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Recent advances in the field of chaotic advection provide the impetus to revisit
the dynamics of particles transported by blood flow in the presence of vessel wall
irregularities. The irregularity, being either a narrowing or expansion of the vessel,
mimicking stenoses or aneurysms, generates abnormal flow patterns that lead to a
peculiar filamentary distribution of advected particles, which, in the blood, would include
platelets. Using a simple model, we show how the filamentary distribution depends on the
size of the vessel wall irregularity, and how it varies under resting or exercise conditions.
The particles transported by blood flow that spend a long time around a disturbance
either stick to the vessel wall or reside on fractal filaments. We show that the faster flow
associated with exercise creates widespread filaments where particles can get trapped
for a longer time, thus allowing for the possible activation of such particles. We argue,
based on previous results in the field of active processes in flows, that the non-trivial
long-time distribution of transported particles has the potential to have major effects on
biochemical processes occurring in blood flow, including the activation and deposition
of platelets. One aspect of the generality of our approach is that it also applies to
other relevant biological processes, an example being the coexistence of plankton species
investigated previously.
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1. Introduction

Cardiovascular diseases cause about 17 million deaths worldwide each year
(World Health Organization 2004). Abnormalities in blood flow, blood
components and vessel wall, constituting Virchow’s triad (Lowe 2003), are the
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main contributors to the development of these serious diseases. In this paper,
we show that chaotic motion of particles transported by blood also plays an
important role in the formation of circulatory diseases. Vessel wall irregularities,
being either constrictions (stenoses) or sudden enlargements (aneurysms), affect
the flow field, which in turn changes in a complicated way the activation of
particles like platelets.

The contribution of blood flow to the biochemical activity of particles is
usually believed to be restricted to the effect of shear stress and residence
time, and that both of these are easily determined by the flow velocity field.
We show in this paper that this is not the case. In a time-dependent flow, the
spatial distribution of the particles is not evident from the blood flow patterns.
Rather, the trajectories of particles are much more complex and require further
analysis. Indeed, recent advances in the field of nonlinear dynamics, and in
particular in chaotic advection, show that flow pattern and the actual particle
trajectories are typically and dramatically different in time-dependent flows (Aref
1984; Ottino 1989; Péntek et al. 1995; Károlyi & Tél 1997; Vilela et al. 2006).
Even in laminar flows, particle motion is in general very complex displaying
chaotic behaviour.

The chaotic dynamics of the transported particles leads to a peculiar
filamentary distribution. For a wide range of active flows, this distribution
has been shown to modify relevant chemical reactions (Toroczkai et al. 1998;
Neufeld et al. 1999; Nugent et al. 2004; Károlyi & Tél 2005, 2007; Arratia &
Gollub 2006) and population dynamical equations (Scheuring et al. 2003b), with
applications ranging from atmospheric chemistry (Edouard et al. 1996; Grooss
et al. 2005; Vilela & Motter 2007) to plankton population dynamics (Bracco
et al. 2000) and evolution of life (Scheuring et al. 2003a); for a review see
Tél et al. (2005).

The important conclusion from these studies is that the non-trivial,
inhomogeneous, filamentary distribution of the chemically or biologically active
particles has a very important consequence on their activity. In particular, the
active particles spend a long time on filaments with long perimeter, hence
activity is catalysed by fluid mixing. In recent years, this phenomenon has
been extensively studied in relation to plankton dynamics, and it has been
found that the chaotic plankton motion can give a possible explanation for
the paradox of plankton (Károlyi et al. 2000). According to this paradox,
the number of coexisting plankton species cannot exceed the number of
limiting resources (Hardin 1960), which contradicts the obvious observation
(Hutchinson 1961). The filamentary distribution of the particles results in an
advantage of rarity for the weaker species that leads to coexistence. Besides
the more traditional mechanisms, like environmental heterogeneity, predation,
external disturbance, coevolution and seasonal variability, fluid mixing can also
maintain biodiversity.

In blood, the role of transport in the biochemical activity of particles has
been mostly neglected. Besides the complex distribution of particles with long
residence times, the chaotic motion of particles also implies an (exponentially)
strong separation of nearby particles, and hence a strong stretching is present
along particle orbits. This stretching can lead to the activation of platelets, an
effect that is stronger than the usually assumed influence of shear stress imposed
by the flow velocity field.
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Using simple numerical flow models, we show how recent results in chaotic
advection affect the traditional view of transport and activation in blood flow. We
also discuss the importance of different processes in blood vessels of various sizes
and show examples of filamentary patterns traced out by particles transported
by the flow.

The paper is organized as follows. In §2, chaotic advection in fluids is briefly
reviewed. The numerical models used in our simulations are introduced in §3.
In §4, we show the fractal spatial filamentary distribution of advected particles.
Finally, in §5, we discuss the results and summarize our conclusions.

2. Chaotic advection

The chaotic motion of particles implies sensitive dependence on the initial
conditions, that is, any two initially close particles rapidly (exponentially) deviate
from each other. The average rate of this exponential divergence is measured by
the Lyapunov exponent (Tél & Gruiz 2006), denoted by l. Typically, two particles
initially at a small distance d(0) apart separate exponentially from each other,
their average distance d(t) at some time t later being given by d(t) = d(0) exp(lt).
This exponential divergence occurs along specific curves forming the so-called
unstable foliation (unstable manifold). If we take a set of particles, say a blob
of dye injected into the flow, all particles rapidly diverge from each other along
the unstable foliation, the dye droplet is stretched very rapidly, forming filaments
in the fluid. Because the shape of the curves forming the unstable foliation is
usually extremely distorted, the filaments become folded. This stretching and
folding action is very typical in chaotic dynamical systems (Tél & Gruiz 2006).
Figure 1 shows an illustration of such a mechanism in a constricted vessel.

Blood flow in vessels belongs to the category of open flows (Lamb 1932; Péntek
et al. 1995). In open flows, there is a region of observation, such as the segment
of the blood vessel around some irregularities (region inside the dashed rectangle
in figure 1), into which the fluid transports the particles and later washes them
out. Nonetheless, before leaving the region of observation, particles may exhibit
a chaotic behaviour. In open flows, there is typically a set, the so-called chaotic
set, composed by orbits that never leave the region of observation (Péntek et al.
1995; Tél & Gruiz 2006). The particle orbits of the chaotic set are not typical (in
the sense that most other orbits leave the region of observation in finite time),
and they are unstable (particles in their vicinity deviate from the chaotic set
and leave the region of observation). However, their existence still governs the
behaviour of the other particles. The particles that are transported close to this
chaotic set will stroll in the vicinity of the trapped orbits for a long time, and
eventually will leave them along the unstable foliation (Péntek et al. 1995; Tél &
Gruiz 2006). Thus, particles staying for a long time close to the chaotic set, before
transported downstream, trace out the unstable foliation (the unstable manifold
of the chaotic set).

Geometrically, the chaotic set is a fractal set, and so is the unstable foliation
(Kantz & Grassberger 1985; Péntek et al. 1995; Tél & Gruiz 2006). The unstable
foliation is a strange mathematical object, consisting of an uncountable infinite
number of filaments. The complexity of this object is measured by the fractal
dimension (Kantz & Grassberger 1985; Tél & Gruiz 2006), a real number that
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Figure 1. Illustration of the unstable foliation: the schematic diagram shows the time evolution of
a dye droplet that enters the region of observation (region inside the dashed rectangle). With time,
the droplet deforms, by stretching and folding processes, and, after a long period, traces out the
unstable manifold of the chaotic saddle.

generalizes the concept of ordinary dimension. For usual objects, the fractal
dimension, denoted by D, is an integer number, the ordinary dimension of the
object, say 1 for lines, 2 for planar objects and so on. For fractal geometrical
objects D is, however, a non-integer (Tél & Gruiz 2006). Owing to the structure
of the unstable foliation in two-dimensional flows—smooth curves along the
foliation and fractal transverse to them—it has a dimension between 1 and 2.
The dimension in smooth fluid flows is independent of time (Tél & Gruiz 2006),
hence it is a valuable measure of the complexity of the unstable foliation.

3. Model

In our model, two main aspects control the advection of particles: (i) the
perturbation of the flow (i.e. the shape of the vessel wall) and (ii) the time
dependence of the background flow. Typically, each stage of the disease may
generate a different scenario—the more severe is the disease, for instance, the
more complicated the particle motion around the perturbation becomes. On the
other hand, the time dependence of the flow, generated by its pulsative nature,
also plays a central role in the particle dynamics. Different conditions, such as
exercising or resting ones, allow for different scenarios even if the shape of the
vessels is the same.

In order to simulate these different effects, we vary the stages of each disease by
changing the size of the anomalies. For each size, we simulate the time dependence
with exercising and resting conditions. We use simple two-dimensional models
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to reproduce blood flow both in stenosis in coronary arteries and in abdominal
aortas with aneurysm. The diameter of the modelled coronary arteries is 4 mm;
in the stenosed segment, the minimum diameter varies between 1 and 3 mm (in
three dimensions, these would imply 93.75 and 43.75% occlusion, respectively).
The length of the disturbed segment is 1 cm. For the model of the aneurysm, the
normal diameter of the aorta is taken to be 2 cm. The maximum diameter at the
aneurysm is varied between 3 and 6 cm, while the length of the dilated segment is
10 cm. Both for the stenosis and for the aneurysm the shape is sinusoidal, a form
widely used in simulations and in experiments because of its simplicity (Kunov
et al. 1996; Wootton et al. 2001).

To find the trajectories of particles transported by the blood, first the velocity
field v(r, t) of the flow has to be computed. This is achieved by solving the
Navier–Stokes equations with the available finite volume solver (Fluent), with
a corresponding mesh generator (Gambit). The length of the time step used
throughout the simulation is 0.001 s, fine enough to give the same result as that
with smaller time steps. For such large vessels, we can consider the blood to be
incompressible, Newtonian, with a constant dynamic viscosity m = 0.04 g cm−1 s−1,
and the density of the blood is approximated to be r = 1.06 g cm−3 (Ku 1997).

For the coronary artery, the model of the time dependence of the inlet velocity
is given by idealized approximations of measured flow rates shown by Berry et al.
(2000) for one heartbeat, those for the aorta are based on Taylor et al. (1999;
see also Schelin et al. 2009). In the far upstream region, the inflow velocity is
taken to be constant across the cross section, but the expected velocity profile
has been checked to develop close to the inlet of the disturbance. During one
heartbeat period, the inlet velocity v in our model is time-dependent, it varies
between 0.4 m s−1 (peak velocity in case of systole in exercise) and a small back-
flow component (diastole). This way, the Reynolds number Re = vdr/h, where d
is the blood vessel diameter, in our simulations falls between 0 (during diastole)
and 2200 (during systole with peak velocity in the aorta). The higher end of this
range is comparable with the transition to turbulence in pipe flows, and we indeed
see irregular vortical structures in the fluid velocity field in our simulations.

Once we have the velocity field, v(r, t), the motion of the passively advected
particles is simulated using the fourth order Runge–Kutta method, with a small
fixed time step, to solve the equation

dr(t)
dt

= v(r, t). (3.1)

Passive advection implies that the particles take on the velocity of the fluid
instantaneously, hence the inertia and the size of the particles are neglected.
This is a reasonable assumption for platelets (of size of the order of a few
micrometres) in arteries (of diameter above a few millimetres). An important
dimensionless quantity that describes the importance of diffusion is the Péclet
number Pe = dv/Ddiff , where Ddiff is the diffusion coefficient of the particle. In
the case of platelets, Ddiff = 10−7 cm2 s−1, which results in Pe = 2 × 108 in blood
vessels of diameter 1 cm with average velocity of 0.2 m s−1. This very large value
indicates that the effects of diffusion are negligible when compared with the
transport by fluid motion. This ideal view is somewhat modified by the presence
of larger particles, like red blood cells, but in the large blood vessels we consider
neglecting their presence for simplicity.
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4. Results

To see if there is chaotic advection in blood flow even in our simplified model, we
follow the trajectories of many particles. To find numerically the unstable foliation
(discussed in §2), we inject particles into the flow on a rectangular grid covering
the region of observation. Then we plot the final position of those particles that
stay for a long time, that is, that are not transported downstream in a set period
of time. The patterns traced by this group of particles are shown in figure 2 for
the model of the stenosis, and in figure 3 for the model of the aneurysm.

Figure 4a,b shows snapshots of the streamlines, characterizing the flow
patterns, for a medium stenosis and aneurysm, respectively, during exercise.
Despite the relative simplicity of the flow field, the particle distribution around
the diseased area is generally very complex, as shown in figures 2d and 3d.
Traditionally, studies on the contribution of blood flows to the biochemical
processes involving particles, such as platelets, were restricted to analysis using
simulations of the (Eulerian) velocity field. By comparing figure 4a,b with
figures 2d and 3d, respectively, we can see that our (Lagrangian) approach deals
with the particles themselves, which are the relevant entities in this problem.

From figure 2, we can see that as the size of the obstacle increases, and also in
exercise conditions, the trapped particles accumulate along filamentary structures
detached from the wall. For resting conditions, there is a thick coverage of the
vessel wall with particles spending a long time there, while in exercise conditions
the particles with a significant residence time are to be found along filaments.
Exercise thus generates a filamentary distribution of the transported particles,
and destroys the non-filamentary component of the long-time distribution.

Similar observations can be made in the case of aneurysms. In figure 3, the
snapshots of the unstable foliation are shown for aneurysms of different sizes and
conditions. The filamentarity of the particle distribution that spent a long time
within the vessel wall dilation increases as the size of the aneurysm increases (from
top to bottom) and as we use exercise conditions instead of resting conditions. In
the case of resting, large compact areas of long residence time are visible inside
the vessel wall dilation. These break up and give way to the formation of more
filamentary structures in the case of exercising. The presence of an underlying
fractal structure suggests that extended particles, such as platelets, have their
covalent bonds being severely stretched, resulting in their activation.

The degree of filamentarity of the unstable foliation is quantified by measuring
the fractal dimension, D. To calculate D, we initialize many particles along a
straight line, and measure the distribution of particles having long residence
time. The number N of segments of length 3 that, on the initial straight line,
cover the initial position of particles with long residence time scales as N ≈ 3−D1

(Tél & Gruiz 2006), where D1 is the fractal dimension of the cross section of the
unstable foliation. By measuring N numerically for various segment lengths 3, we
can compute D1 for the various stenosis geometries and for resting and exercise
conditions. From D1, the fractal dimension D of the whole unstable foliation can
be obtained as D = D1 + 1. The results are summarized in table 1. The fractal
dimension for both anomalies increases with the flow disturbance, and is larger
in exercise than in resting condition. This shows that the filamentary fractal
structures are more pronounced with the increase of the blood velocity and with
the size of the disturbance.
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Figure 2. Snapshots of the unstable foliation for stenosed coronary arteries. The three rows
correspond to small, medium and large stenosis, respectively, for (a,c,e) resting and (b,d,f ) exercise
condition. The scales on the vertical and horizontal axes are different for better visualization
of the filaments. Flow is from left to right. Except for the large stenosis in exercise, only the
upper half of the blood vessel segment is shown, the whole segment being symmetric to the
y = 0.2 cm line.

We also measured the mean residence time t of the particles exhibiting chaotic
motion before they are washed downstream. In our model, the residence time
is the time it takes the particles to reach a pre-set distance downstream of the
vessel wall irregularity. As the motion is chaotic while the particles are close to
the stenosis or aneurysm, this is also the time while the particles exhibit chaotic
motion. The results for the residence time are shown in table 2 for the stenoses
and aneurysms of various severity both in resting and exercise conditions. For
small disturbance in resting conditions, there was no visible chaotic motion. We
see that the chaotic residence time decreases with exercise, which is the expected
behaviour owing to increased blood velocity. It is less intuitive, however, that
residence time decreases with the severity of the disturbance. The explanation of
this observation is that the fluid fluctuates more wildly in the presence of large
disturbances, which destroys the large vortices and washes out the bulk of the
particles more rapidly.
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Figure 3. Snapshots of the unstable foliation for aorta arteries with aneurysms. The three
rows correspond to small, medium and large aneurysms, respectively, for (a,c,e) resting and
(b,d,f ) exercise condition. The scales on the vertical and horizontal axes are different for better
visualisation of the filaments. Flow is from left to right. Only the upper half of the blood vessel
segment is shown, the whole segment being symmetric to the y = 1 cm line.
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Figure 4. Snapshots of the streamlines of blood flow in (a) a stenosed coronary artery and (b)
an aorta with aneurysm. The scales on the vertical and horizontal axes are different for better
visualisation. Flow is from left to right. Only the upper half of the blood vessel segment is shown,
the whole segment being symmetric to the (a) y = 0.2 cm and (b) y = 1 cm line.
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Table 1. Fractal dimension of the unstable manifold.

stenosis aneurysm

resting exercise resting exercise

small 2.00 ± 0 1.59 ± 0.02 2.00 ± 0 1.69 ± 0.01
medium 1.60 ± 0.02 1.66 ± 0.04 1.58 ± 0.01 1.67 ± 0.02
large 1.62 ± 0.01 1.72 ± 0.02 1.69 ± 0.01 1.70 ± 0.01

Table 2. Residence time (s).

stenosis aneurysm

resting exercise resting exercise

small — 82.0 ± 1.3 — 5.32 ± 1.80
medium 42.0 ± 0.6 30.6 ± 0.5 11.1 ± 0.10 2.37 ± 0.03
large 23.2 ± 0.3 19.2 ± 0.2 3.27 ± 0.06 2.01 ± 0.02

Table 3. Lyapunov exponent (s−1).

stenosis aneurysm

resting exercise resting exercise

small 0 0.0297 0 0.608
medium 0.0594 0.0641 0.216 1.295
large 0.113 0.187 0.973 1.648

To measure the Lyapunov exponent l, we use the data shown in tables 1
and 2. The residence time of a particle depends sensitively on the initial position
of a particle. This means that the mean residence time t of many particles
depends strongly on the complexity of this dependence on the initial conditions,
which is characterized by the Lyapunov exponent l. This implies a relationship
between the average time t the particles spend in the region of observation,
the Lyapunov exponent l characterizing the dependence on initial conditions
and the fractal dimension D describing the geometry of the unstable foliation
as l = 1/(t(2 − D)) (Kantz & Grassberger 1985). The computed values of l are
shown in table 3. The more severe the flow disturbance is, the higher the value
of the Lyapunov exponent becomes, and hence the more chaotic the particle
motion is, the more rapidly the initially close particles deviate from each other.
Exercise also increases the value of the Lyapunov exponent by imposing a more
pulsating flow.

Phil. Trans. R. Soc. A (2010)



5614 A. B. Schelin et al.

0.05

ocean chlorophyll concentration (mg m–3)

1.0 10 50

(a)

(b)

Figure 5. Plankton bloom at the throat of the Arabian Sea, provided by the EOS Project
Science Office, NASA Goddard Space Flight Center; see http://visibleearth.nasa.gov/view_rec.
php?id=19638. (a) Natural colour and (b) chlorophyll concentrating.

5. Discussion and conclusions

We have shown that filamentary fractal structures are present in blood flow
in many situations, both in resting and exercise conditions. A more complete
model could include a precise description of other biological factors of the blood
flow. The important fact, however, should remain: that chaotic advection changes
the way particles interact with each other and, thus, affects the development of
circulatory diseases. The existence of fractal filaments has been shown to have a
major effect on active processes in fluid flows. For instance, filamentary patterns
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emerge in the case of plankton populations. As an example, figure 5 shows a
satellite image of a plankton bloom at the throat of the Arabian Sea. The situation
is overall similar to a large stenosis, the pattern generated by the oceanic flow is
reminiscent of unstable foliation observed in our experiments. This similarity is
a consequence of the fact that fractal objects do not have a characteristic scale,
they look similar on all scales, be it in a blood vessel (millimetre scale) or in
oceanic currents (hundreds of kilometres).

In the case of plankton blooms, the role of advection has been uncovered during
the last decade (Abraham 1998; Bracco et al. 2000; Károlyi et al. 2000; Neufeld
et al. 2002; Martin 2003; Scheuring et al. 2003b). The fractal skeleton (Toroczkai
et al. 1998) of the filamentary patterns traps the advected particles for a long time,
where mixing is strong and the boundary between materials is very long. This
results in a dramatic increase in the access of plankton species to resources, which
alters the traditional population dynamical equations (Scheuring et al. 2003b).
The reproduction rate P becomes dependent on the fractal dimension D of the
unstable foliation in a non-trivial way, as P ∼ c−b where c is the concentration of
plankton and b = (D − 1)/(2 − D) is a positive number. This is the advantage of
rarity: the smaller the concentration is, the higher the reproduction rate becomes
(Károlyi et al. 2000; Tél et al. 2005).

At the other end of the length scales, in blood vessels, there are different kinds
of activity. As a particular example, we discuss the activation and deposition of
platelets that play an important role in blood clotting and thrombus formation.
Platelets can be activated by high shear in the blood (Kroll et al. 1996; Savage
et al. 2002; Nesbitt et al. 2006), for example, by stretching the bond between
the von Willebrand factor and platelet (Ruggeri 2002). We have seen that
one consequence of the chaotic particle transport in fluid flows is the high
stretching. One can speculate that this chaos-induced stretching can enhance
platelet activation along the chaotic set, where the Lyapunov exponent is positive.
Deposition is associated with stagnant regions in the flow: in these regions,
the Lyapunov exponent has lower values, hence stretching is also lower. These
processes should contribute to the further development of circulatory diseases
and thus must be taken into account in the modelling of platelet dynamics.
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FAPESP. C.G. and A.P.S.M. were supported by BBSRC under grant nos BB-F00513X and
BS-G010722. G.K. was supported by OTKA grant nos K68415 and NK72037.

References

Abraham, E. 1998 The generation of plankton patchiness by turbulent stirring. Nature 391,
577–580. (doi:10.1038/35361)

Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 1–21. (doi:10.1017/
S0022112084001233)

Arratia, P. E. & Gollub, J. P. 2006 Predicting the progress of diffusively limited chemical
reactions in the presence of chaotic advection. Phys. Rev. Lett. 96, 024501. (doi:10.1103/Phys
RevLett.96.024501)

Berry, J., Santamarina, A., Moore, J., Roychowdhury, S. & Routh, W. 2000 Experimental and
computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28, 386–398. (doi:10.
1114/1.276)

Bracco, A., Provenzale, A. & Scheuring, I. 2000 Mesoscale vortices and the paradox of the plankton.
Proc. R. Soc. Lond. B 267, 1795–1800. (doi:10.1098/rspb.2000.1212)

Phil. Trans. R. Soc. A (2010)

http://dx.doi.org/doi:10.1038/35361
http://dx.doi.org/doi:10.1017/S0022112084001233
http://dx.doi.org/doi:10.1017/S0022112084001233
http://dx.doi.org/doi:10.1103/PhysRevLett.96.024501
http://dx.doi.org/doi:10.1103/PhysRevLett.96.024501
http://dx.doi.org/doi:10.1114/1.276
http://dx.doi.org/doi:10.1114/1.276
http://dx.doi.org/doi:10.1098/rspb.2000.1212


5616 A. B. Schelin et al.

Edouard, S., Legras, B., Lefevre, F. & Eymard, R. 1996 The effect of small-scale inhomogeneities
on ozone depletion in the arctic. Nature 384, 444–447. (doi:10.1038/384444a0)

Grooss, J., Konopka, P. & Mueller, R. 2005 Ozone chemistry during the 2002 Antarctic vortex
split. J. Atmos. Sci. 62, 860–870. (doi:10.1175/JAS-3330.1)

Hardin, G. 1960 The competitive exclusion principle. Science 131, 1292–1298. (doi:10.1126/
science.131.3409.1292)

Hutchinson, G. 1961 The paradox of the plankton. Am. Nat. 95, 137–147. (doi:10.1086/282171)
Kantz, H. & Grassberger, P. 1985 Repellers, semi-attractors, and long-lived chaotic transients.

Physica D 17, 75–86. (doi:10.1016/0167-2789(85)90135-6)
Károlyi, G. & Tél, T. 1997 Chaotic tracer scattering and fractal basin boundaries in a blinking

vortex-sink system. Phys. Rep. 290, 125–147. (doi:10.1016/S0370-1573(97)00063-X)
Károlyi, G. & Tél, T. 2005 Chemical transients in closed chaotic flows: the role of effective

dimensions. Phys. Rev. Lett. 95, 264501. (doi:10.1103/PhysRevLett.95.264501)
Károlyi, G. & Tél, T. 2007 Effective dimensions and chemical reactions in fluid flows. Phys. Rev.

E 76, 046315. (doi:10.1103/PhysRevE.76.046315)
Károlyi, G., Péntek, A., Scheuring, I., Tél, T. & Toroczkai, Z. 2000 Chaotic flow: the physics of

species coexistence. Proc. Natl Acad. Sci. USA 97, 13 661–13 665. (doi:/10.1073/pnas.240242797)
Kroll, M., Hellums, J., McIntire, L., Schafer, A. & Moake, J. 1996 Platelets and shear stress. Blood

88, 1525–1541.
Ku, D. N. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399–434. (doi:10.1146/annurev.

fluid.29.1.399)
Kunov, M. J., Steinman, D. A. & Ethier, C. R. 1996 Particle volumetric residence time calculations

in arterial geometries. J. Biomech. Eng. 118, 158–164. (doi:10.1115/1.2795954)
Lamb, H. 1932 Hydrodynamics. Cambridge, UK: Cambridge University Press.
Lowe, G. 2003 Virchow’s triad revisited: abnormal flow. Pathophysiol. Haemost. Thromb. 33,

455–457. (doi:10.1159/000083845)
Martin, A. 2003 Phytoplankton patchiness: the role of lateral stirring and mixing. Progr. Oceanogr.

57, 125–174. (doi:10.1016/S0079-6611(03)00085-5)
Nesbitt, W., Mangin, P., Salem, H. & Jackson, S. 2006 The impact of blood rheology on

the molecular and cellular events underlying arterial thrombosis. J. Mol. Med. 84, 989–995.
(doi:10.1007/s00109-006-0101-1)

Neufeld, Z., Lopez, C. & Haynes, P. H. 1999 Smooth-filamental transition of active tracer fields
stirred by chaotic advection. Phys. Rev. Lett. 82, 2606–2609. (doi:10.1103/PhysRevLett.82.2606)

Neufeld, Z., Haynes, P. H., Garcon, V. & Sudre, J. 2002 Ocean fertilization experiments
may initiate a large scale phytoplankton bloom. Geophys. Res. Lett. 29, 1534–1537.
(doi:10.1029/2001GL013677)

Nugent, C. R., Quarles, W. M. & Solomon, T. H. 2004 Experimental studies of pattern formation
in a reaction–advection–diffusion system. Phys. Rev. Lett. 93, 218301. (doi:10.1103/PhysRev
Lett.93.218301)

Ottino, J. M. 1989 The kinematics of mixing: stretching, chaos, and transport. Cambridge, UK:
Cambridge University Press.

Péntek, A., Toroczkai, Z., Tél, T., Grebogi, C. & Yorke, J. A. 1995 Fractal boundaries in
open hydrodynamical flows: signatures of chaotic saddles. Phys. Rev. E 51, 4076–4088.
(doi:10.1103/PhysRevE.51.4076)

Ruggeri, Z. M. 2002 Platelets in atherothrombosis. Nat. Med. 8, 1227–1234. (doi:10.1038/nm1102-
1227)

Savage, B., Sixma, J. J. & Ruggeri, Z. M. 2002 Functional self-association of von Willebrand factor
during platelet adhesion under flow. Proc. Natl Acad. Sci. USA 99, 425–430. (doi:10.1073/
pnas.012459599)

Schelin, A. B., Károlyi, G., de Moura, A. P. S., Booth, N. A. & Grebogi, C. 2009 Chaotic advection
in blood flow. Phys. Rev. E 80, 016213. (doi:10.1103/PhysRevE.80.016213)

Scheuring, I., Czárán, T., Szabó, P., Károlyi, G. & Toroczkai, Z. 2003a Spatial models of
prebiotic evolution: soup before pizza? Orig. Life Evol. Biosph. 33, 319–355. (doi:10.1023/
A:1025742505324)

Phil. Trans. R. Soc. A (2010)

http://dx.doi.org/doi:10.1038/384444a0
http://dx.doi.org/doi:10.1175/JAS-3330.1
http://dx.doi.org/doi:10.1126/science.131.3409.1292
http://dx.doi.org/doi:10.1126/science.131.3409.1292
http://dx.doi.org/doi:10.1086/282171
http://dx.doi.org/doi:10.1016/0167-2789(85)90135-6
http://dx.doi.org/doi:10.1016/S0370-1573(97)00063-X
http://dx.doi.org/doi:10.1103/PhysRevLett.95.264501
http://dx.doi.org/doi:10.1103/PhysRevE.76.046315
http://dx.doi.org/doi:/10.1073/pnas.240242797
http://dx.doi.org/doi:10.1146/annurev.fluid.29.1.399
http://dx.doi.org/doi:10.1146/annurev.fluid.29.1.399
http://dx.doi.org/doi:10.1115/1.2795954
http://dx.doi.org/doi:10.1159/000083845
http://dx.doi.org/doi:10.1016/S0079-6611(03)00085-5
http://dx.doi.org/doi:10.1007/s00109-006-0101-1
http://dx.doi.org/doi:10.1103/PhysRevLett.82.2606
http://dx.doi.org/doi:10.1029/2001GL013677
http://dx.doi.org/doi:10.1103/PhysRevLett.93.218301
http://dx.doi.org/doi:10.1103/PhysRevLett.93.218301
http://dx.doi.org/doi:10.1103/PhysRevE.51.4076
http://dx.doi.org/doi:10.1038/nm1102-1227
http://dx.doi.org/doi:10.1038/nm1102-1227
http://dx.doi.org/doi:10.1073/pnas.012459599
http://dx.doi.org/doi:10.1073/pnas.012459599
http://dx.doi.org/doi:10.1103/PhysRevE.80.016213
http://dx.doi.org/doi:10.1023/A:1025742505324
http://dx.doi.org/doi:10.1023/A:1025742505324


Fractal structures in blood vessels 5617

Scheuring, I., Károlyi, G., Toroczkai, Z., Tél, T. & Péntek, A. 2003b Competing populations in
flows with chaotic mixing. Theor. Popul. Biol. 63, 77–90. (doi:10.1016/S0040-5809(02)00035-7)

Taylor, C. A., Hughes, T. J. & Zarins, C. K. 1999 Effect of exercise on hemodynamic conditions
in the abdominal aorta. J. Vasc. Surg. 29, 1077–1089. (doi:10.1016/S0741-5214(99)70249-1)

Tél, T. & Gruiz, M. 2006 Chaotic dynamics. Cambridge, UK: Cambridge University Press.
Tél, T., de Moura, A., Grebogi, C. & Károlyi, G. 2005 Chemical and biological activity in

open flows: a dynamical system approach. Phys. Rep. 413, 91–196. (doi:10.1016/j.physrep.
2005.01.005)

Toroczkai, Z., Károlyi, G., Péntek, A., Tél, T. & Grebogi, C. 1998 Advection of active particles in
open chaotic flows. Phys. Rev. Lett. 80, 500–503. (doi:10.1103/PhysRevLett.80.500)

Vilela, R. D. & Motter, A. E. 2007 Can aerosols be trapped in open flows? Phys. Rev. Lett. 99,
264101. (doi:10.1103/PhysRevLett.99.264101)

Vilela, R. D., de Moura, A. P. S. & Grebogi, C. 2006 Finite-size effects on open chaotic advection.
Phys. Rev. E 73, 026302. (doi:10.1103/PhysRevE.73.026302)

Wootton, D., Markou, C., Hanson, S. & Ku, D. 2001 A mechanistic model of acute platelet
accumulation in thrombogenic stenoses. Ann. Biomed. Eng. 29, 321–329. (doi:10.1114/
1.1359449)

World Health Organization. 2004 Cardiovascular disease: the atlas of heart disease and stroke. See
http://www.who.int.

Phil. Trans. R. Soc. A (2010)

http://dx.doi.org/doi:10.1016/S0040-5809(02)00035-7
http://dx.doi.org/doi:10.1016/S0741-5214(99)70249-1
http://dx.doi.org/doi:10.1016/j.physrep.2005.01.005
http://dx.doi.org/doi:10.1016/j.physrep.2005.01.005
http://dx.doi.org/doi:10.1103/PhysRevLett.80.500
http://dx.doi.org/doi:10.1103/PhysRevLett.99.264101
http://dx.doi.org/doi:10.1103/PhysRevE.73.026302
http://dx.doi.org/doi:10.1114/1.1359449
http://dx.doi.org/doi:10.1114/1.1359449
http://www.who.int

	Fractal structures in stenoses and aneurysms in blood vessels
	Introduction
	Chaotic advection
	Model
	Results
	Discussion and conclusions
	References




