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Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction
and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency
in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from
which phenological shifts can be detected and attributed to climate change. Here, we ask whether
phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine–coastal and
ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent
phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chloro-
phyll a concentration) from temperate and subtropical zones and used wavelet analysis to extract
their dominant periods of variability and the recurrence strength at those periods. Fewer than
half (48%) of the series had a dominant 12-month period of variability, commonly expressed as
the canonical spring-bloom pattern. About 20 per cent had a dominant six-month period of vari-
ability, commonly expressed as the spring and autumn or winter and summer blooms of temperate
lakes and oceans. These annual patterns varied in recurrence strength across sites, and did not per-
sist over the full series duration at some sites. About a third of the series had no component of
variability at either the six- or 12-month period, reflecting a series of irregular pulses of biomass.
These findings show that there is high variability of annual phytoplankton cycles across ecosystems,
and that climate-driven annual cycles can be obscured by other drivers of population variability,
including human disturbance, aperiodic weather events and strong trophic coupling between
phytoplankton and their consumers. Regulation of phytoplankton biomass by multiple processes
operating at multiple time scales adds complexity to the challenge of detecting climate-driven
trends in aquatic ecosystems where the noise to signal ratio is high.

Keywords: phenology; primary producer; chlorophyll a; aquatic systems; periodicity;
wavelet analysis
1. INTRODUCTION
The past decade has seen explosive growth in the
science of phenology (i.e. timing of periodic life-
cycle events), largely because terrestrial plants are
sensitive indicators of climate variability that now
‘provide some of the most compelling evidence that
species and ecosystems are being influenced by
global environmental change’ (Cleland et al. 2007;
see also contributions to this volume, e.g. Ibáñez
et al. 2010; Richardson et al. 2010). Observations of
life-stage transitions of individual species (Menzel &
Fabian 1999; Penuelas & Filella 2001; Ibáñez et al.
2010) and satellite-based indices of vegetation green-
ness (Myneni et al. 1997; Cleland et al. 2007) on
land show that spring onset has advanced, autumn
senescence has delayed, the growing season has
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lengthened, and these changes are correlated with
rising temperatures in boreal and temperate ecosys-
tems. Terrestrial plants are powerful climate sentinels
because their annual cycles of growth, reproduction
and senescence are finely tuned to the annual climate
cycle. Although the timing of these life-history tran-
sitions varies among species (Menzel & Fabian 1999;
Penuelas & Filella 2001) and regions (White et al.
2009), biomass of vegetation on land follows a recur-
rent cycle of growth and senescence with a 12-month
periodicity (Myneni et al. 1997; Richardson et al.
2010). At mid and high latitudes, canopy greenness
is controlled by temperature and photoperiod (Jolly
et al. 2005), so a temperature increase of about
0.88C in Eurasia and North America has advanced
spring green-up by 4–6 days and delayed onset of
senescence by 8–11 days over the past two decades
(Zhou et al. 2001). Our ability to detect large-scale
phenological shifts at this resolution is based on key
life-history attributes of temperate-boreal plants: sea-
sonal transitions between growth and senescence that
have a fixed, 12-month periodicity; and recurrent
timing of those transitions strongly cued to seasonal
climate. This inherent consistency in the annual
cycle of land plants (Lieh 1974) provides a low-noise
This journal is q 2010 The Royal Society
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Figure 1. Wavelet analysis for the characterization of periodic frequencies of the North Atlantic Chl-a time series (57–628 N,
20–108 W) from 1967 to 1979. (a) Series of the Chl-a data, (b) monthly averages (+ s.d.) over the sampling period, (c) con-
tinuous wavelet power spectrum showing the periodicity (shaded area indicates the region of time and frequency affected by
the edges of the data and should not be considered; solid lines are significant (p , 0.05) coherent time–frequency regions) and

(d) time-averaged wavelet spectrum of the series showing the dominance of the periods (dashed line shows the 95% signifi-
cance level). Both the continuous and the time-averaged wavelet power spectra are shown in the base 2 logarithm. The
continuous wavelet spectrum illustrates how the strength of the periodicities changed over time; colours indicate differing
degrees of variance (dark red indicates high intensity; dark blue indicates low intensity). The time-averaged spectrum depicts

the periods that explain a high proportion of the temporal variance of the series (y-axis) and the recurrence strength of the
periods (x-axis). David Johns supplied data for the Chl-a time series as recorded by the Continuous Plankton Recorder
green index, Sir Alister Hardy Foundation for Ocean Science, Plymouth (http://www.sahfos.org).
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background from which we can extract real signals of
phenological change measured at the resolution of
days, and then attribute those shifts to changes in
climate (Richardson et al. 2010).

Whereas land plants have life histories adapted to
the 12-month climate cycle, phytoplankton biomass
turns over on the order of 100 times each year as a
result of fast growth and equally fast consumption by
grazers (Calbet & Landry 2004; Behrenfeld et al.
2006). Based on differences in their characteristic
time scales of biomass turnover, we might expect
differences in the periodicity of terrestrial plants and
phytoplankton. However, a plankton phenology is
not well developed. Phytoplankton blooms (Smayda
1997) are identifiable signals of the annual growth
activity in pelagic systems. A well-described pattern
is the spring bloom, a response to seasonal increases
in temperature and solar radiation (Cushing 1959;
Sommer et al. 1986) and regarded as the canonical
phytoplankton pattern. This peak typically persists
for a few weeks to months as nutrient limitation, cell
sinking and grazing cause bloom collapse. A secondary
biomass peak stimulated by excess nutrients can
develop in late summer or autumn (Sommer et al.
1986; Longhurst 1995). These recurring annual phy-
toplankton cycles can be sensitive to changes in the
climate system (Edwards & Richardson 2004;
Winder & Schindler 2004b; Thackeray et al. 2008),
analogous to climate-driven phenological shifts on
Phil. Trans. R. Soc. B (2010)
land. However, annual phytoplankton patterns differ
across ecosystems (Pratt 1959; Scheffer 1991;
McQuatters-Gollop et al. 2008), have large year-to-
year variability (Cloern & Jassby 2008; Paerl &
Huisman 2008; Garcia-Soto & Pingree 2009) and
are not strongly expressed in all aquatic ecosystems
(Smayda 1998; Cloern & Jassby 2010). Whereas
high variability of phytoplankton seasonal patterns is
documented, no systematic analysis of phytoplankton
annual cycles has been conducted to identify their
characteristic periods of biomass variability and the
recurrence strength at those periods.

The longest observations of phytoplankton in lakes,
near shore coastal and oceanic waters extend back a
few decades, with the earliest records starting in the
1930s (Hays et al. 2005). These observations were
made during a period of significant global warming
(IPCC 2007) and now provide an opportunity to
determine if shifts in annual growth cycles of plankton
are sentinels of warming across freshwater and marine
ecosystems (Edwards & Richardson 2004; Winder &
Schindler 2004a). From these observational pro-
grammes we compiled time series of phytoplankton
biomass measured as chlorophyll-a (Chl-a) concen-
tration from 125 estuarine–coastal, lake and oceanic
sites in the temperate and subtropical region. We
used wavelet analysis to extract the periodic com-
ponents of variability in each series. Our purpose is
to examine multi-year records of phytoplankton
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Figure 2. Comparison of monthly time series and periodicity of Chl-a based on daily data (thick black line) and simulated
monthly sampling (thin grey lines). For each series (a,b), the left panel shows the Chl-a series and the right panel the time-
averaged wavelet spectrum of the series showing the dominance of the periods (dashed line shows the 95% significance
level of the actual data based on daily sampling). The Chl-a series are from (a) North Inlet Estuary (site OL), 1983–1992;

(b) Gulf of Aqaba (Eilat), 1988–2006. Data are provided by (a) http://links.baruch.sc.edu/Data/CoastalData.html and
(b) Amatzia Genin (Steinitz Marine Biology Laboratory, The Hebrew University).
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biomass to determine (i) if pelagic plants have a
repeating annual cycle, (ii) the characteristic periods
and (iii) recurrence strength at those periods. Do
these communities have a characteristic annual pattern
with a periodicity consistent enough so that phase
shifts can be attributed to secular trends of global
temperature? Or, does phytoplankton biomass have
its own distinct phenological responses to climate
variability?
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Figure 3. Median (filled dots) and range (bars) of the annual
mean phytoplankton biomass (Chl-a) at 70 estuarine–
coastal sites, 50 lakes and five ocean sites. Sites are ordered
by their medians and described in the electronic supplemen-

tary material, table S1. Although the length of the records
varied (from 8 to 50 years) there was no relationship between
the length of the dataset and the coefficient of variation of
annual mean Chl-a (R2 ¼ 0.01, p ¼ 0.19). The insert

shows the frequency distribution of log-transformed monthly
Chl-a values across all sites. L. ¼ Lake.
2. HOW CAN WE EXTRACT PERIODIC
COMPONENTS IN ECOLOGICAL TIME SERIES?
(a) Spectral analysis

Spectral analysis is an effective tool to search for cycli-
cal behaviour in time series of unknown periodicities
(Chatfield 1989). It decomposes data measured over
time as the sum of sine waves of different frequency.
In the spectrum, each frequency explains a proportion
of the temporal variance of the series. A series that
oscillates at a fixed frequency will have a large proportion
of its variance explained by this frequency compared
with a series oscillating at multiple frequencies. Spectral
analysis has been used for detecting frequency-driven
periodic fluctuations in time-series data. For example,
Beninca et al. (2008) and Vasseur & Fox (2007) used
Fourier transforms to extract cyclical patterns in
plankton populations.

These traditional spectral analyses are well suited
for stationary time series in which the statistical prop-
erties do not vary with time, but are unable to
characterize signals whose frequency content changes
over time as it uses sinusoidal functions that repeat
continuously. However, ecological data are typically
noisy, irregular and non-stationary. Wavelet analysis
Phil. Trans. R. Soc. B (2010)
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has emerged as a tool for characterizing periodicities in
non-stationary time series, as it unfolds a time series
not only in frequency, but also in time (Percival &
Walden 2000). This method gives us the possibility
of investigating and quantifying the temporal evolution
of time series with different rhythmic components.
Rather than a sinusoid, the method is based on a wave-
let function that narrows when high-frequency features
are present and widens on low-frequency structures
(Daubechies 1992; Torrence & Compo 1998). Wavelet
analysis has been widely applied across disciplines
since its introduction in the early 1980s (for a histori-
cal account see Percival & Walden 2000), particularly
in atmospheric and oceanic sciences and more recently
to ecological time series (Jenouvrier et al. 2005;
Keitt & Fisher 2006; Wittemyer et al. 2008).
(b) Wavelet analysis to determine phenological

attributes

Here we introduce the basic approach of using wavelet
analysis to extract periodic components from phyto-
plankton time series (more details are provided in
the electronic supplementary material). Wavelet analy-
sis performs a time-scale decomposition of the signal
by estimating its spectral characteristics as a function
of time (Torrence & Compo 1998). This approach
reveals how the different scales (periodic components)
of the time series change over time as the wavelet func-
tion is stretched in time by varying its scale
(Daubechies 1992). In the present analysis, we used
the continuous Morlet wavelet transform as the wave-
let base function since it provides a good balance
between time and frequency localization, which is
desirable for feature extraction purposes (Grinsted
et al. 2004). The Morlet function is essentially a
damped complex exponential, which can capture
local (in time) cyclical fluctuations in the time series.
The frequency or the time range over which it fluctu-
ates is set by a scale parameter. In general, wavelet
scale is related to the conventional Fourier period of
oscillations. For analyses of Chl-a series, a start scale
of two months (twice the sampling interval) was speci-
fied and the spacing between the discrete scales, dj, was
chosen as 1/12 (12 suboctaves per octave), and the
number of octaves was set to 3.65, resulting in 44
scales ranging from two to 25 months.

Analogous to the traditional smoothed periodo-
gram, the wavelet power spectrum can be averaged
over time (Torrence & Compo 1998). The time-
averaged or global wavelet spectrum identifies the
scales or periods that are the most important sources
of variability of the complete series. It is estimated by
averaging the local wavelet power spectrum over the
series duration, and it gives the distribution of power
(or, equivalently, variance) among different frequen-
cies. The wavelet spectra are scale dependent, so
wavelet analysis can produce distorted power spectra
by underestimating short-period peaks (Torrence &
Compo 1998; Liu et al. 2007). Normalizing the
power spectra by the corresponding scale corrects
this problem so that spectral peaks can be compared
across scales (Liu et al. 2007). We used the time-
averaged wavelet spectrum corrected by scale to
Phil. Trans. R. Soc. B (2010)
extract the dominant period and the recurrence of
cyclical fluctuations in each Chl-a series. In order to
compare the variance across sites, each series was nor-
malized to zero mean and unit variance. The MATLAB

functions by Torrence & Compo (http://atoc.Colorado.
edu/research/wavelets/) and Grinsted et al. (2004) were
used for the wavelet analysis.

We illustrate application of wavelet analysis using a
Chl-a time series from the North Atlantic (figure 1).
The monthly series showed a recurrent cycle with an
apparent 12-month period, and additional components
of variability in some years. The mean annual cycle
(monthly average Chl-a) at this site showed peak bio-
mass in July. The wavelet power spectrum shows the
decomposition of this series in time (along the x-axis)
and period (along the y-axis) scale. It identified a
strong annual cycle and confirmed a dominant 12-
month periodicity (shown in red), and additional com-
ponents of variability at shorter periods. The time-
averaged spectrum showed that the 12-month period-
icity was highly significant and explained the largest
proportion of the variance of the time series.

This example illustrates the power of wavelet analy-
sis for visualizing the periodic components of
variability in a time series, the strength of those peri-
odic components, and their consistency over time.
Patterns visualized with the wavelet power spectrum
are integrated over time in the time-averaged spec-
trum, which extracts the dominant period(s) of
variability in the full record and the explained variance
of each period. We analysed synthetic time series (see
the electronic supplementary material) to demonstrate
that the explained variance of the time-averaged spec-
trum is a useful index to extract from time series two
characteristic attributes of phenology: the important
period(s) of variability (shown on the y-axis of the
time-averaged wavelet spectrum in figure 1), and the
recurrence strength of the dominant period(s) from
year to year (shown on the x-axis of the time-averaged
wavelet spectrum in figure 1). We applied this tech-
nique to Chl-a time series described below, and then
compared results across sites.
3. SOURCES AND LIMITATIONS OF Chl-a TIME
SERIES DATA
(a) Data sources and screening

Chl-a concentration is a measure of phytoplankton
biomass and proxy for primary production (Field
et al. 1998). We compiled Chl-a measurements from
monitoring and research programmes in lakes, estuar-
ine–coastal waters, and oceanic sites. Satellite imagery
has been used over the past two decades to routinely
measure Chl-a variability in the ocean and on land
(Garcia-Soto & Pingree 2009; Kahru et al. 2009).
However, there are no operational programmes of
remote sensing for measuring Chl-a in small lakes or
estuaries and bays because of interference of the chloro-
phyll reflectance signal from dissolved coloured
substances, suspended sediments and bottom reflec-
tance (Lunetta et al. 2009). In addition, remote
sensing is not feasible in ecosystems having dimensions
of the same scale as pixel size of satellite imagery. There-
fore, studies of phytoplankton biomass variability in lake

http://atoc.Colorado.edu/research/wavelets/
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and shallow coastal ecosystems are based largely on
direct measurements of Chl-a in discrete water samples.

Time series of Chl-a were selected for analysis
based on length and completeness of the data record.
Each selected series had at least 8 years of data with
at least 10 months of data for each year, and each
month was sampled for at least 6 years. For lake sites
where Chl-a measurements were consistently missing
during one or two months of the year (usually the
months of ice-on and ice-off ) we relaxed the latter
criterion. Chl-a series meeting these criteria were
compiled across a wide geographical, trophic and
morphological spectrum that included 70 estuarine–
coastal, 50 lakes and five ocean time series (yielding
2,236 site-years) from sites between 228 and 608 lati-
tude and from sea level to 1994 m elevation. The
length of the Chl-a series ranged from 8 to 50 years
and had a median of 16 years duration. Site location,
description, and sources of Chl-a time series are pro-
vided in the electronic supplementary material, table
S1 and figure S3.

The depth and frequency of Chl-a sampling varied
across sites. We used surface measurements from estu-
arine–coastal ecosystems, oceanic sites and shallow
lakes, but mean values over the euphotic zone for
deep lakes (except Lake Constance), and the Hawaii
and Bermuda Atlantic series. Most sites were sampled
at monthly frequency; series collected at higher fre-
quency were aggregated on a monthly basis using the
mean. Missing monthly values were interpolated by
the long-term mean of that month adjusted for that
year’s mean Chl-a using the decomposition method
described by Cloern & Jassby (2010) (see the elec-
tronic supplementary material for more details). We
used R v. 2.10.0 (R Development Core Team 2009)
and its contributed packages for data preparation for
wavelet analysis.
(b) Monthly sampling frequency as a limitation

to assess annual cycles

Phytoplankton biomass varies across the full spectrum
of time scales at which we can make measurements
(Cloern 1996), but most research and monitoring pro-
grammes sustained longer than a decade have
measured phytoplankton biomass at monthly fre-
quency. This limitation of the available data is a
(potentially large) source of error in analyses to extract
periodicity of within-year Chl-a variability. We used a
bootstrap approach to estimate this error, using Chl-
a series measured (near-) daily in North Inlet Estuary
and Gulf of Aqaba. We resampled each of these series
at a monthly sampling interval that varied randomly
for 7 days to construct simulated series of monthly
sampling. We then extracted the dominant period(s)
of variability in each simulated monthly series using
wavelet analysis (as described above). These simulated
time series were compared with the actual monthly
Chl-a series generated from the daily data (figure 2).
Per cent deviations of simulated averages (xsim) from
actual Chl-a averages (xobs) were calculated as
100 jxsim—xobsj / xobs.

Simulated monthly averages of Chl-a differed from
actual monthly averages by 34+4 per cent for the
Phil. Trans. R. Soc. B (2010)
North Inlet and 19+3 per cent for the Gulf of
Aqaba Chl-a series. Although monthly frequency
sampling over- or underestimated bloom peaks
(figure 2, left panels), it provided a basis for identifying
the dominant period(s) of variability at sites where
annual cycles were present (figure 2, right panels).
The actual dominant periodicity was always captured
with discrete monthly sampling, but the explained
variance of the spectra was often lower compared
with sampling at daily frequency. This implies that
discrete monthly sampling may underestimate the
recurrence strength of the actual annual cycle. Jassby
et al. (2004) used a similar bootstrap approach
and concluded that much of the basic structure of
phytoplankton variability is captured with sampling
at monthly frequency. Further, sampling over many
years increases the robustness of time-averaged spectra
as the annual pattern is resampled many times.
However, a definitive measure of the magnitude of
the sampling error will not be feasible until decadal
records of high-frequency Chl-a variability become
available across a range of ecosystem types.
4. CHARACTERISTICS AND PERIODICITIES
OF PHYTOPLANKTON TIME SERIES
(a) Phytoplankton biomass variability within

and between sites

The Chl-a series analysed here were collected across a
broad range of trophic states. Median annual Chl-a
concentration ranged from 0.11 mg l21 in oligotrophic
waters such as Bermuda Atlantic (BATS) to 80 mg l21

in ultraproductive systems such as Lake Apopka
(figure 3). Annual mean Chl-a concentration at indi-
vidual sites was highly variable from year to year,
ranging, for example, between 2.8 and 18.6 mg l21 in
Lake Washington and between 6.2 and 53 mg l21 in
lake Little Mere. Ten-fold variability of mean annual
biomass and, therefore, amplitude of the annual cycle,
appears to be a common feature of phytoplankton
dynamics (Cloern & Jassby 2008).

(b) Annual patterns revealed by wavelet analysis

Analyses of 125 Chl-a time series revealed four annual
patterns in the wavelet power spectra as peaks at
periods of either 12, 6 or 2–4 months, or mixed pat-
terns, such as 12- and six-month periodicity. We
selected examples to illustrate these four patterns.
The Wadden Sea (site Marsdiep noord) time series
(figure 4a) exemplified an annual cycle with one
dominant bloom, in this case with peak biomass
in April and May. The continuous wavelet power spec-
trum revealed a persistent 12-month periodicity, which
explained the largest amount of variability over the
sampling period. It also revealed periodic patterns at
six-month scale, but these explained a small amount
of the variance. In contrast, the Chl-a series from
Lake Heiligensee (figure 4b) exemplified a six-month
periodicity of a spring and autumn bloom pattern of
temperate lakes. The continuous wavelet spectrum
showed that the six-month pattern was persistent in
Heiligensee until the late 1990s and then weakened.
The continuous spectrum also identified variability at
periods less than six months, but these disappeared
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Figure 5. Dominant periodicities and recurrence strength of phytoplankton biomass (Chl-a) patterns. (a) Proportion of dominant
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in the mid 1990s. The time-averaged spectrum
showed that the six-month period explained most of
the overall variability in this lake (figure 4b).

Phytoplankton biomass variability in Lake Hatchi-
neha did not follow either of the canonical patterns
of six- or 12-month cycles. Instead, Chl-a fluctuated
here at periods from two to four months (figure 4c),
indicative of a noisy time series with high frequency
variability. The series of monthly average Chl-a also
showed that phytoplankton biomass did not fluctuate
over a regular annual cycle in this lake. The explained
variance of this Chl-a series was small; thus the less
than four-month pattern was not strongly expressed.
Weakness of the less than four-month pattern was also
reflected in the continuous wavelet power spectrum
showing that it disappeared in 1990. The 12- and six-
month periods (figure 4a,b) are well-established features
of phytoplankton variability, but variability in the 2–4
month band is not. We interpret this short-period pat-
tern as either: (i) variability dominated by irregular,
short-term bloom events, (ii) variability at periods
shorter than six months and attributable to serial
correlation of the series, or (iii) sampling error,
especially at sites where only one or a few measurements
were taken per month and the short-period components
of variability cannot be resolved.

The fourth pattern revealed by wavelet analysis was
mixed, with variability detected at both six- and
12-month periods, exemplified in the time-averaged
spectrum of the Chl-a series from Bahia Blanca Estu-
ary (figure 4d). The six-month period explained the
highest absolute amount of variance over the sampling
period, but the 12-month period was also significant.
The continuous wavelet transform identified a shift
that occurred around 1990, from a dominant
12-month period (and its possible subharmonics at
six and three months) to a dominant six-month
period. This example illustrates the non-stationary
character of phytoplankton time series, and the utility
of the wavelet power spectrum for visualizing changes
in periodic behaviour over time. In this case, the
presence of two dominant periods shown in the
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time-averaged spectrum is explained in the continuous
spectrum as a shift from a 12- to a six-month cycle.
A few sites (e.g. Florida Bay (site 1), Lake Apopka)
had no detectable periodic components, indicative of
irregular biomass variability.
(c) Identification of the dominant period

The Bahia Blanca Estuary Chl-a series demonstrated
that annual cycles of phytoplankton variability can
change over time. This implies that series length can
be critical if we select the dominant periods as those
with highest explained absolute variance, particularly
since series lengths ranged from 8 to 50 years.
To account for different sampling duration, we standard-
ized the length of the time series by applying a sliding
window bootstrap approach of 10 years (or the entire
series for sites with 8 and 9 years of observation, respect-
ively). This approach yielded 1146 10-year records of
monthly Chl-a from which we extracted the dominant
periods of variability and the explained variance of
each period. We then identified the dominant period
of variability in each 10-year window and counted pro-
portional occurrences of each pattern (no, 2–4, 6- and
12-month period) over the entire sampling period for
each site. The counts in each pattern type were
summed across sites and divided by the total number
of sites to calculate overall proportions of each period.
The wavelet variance of each site for each period was
averaged to calculate the explained variance of a site.
(d) Phytoplankton periodicity in lake,

estuarine–coastal and ocean ecosystems

Nearly half (48%) of the Chl-a series examined here
had a dominant 12-month cycle (figure 5a) corres-
ponding to one peak per year. The phasing of these
annual cycles varied, however, across ecosystems,
which can have peak biomass any month of the year
(Cloern & Jassby 2008). We showed, for example,
summer Chl-a maxima in the North Atlantic
(figure 1) but winter–spring peaks in the Bahia
Blanca Estuary (figure 4d). The six-month period,
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diagnostic of two peaks per year (such as spring–
autumn or summer–winter cycles), was dominant in
about 20 per cent of the series and more common
in lake (25%) and oceanic (50%) sites than in
estuarine–coastal (16%) ecosystems (data not
shown). A third (31%) of the series showed a pattern
best attributed to the 2–4 month band periodicity,
and for 1 per cent no cyclic patterns were detected
(see the electronic supplementary material, table S1
for the dominant period of each site).

The 12-month period had the strongest recurrence,
with an average explained variance of 0.35+0.12
(figure 5b), suggesting that one bloom per year is the
most predictable signal. However, explained variance
of the 12-month cycle varied across sites, ranging
from 0.2 to 0.9 and was highest at North Inlet Estuary
and Dorset Ontario Lakes, and lowest at sites such as
Lake Rotorua. Therefore, even where 12-month
cycles were present their phase and amplitude were
not necessarily recurrent from year to year. This finding
is consistent with observations that the seasonal timing
of biomass peaks is variable within some estuarine–
coastal ecosystems (Cloern & Jassby 2008). Analysis
of the longer Chl-a series also showed that recurrence
strength of the 12-month cycle varied among their
10-year segments, illustrated as error bars around the
mean recurrence strength at each site (figure 5b).

The 6- and 2–4-month periods explained smaller
proportions of Chl-a variance (0.25+0.08 and
0.21+0.05, respectively) compared with the 12-
month cycle (figure 5b). Trout Lake, Lake Heiligensee
and Odense Fjord (site 6940622) had strongly recur-
ring six-month cycles, whereas Lake Mondsee had
weakly recurring six-month cycles. The 2–4 month
scale was most recurrent in the series from Lake
Hatchineha, Lake Tolopekaliga and coastal site Tolo
Harbor (site TM9) and least recurrent at Lake
Neusiedlersee and Florida Bay (site 12).
5. ANNUAL CYCLES OF PHYTOPLANKTON
BIOMASS
Our analysis and comparison of many Chl-a series
revealed the following annual patterns of phytoplank-
ton variability:

— 12-month periodicity. The most commonly observed
pattern was one phytoplankton peak per year, the
canonical annual cycle of temperate lakes and
oceans (Cushing 1959; Sommer et al. 1986).
Spring blooms are tuned to the seasonal increase
in solar radiation and thermal stratification after
winter mixing redistributes nutrients to surface
waters. In large estuaries, such as Chesapeake
Bay, the spring bloom is a response to high river
flow that delivers nutrients and freshwater to
establish salinity stratification (Harding & Perry
1997). The phasing, duration and intensity of
annual blooms can vary from year to year within
single ecosystems; for example, the annual phyto-
plankton maximum in Narragansett Bay occurred
between winter–spring and mid-August and its mag-
nitude ranged more than 10-fold over the last
decades (Smayda 1998). High interannual variability
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of the 12-month cycle is reflected in the low observed
wavelet variance detected in many Chl-a series
(figure 5). This variability arises from many
interactive processes of bloom dynamics, including
external forcing (meteorological conditions, resource
availability) and internal multispecies interactions
(Dakos et al. 2009; Platt et al. 2010).

— Six-month periodicity. This bimodal pattern is
characteristic of two peaks per year, such as
spring and autumn or summer and winter
blooms. It is also associated with seasonal changes
in mixing intensity, nutrient availability, grazing
and shifts in phytoplankton community structure.
Nutrient depletion and increasing zooplankton
grazing typically cause breakdown of spring
blooms and maintain low phytoplankton biomass
during summer; and in nutrient-rich systems
grazing-resistant algal species can give rise to a
second bloom later in the year (Sommer et al.
1986). In temperate lakes (Reynolds 2006), oceans
(Longhurst 1995) and coastal basins (Longhurst
1995; Li et al. 2010), a secondary bloom in
autumn is often fuelled by transport of nutrient-
rich deep waters to the surface as stratification is
eroded by surface cooling and convective mixing.
Further, in turbid estuaries where phytoplankton is
controlled by light availability, winter blooms can
be triggered by increasing solar penetration caused
by a reduction of suspended sediments owing to
low river inflow or reduced wind stress (Guinder
et al. 2009). Similar to the unimodal patterns,
these bimodal patterns are highly variable and
secondary blooms may not appear regularly.

— Short-term fluctuation. About a third of the series we
examined were dominated by short-periodic
fluctuations. These were more common in coastal–
estuarine sites (39%) compared with lakes (25%)
and were not a dominant pattern in the ocean time
series. Irregular blooms are often responses to
short-term climatic events that change temperature
and mixing dynamics. For example, storm series
can cause a sequence of biomass oscillations by
breaking down phytoplankton blooms that build
during intervening calm periods of low turbulence
(Garcia-Soto & Pingree 2009). Short-term fluctu-
ations also result from individual species succession
causing stochastic bloom occurrence: coccolitho-
phores, dinoflagellates, cyanobacteria or diatoms
can produce massive blooms under favourable grow-
ing conditions (Smayda 1998; Siegel et al. 2007;
Paerl et al. 2010). Wind events that influence
exchange of water masses with the ocean can also
cause random, short-lived blooms in estuaries and
coastal lagoons (Abreu et al. 2010).

— Shift in periodicity. Our analysis showed that
approximately a third of the sites had different
dominant periods of variability within a 10-year
sampling window (data not shown), indicating
that shifts in the annual phytoplankton cycle are
common. The example of the Bahia Blanca Estu-
ary (figure 4c) showed that annual cycles can
change abruptly. In this estuary, the once dominant
12-month cycle (winter blooms) was replaced by a
six-month periodicity. Shifts in annual cycles have
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been observed in other ecosystems, such as weak-
ening of the autumn bloom in the Dutch Wadden
Sea over past decades (Philippart et al. 2010), or
a shift from winter biomass maxima to pronounced
summer or autumn biomass buildup in Narragan-
sett Bay (Karentz & Smayda 1998; Borkman &
Smayda 2009).

— No periodic pattern. Some sites revealed episodic
bloom events with no recurring pattern or sup-
pressed cycles. For example, no dominant annual
pattern was apparent in hypereutrophic Lake
Apopka over the entire sampling period, and
when periodic cycles (12-month or short-term
fluctuations) were present they only persisted for
a few years. The absence of a periodic pattern in
this shallow nutrient-rich lake is probably associ-
ated with the year-round dominance of
cyanobacteria and low zooplankton grazing due
to high fish predation (Havens et al. 2009).

All these pattern types were found in both lakes and
estuarine–coastal sites. In contrast, the open ocean
series had 12- and six-month periodicities, although
the Hawaii Ocean time series (HOT) contained epi-
sodic short-term variability (data not shown). In
addition, the predominant annual bloom pattern was
not related to Chl-a concentration (ANOVA;
F1,120 ¼ 1.36, p ¼ 0.2), suggesting that trophic con-
dition did not affect the annual phytoplankton cycle.
These observed patterns of phytoplankton periodicity
in the temperate and subtropical zone probably
extend to the tropics. Melack (1979) found no uni-
form pattern in seasonal phytoplankton dynamics of
tropical lakes. In these low-latitude sites with absence
of distinct seasonal change in radiation and tempera-
ture, phytoplankton dynamics can vary from strong
seasonal fluctuations to more damped fluctuations
and sudden change in the seasonal dynamics. A latitu-
dinal gradient in annual patterns is expected (e.g.
Harris 1986), with a consistent unimodal pattern pre-
dominating at high latitudes and progressive
weakening and irregularity of an annual cycle at
lower latitudes. Our results were consistent with this
expectation as the 12-month periodicity dominated
in northern sites and the less than four-month period-
icity was most common in lakes and estuarine–coastal
sites below 308 latitude. However, almost all of the
subtropical sites were located in Florida (see the elec-
tronic supplementary material, figure S3). A definitive
identification of latitudinal gradients in the phasing
and amplitude of phytoplankton annual cycles will
require time series across a more globally representative
suite of low-latitude ecosystems.

Our findings show that phytoplankton biomass does
not follow one annual cycle, that the phase and ampli-
tude of annual cycles vary from year-to-year, and that
phytoplankton time series are non-stationary. High
annual variability appears to be a fundamental attri-
bute of phytoplankton growth–senescence cycles.
These fast-growing cells can respond rapidly to favour-
able environmental conditions by exponential
population growth, and tight predator–prey coupling
can cause equally rapid bloom collapse. In addition,
phytoplankton boom–bust cycles are not always a
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response of the entire community but often a reflection
of population succession of individual taxa. Species-
specific variation in resource requirement and trophic
interactions can generate complex dynamical
behaviours and trigger episodic bloom events (Dakos
et al. 2009). Consequently, fast biomass turnover of
this physiologically and morphologically diverse
group suggests that blooms can occur with varying
intensity and at different times each year.
6. PHYTOPLANKTON PHENOLOGY AS AN
INDICATOR OF GLOBAL CHANGE
Phytoplankton biomass fluctuates in synchrony with
the annual climate cycle in many lakes, oceans and
estuaries, analogous to terrestrial plants (Richardson
et al. 2010). These periodic annual cycles are linked
to annual fluctuations of mixing, temperature, light
and precipitation (Smetacek 1985; Sommer et al.
1986; Cloern 1996). Changing climatic conditions
can modify these environmental factors and alter phy-
toplankton annual cycles directly or indirectly by
altering resource availability and trophic interactions.
For example, vernal warming advanced the timing of
stratification onset and the spring bloom in Lake
Washington by more than 20 days over the past four
decades (Winder & Schindler 2004b). Shifts in bloom
timing were also observed in the Western Scheldt Estu-
ary, where earlier onset of blooms paralleled increasing
temperature over the past 30 years (Kromkamp &
Van Engeland 2010). Similarly, a shift to the warm
phase of the North Atlantic Oscillation caused advance-
ment of stratification onset and the spring bloom in the
Baltic Sea (Smayda et al. 2004; Alheit et al. 2005), and
accelerated early summer algal suppression due to faster
growth of herbivores in warmer water across central
European lakes (Straile 2002). Similarly, new autumn
phytoplankton blooms developed in San Francisco
Bay through a trophic cascade induced by a shift of
the east Pacific to its ‘cool’ phase in 1999 (Cloern
et al. 2007). So, phytoplankton time series are
beginning to reveal responses to trends or multidecadal
oscillations of climate variability.

However, phytoplankton biomass also responds
strongly to climatic variability at shorter time scales.
Heatwaves, nutrient run-off from storms, upwelling
events or drought-induced increases of water residence
time can all trigger algal blooms. Massive blooms of
cyanobacteria and dinoflagellates (red tides) are often
responses to anomalous warm temperatures and stable
stratification (Huisman et al. 2004; Hall et al. 2008;
Jöhnk et al. 2008). Extreme nutrient run-off produced
by tropical storms triggered dinoflagellate blooms in
the Neuse River estuary (Hall et al. 2008) and increased
Chl-a in Florida Bay (Briceño & Boyer 2010). In the
Black Sea warm temperature and low wind stress can
trigger unusually large blooms throughout the entire
growing period (McQuatters-Gollop et al. 2008). Simi-
larly, increased wind stress, water temperature and
reduced water run-off affected the phytoplankton
dynamics in Boreal lakes (Schindler et al. 1990).

These examples illustrate that the climate system
induces changes in phytoplankton fluctuation through
many processes operating at many time scales in
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addition to the annual cycle, affecting both the timing
and intensity of blooms. However, phytoplankton
variability is not tuned to the annual climate cycle at
all sites, and large changes in phytoplankton patterns
have been caused by processes disconnected from cli-
mate variability, most notably by human disturbances
(Schindler 2001). Confounding factors and interacting
effects of climate and local-scale variability can disrupt
or mask phytoplankton responses caused by climate
and meteorological forcing. Prominent local drivers
of annual phytoplankton variability include alterations
of nutrient loading and trophic interactions. Cultural
eutrophication or reduction of nutrient loading can
cause massive change in phytoplankton dynamics
(Anneville et al. 2005; Jeppesen et al. 2005) and
modify the temporal succession and amplitude of phy-
toplankton fluctuations (Sommer et al. 1993; Verity &
Borkman 2010). Similarly, disruption of food-webs by
introduced species can profoundly alter phytoplankton
biomass (Alpine & Cloern 1992; Fahnenstiel et al.
1995; Makarewicz et al. 1999). Removal of top preda-
tors by fishing or introduction of non-indigenous
species can also affect phytoplankton dynamics
through trophic cascades (Frank et al. 2005; Casini
et al. 2009). Rates and the relative importance of
these processes vary across sites, leading to diverse pat-
terns of biomass fluctuation. The exposure of
phytoplankton to a range of global-change factors
and local drivers explains the heterogeneity of annual
fluctuations observed in our analysis, indicating that
climate is one of several factors that shape pelagic sea-
sonality. The processes driving variation in bloom
formation are sometimes not fully understood as the
interplay between physical, chemical and food-web
processes can lead to complex annual patterns. Finally,
chlorophyll measurements combine the response of
many species, whereas single species can show oppos-
ing patterns, which can obscure phenological
responses of phytoplankton to changing climate
(Edwards & Richardson 2004).

The underlying basis for phenology as a sensitive
biological indicator of climate change is that seasonal
activity is finely tuned to the annual climate cycle.
The emergence of multidecadal datasets is now begin-
ning to reveal that phytoplankton communities
undergo distinct seasonal and interannual changes in
response to climate change. However, applications of
phenology to detect gradual shifts in the annual
growth–senescence cycle will be difficult at those sites
where phytoplankton biomass does not closely track
the annual climate cycle. The potential for detecting
ecological responses to climate change therefore varies
by site, depending on the relative importance of the
annual climate cycle versus other drivers of phytoplank-
ton variability. Phytoplankton variability is a key driver
of biogeochemical variability (Cloern 1996; Behrenfeld
et al. 2006) and fluctuations in annual fish recruitment
(Platt et al. 2003). An improved understanding of the
inherent natural variability of phytoplankton is therefore
important for forecasting the extent of global change
impact on aquatic ecosystem functioning.
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