glucan (104) 3–5

Prostaglandins (106)

Plant extracts Curcumin (105) 3

Orjentin (105) 3

Viciden (105) 3

Ngella sativa (103) 3

Podophyllum hovandrum (107) 3

Vitamins Vitamin E (108) 3

Vitamin C (109) 3

Cytokines IL-1 (110) 5

Stem Cell Factor (111) 5

G-CSF (112) 5

Gene Therapy Delivered

Antioxidants MnSOD-PL (70–71) 3

Mitigators Examples References

ACE Inhibitors Captopril (113–115) 5

All Type-1, Type-2 Clanipril (113–114) 5

Receptor Antagonists Penicillamine (105) 5

Pentoxyphilline (116) 5

Endothelial Cell Vascular endothelium (45–46) 5

Infusion

Treatments Examples References

Pentoxyfilline (117) 5

a-tochoferol

caloric restriction (118–120) 5
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