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The quick answer to the title question is: by bookkeeping; introduce as p(opulation)-state a measure
telling how the individuals are distributed over their common i(ndividual)-state space, and track
how the various i-processes change this measure. Unfortunately, this answer leads to a mathematical
theory that is technically complicated as well as immature. Alternatively, one may describe a
population in terms of the history of the population birth rate together with the history of any
environmental variables affecting i-state changes, reproduction and survival. Thus, a population
model leads to delay equations. This delay formulation corresponds to a restriction of the
p-dynamics to a forward invariant attracting set, so that no information is lost that is relevant
for long-term dynamics. For such equations there exists a well-developed theory. In particular,
numerical bifurcation tools work essentially the same as for ordinary differential equations. How-
ever, the available tools still need considerable adaptation before they can be practically applied
to the dynamic energy budget (DEB) model. For the time being we recommend simplifying
the i-dynamics before embarking on a systematic mathematical exploration of the associated
p-behaviour. The long-term aim is to extend the tools, with the DEB model as a relevant goal post.

Keywords: physiologically structured population models; DEB models; delay equations;
extinction boundary; stability boundary
1. INTRODUCTION
Within the framework of physiologically structured
population models (PSPM) one can, in principle,
incorporate a lot of mechanistic details about physio-
logical processes at the i-level (i for individual), such
as that found in the dynamic energy budget (DEB;
Kooijman 2009b) models, which form the subject of
this theme issue, and yet arrive at a consistent and
complete deterministic bookkeeping scheme for a suf-
ficiently large population (Metz & Diekmann 1986).
The aim of such exercises is to deduce how population
phenomena relate to the mechanisms of feeding, metab-
olism, maintenance, growth, reproduction, starvation-
induced death, and so on. But in order to carry out
this deduction, one needs a mathematical framework
that provides the tools.

The conceptual part of the mathematical frame-
work is easy: once the notion of ‘state’ has been
introduced at the i-level (in the DEB model structural
mass, non-allocated reserve mass, and so on), it can be
lifted to the p-level (p for population) by declaring
the p-state to be the measure m on the i-state-space
V, such that m(V) is the total population size and
for every measurable subset v of V, the fraction of
the population with i-state in v is m(v)/m(V)—in
for correspondence (j.a.j.metz@biology.leidenuniv.nl).
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other words, m describes the population size and
distribution—and cataloguing how the various
i-processes contribute to the change of m.

The next task is to check that the resulting book-
keeping scheme constructively defines a dynamical
system, that is, unambiguously defines the measure
mtþs, describing the population at time t þ s, when
the measure ms, describing the population at time s,
is specified. While carrying out this task, one is
confronted with a surprising amount of technical
difficulties (Thieme 1988; Diekmann et al. 2001;
Diekmann & Getto 2005), many of which reflect
subtle modelling issues (for example, if the rate of
channelling energy to reproduction changes abruptly
when an individual passes a certain size, as it seems
to do for Daphnia, what does an individual do when
it happens to stop growing exactly when reaching
this size (Thieme 1988)?). Addressing these issues
has some spin-off in terms of increased biological/
modelling insight. Yet, given the fact that the cons-
truction of a dynamical system is a very preliminary
contribution to unravelling the p-behaviour, it is
somewhat depressing that so much hard work is
needed for what ought, one feels, to be a simple task.

Things turn really bad if one attempts to develop
stability and bifurcation theorems and tools. The
chief difficulty is a severe lack of smoothness if the
i-growth rate is affected by, for instance, competition
for food. (Smoothness is here meant in a very abstract
sense: the map from food availability as a function of
This journal is q 2010 The Royal Society
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time to future population states is in general not even
differentiable thanks to the untoward geometry of the
space of measures.) Even if one can derive a character-
istic equation by formally linearizing around a steady
state and then looking for exponential solutions (e.g.
de Roos et al. 1990), a rigorous proof that the positions
of the roots of this characteristic equation do indeed
govern the (in)stability of the steady state could not
be found.

Sometimes one can work around a problem that
one cannot solve (perhaps because it is unsolvable).
The aim of this paper is to demonstrate that, fortu-
nately, such is the case for PSPM. The key point is
to reflect on the notion of ‘state’ and to see whether
it can, possibly after a suitable and justified restriction,
be represented in a different way.

The ‘state’ of a system is, by definition, the infor-
mation about the past that is relevant for predicting
the future. A population ‘experiment’ is started by
specifying the states of the individuals in the ‘inocu-
lum’. If food supply and predation pressure (and
possibly other characteristics of the world in which
these individuals live) are given functions of time,
maturation, survival and reproduction can be ‘com-
puted’. Once they are born, the same can be done
for the individuals that arise from reproduction.
In fact, however, quantities like food supply and
predation pressure are not given functions of time, as
they are influenced by the focal population. This
we call feedback by way of environmental interaction
variables. The prediction of the future hence involves
the solution of a coupled system of equations for the
p-birth rate (taking values in the space of conceivable
states-at-birth, which usually is much smaller than
the full i-state space), and the environmental inter-
action variables, all as functions of time. Once these
are known, one can compute how the measure describ-
ing the population size and composition depends on
time (Thieme 1988; Diekmann et al. 2001).

It follows that, at the p-level, the information about
the past that is relevant for predicting the future, is
the history of the p-birth rate and the environmental
interaction variables. In this formulation, we deliber-
ately ignore the individuals from the inoculum that
are still alive. ‘Deliberately’, since their contribution
fades with time. So we make the restriction that we
only consider those measures that can be constructed
from the history of the p-birth rate and the history
of the environmental interaction variables. This
restriction is justified, in the sense that these measures
constitute a forward invariant subset of the p-state
space that attracts all orbits (if individuals have a
uniform upper bound to their age amax, in state-at-
birth and feasible environmental conditions, then the
dynamical system actually maps any initial condition
into the invariant set for time bigger than amax). This
restriction is suitable, in the sense that the lack of
smoothness is eliminated and therefore a rich stability
and bifurcation theory can be developed with some,
but not too much, effort (cf. Diekmann et al. 1995,
2007; Diekmann & Gyllenberg submitted). (There
is some wishful thinking in this formulation: if the
behaviour of individuals changes abruptly upon
passing a certain size, one needs the more involved
Phil. Trans. R. Soc. B (2010)
theory concerning state-dependent-delay equations;
cf. Hartung et al. 2006.)

Once we adopt the aforementioned restriction, we
may actually shift the measures to the background
and put, at the p-level, the spotlight on the p-birth
rate and the interaction variables. This we call the
delay equation formulation of PSPM.

The plan of this paper is as follows. In §2, we
illustrate the delay equation formulation by presenting
the example of a population structured according to a
one-dimensional i-state, for definiteness to be called
size, feeding on an unstructured resource, while
referring to Diekmann et al. (2010) for details and
results. In §3, we briefly sketch how to build numerical
bifurcation tools for the analysis of p-models formu-
lated as delay equations, this time referring to
de Roos et al. (2010) for a full exposition. In §4, we
discuss the potential for applying the ideas sketched
in the previous section to the DEB model, and in the
final section we discuss how the new framework
relates to earlier ones, as well as our expectations for
the future.
2. THE DELAY EQUATION FORMULATION
In this section, we formulate a model of the interaction
between an unstructured resource and a consumer
population structured according to a one-dimensional
physiological variable that we shall refer to as ‘size’. We
assume that all consumers are born with the same size
jb and that their growth is deterministic according to
the differential equation

dj

da
ðaÞ ¼ gðjðaÞ; XðtðaÞÞÞ; ð2:1Þ

where j denotes size, a age, X resource concentration
and t(a) the time at which the focal individual has
age a. We assume that the survival probability F of
an individual decreases according to

dF
da
ðaÞ ¼ �mðjðaÞ; XðtðaÞÞÞFðaÞ; ð2:2Þ

and that newborns are produced clonally at a rate

bðjðaÞ; XðtðaÞÞÞ: ð2:3Þ

The energy and materials needed for maintenance,
growth and reproduction are derived from the inges-
tion of the resource, which proceeds at a rate

gðjðaÞ; XðtðaÞÞÞ; ð2:4Þ

but for the time being we leave the relationship
between, on the one hand g, respectively, b and, on
the other hand g, unspecified. Finally, we assume
that in the absence of consumers the resource evolves
according to the differential equation

dX

dt
¼ hðXÞ: ð2:5Þ

Essentially, the model is now specified, the rest is
bookkeeping. To do the bookkeeping in an efficient
way, we need to introduce some notation. As in the
theory of delay equations, we use the symbol Xt to
denote the history of the food concentration relative
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to t, i.e. the function

s 7! Xðt þ sÞ; s � 0: ð2:6Þ

(In case of a maximal age amax, we can restrict to
s � 2amax, but otherwise we need to allow s to take
any value less than or equal to zero.)

Now consider an individual that has age a at the
current time t. Denote the size of this individual at
age t, with 0 � t � a by j(t) ¼ j(t;a,Xt) (the last two
variables are suppressed in the notation whenever
that helps to keep formulae readable). It can be
computed from

dj

dt
ðtÞ ¼ gðjðtÞ; Xtð�aþ tÞÞ; jð0Þ ¼ jb: ð2:7Þ

(Age is counted here from the moment of birth, most
often in the form of an egg being laid; what matters
mathematically is that the link between mother and
young is severed.) The size at the current time is
then given by

Jða; XtÞ :¼ jða; a;XtÞ: ð2:8Þ

The fraction of individuals born at time t 2 a that
are still alive at time t, is given by the survival prob-
ability Fða; XtÞ. Let GðtÞ ¼ Gðt; a;XtÞ be the survival
probability up till time t 2 a þ t. Then, by definition,

Fða; XtÞ ¼ Gða; a;XtÞ; ð2:9Þ

with G computed from

dG
dt
ðtÞ ¼ �mðjðt; a;XtÞ; Xtð�aþ tÞÞGðtÞ;

Gð0Þ ¼ 1: ð2:10Þ

Let b(t) denote the consumer population birth rate
at time t. Then the assumptions above imply that

bðtÞ ¼
ð1

0

bðt � aÞbðJða; XtÞ; XðtÞÞFða; XtÞ;

and

dX

dt
ðtÞ ¼ hðXðtÞÞ

�
ð1

0

bðt � aÞgðJða; XtÞ; XðtÞÞFða; XtÞda

9>>>>>>>>>>>=
>>>>>>>>>>>;

:

ð2:11Þ

The upper equation is the time-dependent analogue
of Lotka’s equation, with the pro capite birth rate and
survival continuously updated in dependence on the
experienced environmental history. The integral in
the lower equation adds up the rates of resource
consumption by individuals of different ages.

As written, equation (2.11) refers to consumers and
a resource that have been interacting since the dawn of
time. When looking for steady states, periodic sol-
utions and so on, this is indeed the right perspective.
But alternatively, one can require the system of
equations (2.11) to hold only for positive time and
provide initial data in the form of the history of both
b and X at time zero, the first as a non-negative locally
integrable function and the second as a non-negative
continuous function. In the mathematical theory
Phil. Trans. R. Soc. B (2010)
concerning equation (2.11), for which we refer to
Diekmann et al. 2007 (in particular, §3), both points
of view play a role.

Note that the right-hand side of equation (2.11) is
linear in b, reflecting that the environmental inter-
action variables are chosen such that all dependence
is by way of feedback via these variables (i.e. if one
considers X as prescribed, then the consumers are
independent of one another).

We now consider constant solutions of equation
(2.11), i.e. steady population states. If food is kept at
the constant concentration �X , then the basic repro-
duction number R0 of the consumers is well defined
and given by

R0ð �XÞ ¼
ð1

0

bðJða; �XÞ; �XÞFða; �XÞda ð2:12Þ

(where we use the same symbol to denote the value
and the constant function taking that value). The
equation

R0ð �XÞ ¼ 1 ð2:13Þ

determines the constant concentrations that lead to a
steady consumer population. As a rule, any solution
of equation (2.13) is unique, simply since R0(0) , 1,
R0(1) . 1 and R0 is a monotone function of �X .
(Of course, other scenarios are possible, for example
food that is toxic at high concentrations.)

Once �X is determined, we have explicitly

�b ¼ hð �XÞÐ1

0
gðJða; �XÞ; �XÞFða; �XÞda

ð2:14Þ

for the consumer population birth rate that keeps
the resource at the steady level �X . (The steady states
of more general PSPMs can be determined by
following essentially the same steps; see Diekmann
et al. (2003)).

To linearize equation (2.11) around the steady state
is, in principle, straightforward, but very laborious,
so we chose not to give the details; for these see
Diekmann et al. (2010). One obtains a system of
the form

yðtÞ ¼ c1zðtÞ þ
ð1

0

ðk11ðaÞyðt � aÞ þ k12zðt � aÞÞda

and

dz

dt
ðtÞ ¼ c2zðtÞ þ

ð1

0

ðk21ðaÞyðt � aÞ þ k22zðt � aÞÞda

9>>>>>>=
>>>>>>;
:

ð2:15Þ

The corresponding characteristic equation is

det
k̂11ðlÞ � 1 c1 þ k̂12ðlÞ

k̂21ðlÞ c2 þ k̂22ðlÞ � l

� �
¼ 0 ð2:16Þ

or

ð1� k̂11ðlÞðl� c2 � k̂22ðlÞÞ
¼ k̂21ðlÞðc1 þ k̂12ðlÞÞ; ð2:17Þ
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where the hat denotes Laplace transform, that is,

k̂ijðlÞ ¼
ð1

0

e�lakijðaÞda: ð2:18Þ

Equation (2.18) is obtained by looking for exponential
solutions of equation (2.15).

The hard work consists of

— computing the ingredients c and k(a) of equation
(2.15) from g, m, b, g and h,

— analysing equation (2.17) in order to determine
conditions on g, m, b, g and h, which guarantee
that all roots are in the left half of the complex
plane and complementary conditions that guaran-
tee that at least one pair of roots lies in the right
half of the complex plane.

The results derived in Diekmann et al. (2007) imply
that one can draw conclusions about the dynamical
behaviour of solutions of equation (2.11) from this
kind of information about the position in the complex
plane of the roots of the characteristic equation. In
Diekmann et al. (2010), the first point is elaborated
in quite some detail and analytical as well as numerical
results concerning the second point are presented. In
general, however, one needs computer assistance
when doing the hard work. So, in the next section we
focus on some computational tools that have been
developed in order to carry out an analysis of equation
(2.11) and its linearization in equation (2.15).
3. THE EXISTENCE AND STABILITY
BOUNDARIES
In order for equation (2.14) to be biologically mean-
ingful, we need that hð �XÞ . 0, where �X is such that
equation (2.13) holds. The borderline is determined
by the system of two equations

R0ð �XÞ ¼ 1; hð �XÞ ¼ 0 ð3:1Þ

in the single unknown �X . Of course, as already
expressed by the word ‘borderline’, there is generically
no solution. But when we ‘free’ one parameter
(i.e. consider this parameter �X as unknown; its
choice to be determined by a suitable combination of
convenience and biological relevance) we might be
able to solve equation (3.1). Yet, we recommend to
free two parameters and to consider equation (3.1) as
two equations in three unknowns such that, generically,
there is a curve of solutions. (We have two arguments
for this recommendation: (i) curves can numerically
be efficiently computed by means of continuation
methods; and (ii) humans are very well equipped to
absorb information that comes in the form of a two-
dimensional picture.) The projection of this curve on
the two-dimensional parameter space is called the exist-
ence boundary, since it separates the region for which
equation (2.13) has a biologically meaningful solution
from the region where it has not (and where the
consumer is doomed to go extinct).

Typical examples of functions h are

— chemostat resource dynamics: h(X ) ¼ D(X0 2 X ),
— logistic resource dynamics: h(X ) ¼ rX(1 2 X/X0).
Phil. Trans. R. Soc. B (2010)
A typical choice of the two parameters is X0 and a uni-
form consumer death rate m0. The equation hð �XÞ ¼ 0
then leads to �X ¼ X0, and the existence boundary is
determined by the single equation

R0ðm0; X0Þ ¼ 1: ð3:2Þ

To trace numerically the curve defined by equation
(3.2) (for instance, by a predictor–corrector
method), we need, first of all, to be able to evaluate
R0 for given X0 and m0. This can be done by solving
the system of ordinary differential equations (ODEs;
e.g. de Roos 2008)

dj

da
¼ gðj; X0Þ; jð0Þ ¼ jb;

dF
da
¼ �ðm1ðj; X0Þ þ m0ÞF ; Fð0Þ ¼ 1;

dB

da
¼ bðj; X0ÞF ; Bð0Þ ¼ 0:

9>>>>>=
>>>>>;

ð3:3Þ

with R0 ¼ B(1). Of course, we do not want to inte-
grate equation (3.3) forever. A stopping criterion
can often be based on some variant of the following
result: if we integrate only to some amax, then, if
g(j; X0), m1(j; X0) and b(j; X0) are monotone
beyond j(amax), g(j; X0) decreasing, m1(j; X0) and
b(j; X0) non-decreasing and there exists a
�j . jðamaxÞ, such that gð�j; X0Þ ¼ 0, then

FðamaxÞbðjðamaxÞ; X0Þ
m1ð�j; X0Þ þ m0

� R0 � BðamaxÞ

� FðamaxÞbð�j; X0Þ
m1ðjðamaxÞ; X0Þ þ m0

:

ð3:4Þ

Both equation (3.4) and the fact that g, m, b and g

may have jump discontinuities at j ¼ jA, the size at
which juveniles turn adult (meaning that they start
to reproduce), imply that we need to incorporate in
the ODE integration routine criteria that test whether
a certain variable is still below a threshold.

Referring to de Roos et al. (2010) for more details,
we conclude that one can define the left-hand side
of equation (3.2) in terms of a procedure that
solves the ODE system (3.3) and next compute
the existence boundary in the (X0, m0) plane by
solving equation (3.2) numerically with a standard
continuation method.

At the existence boundary, a transcritical bifur-
cation takes place. In the absence of Allee effects, the
bifurcation is supercritical, which means that within
the existence area close to the boundary, a steady
state exists with b as defined by equation (2.14)
being small. According to the Principle of the
Exchange of Stability (see Boldin 2006, and the refer-
ences therein) this steady state is stable. The steady
state may lose stability further on in the existence
area. The curve that separates the stability area from
the instability area is called the stability boundary.
It can be computed in much the same way as the
existence boundary, but this computation is a lot
more complicated, as now the linearization (3.1) is
involved as well.
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In the absence of fold bifurcations (as is the case
when the solution of equation (2.13) is a single-
valued function of the parameters), the stability
boundary is characterized by the characteristic
equation (3.3) having a purely imaginary root l ¼ iv,
v= 0. The characteristic equation is a single complex
equation, hence counts for two real equations. So,
together with equation (2.13), this amounts to three
equations in the four unknowns �X , v, X0 and m0.
The strategy to find a solution curve is as before first
to find one point on the curve and next use a continu-
ation algorithm to compute the entire curve. But now
we need to evaluate, for given �X , v, X0 and m0, not
only R0 but also the ingredients of the characteristic
equation. This means that we have to integrate
equation (3.3) but also

dG

da
¼ gðj; �XÞF ; Gð0Þ ¼ 0 ð3:5Þ

to find the cumulative food consumption, which is
needed to evaluate the right-hand side of equation
(2.14), and the linearized versions of these ODE
with forcing terms that involve cos(va) and sin(va).
Details and pseudocode are presented in de Roos
et al. (2010).
4. EXTENSIONS AND APPLICATIONS
TO THE DEB MODEL
The mathematical theory referred to in §1 is in prin-
ciple very general. However, that generality only
holds good at an abstract level. The more practical
the results one aims at, the more restrictions have to
be imposed in order to get results. At the more down
to earth end, we have so far worked out the concrete
details only for the small subset of simple cases dis-
cussed in §§2 and 3. So we can presently do little
more than indicate the difficulties and their potential
solutions that we envision for handling DEB-style
models in the rigorous mathematical fashion that we
are aiming at. In doing so, we shall use a mix of our
earlier notation and that of Sousa et al. (2010); we
only explain conventions when there is a clash or
when we have to introduce additional symbols.

Difficulties in applying a mathematical framework
can be of very different kinds. First there is the pro-
blem of whether a concrete description of individual
behaviour can be represented at all within an envisaged
framework for population modelling. The DEB
model no doubt fits in the very general physiologically
structured population framework. Then there is the
problem of whether a model falls within a class for
which at least the mathematical existence and unique-
ness problem for the heuristically derived population
equations can be solved. The description of DEB
models certainly appears compatible with the existence
and uniqueness results in Diekmann et al. (2001), and
in principle also with the framework described in §§2
and 3. However, they clearly do not fit the example
that formed the centrepiece of those sections. As the
results for that example only exemplify the more
general theorems in Diekmann et al. (2007) and
Diekmann & Gyllenberg (2008, submitted), the first
question then is to what extent DEB models fit those
Phil. Trans. R. Soc. B (2010)
abstract theorems, and if not, whether they, or the the-
orems, can be tweaked to make them fit. A second
question is then how far the abstract results can in prin-
ciple be implemented in the form of manageable
calculations. And a final question is what are the best
strategies to implement those calculations. We will not
consider the questions in this order but rather use various
technical specifics of DEB models as our guideline.

The natural strategy for answering the sort of
questions indicated above starts with writing the
DEB model presented in Sousa et al. (2010) in a
form similar to the one used in §2, in order to see if
it indeed satisfies the requirements of the theorems
that have been proven this far. Below we shall indicate
how this should be done. It is more practical, however,
first to introduce a simplification meant to remove an
aspect of the DEB models that from a mathematician’s
point of view is technically somewhat worrisome. The
full DEB model is rigidly deterministic at the level of
the individual. In the DEB-model proper, young are
produced from the reserves set aside for reproduction
MER by, when MER reaches a threshold, converting
those reserves into young while resetting MER to
zero. Whenever the i-level model is consistently
specified, it is, of course, always possible to do
individual-based simulations. However, our goal is to
analyse the deterministic models that result as large
number limits of such stochastic descriptions. In
general, the mathematical tractability of these determi-
nistic models to a large extent depends on the fact that
over time too sharp bumps in the population state get
smoothed out. Not only that, for a given course of the
environment, X(t), t . 0, the population states over
time will look more and more like each other, but for
a difference in the total population sizes. (There are
exceptions, which by this very fact are of considerable
mathematical but little biological interest.) Having the
young produced deterministically tends to thwart this
smoothing property to an extent that the main present
proof techniques fail. This does not mean that there is
something mathematically wrong with the full DEB
model. Only that the techniques are not yet up to
this complexity. Experience teaches that often such
problems have to do with the existence of badly behav-
ing exceptional cases that for all practical purposes can
be neglected. ‘In reality’ all model ingredients tend to
be subject to minor chance fluctuations that may be
expected to remove the mathematical anomalies if
incorporated in the model structure. However, doing
so leads to models of severely increased complexity.
In order to keep a somewhat tractable framework, we
in the past fudged the effect of stochasticity in the indi-
vidual state transitions by having the process of giving
birth represented as a continuous rate b (cf. Metz &
Diekmann 1986, Remark I.3.2.1; see their Section
III.6.3 and Heijmans & Metz 1989 for one possible
justification, in the form of a limit argument starting
from a more realistic specification). This is also what
we did in §§2 and 3 and what we will do below: we
shall assume that births are produced at a rate that is
proportional to the rate at which energy is channelled
towards reproductive activities.

An additional advantage of assuming that the birth
process is continuous, is that this way one state
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variable, MER, is removed, which also is the one that
does not fit too happily in the procedure for calculating
a characteristic equation outlined in §2 owing to its
jumping behaviour. In principle, this difficulty can be
overcome through calculations like those in Metz &
van Batenburg (1985, Section 4.2) and Kooi &
Kooijman (1999), but the characteristic equation
will become rather complicated. This practical aspect
comes on top of the mathematical problem that, owing
to the difficulties mentioned earlier, one cannot be
fully sure that information from the characteristic
equation indeed has the implications that we normally
attach to it (although at least one of us dares to bet on it).

With the assumption about the birth process
that we just made, the DEB model as described
in Sousa et al. (2010) has a seven-dimensional
i-state, which we choose to represent by
j ¼ ðMV ;ME ;MH ; q; h;M

max
V ;Mmax

H ÞT, where the state
variables Mmax

V and Mmax
H represent the maxima of

MV and MH along their trajectories till the present age.
The rates of change of the first five state variables

are given by equations (1, 8, 9, 12, 13, 14) in Sousa
et al. (2010). The latter two variables satisfy

dMmax
V

dt
¼ ðMV �Mmax

V ÞdMV

dt
;

dMmax
H

dt
¼ ðMH �Mmax

H ÞdMH

dt
:

ð4:1Þ

The death rate equals

m ¼ h if MH � uHMmax
H and MV � uV Mmax

V

¼ 1 otherwise; ð4:2Þ

uH and uV parameters, where the inequality conditions
exclude rejuvenation and shrinking due to starvation
(van Leeuwen et al. 2002; Kooijman 2009b).

The pro capite birth rate b can be found in Sousa
et al. (2010) in the section on maturation and repro-
duction under the name _R. At the birth of an egg,
jb ¼ ð0;M0

E ; 0; 0; 0; 0; 0Þ
T

, where M0
E is such that

ME/MV at the start of the juvenile stage (MH ¼Mb
H)

equals that of the mother at egg formation (details in
Kooijman 2009a).

The numerical integration of the corresponding
population equations, e.g. with the Escalator Boxcar
Train method of de Roos (1988, 1997), de Roos &
Metz (1991) and de Roos et al. (1992) (see also
http://staff.science.uva.nl/~aroos/), runs into a
number of practical problems that all have to do with
the determination of the birth state. The maternal
effect from the standard DEB model can cause
young born at the same time to be distributed over a
continuum of birth states. We expect, however, that
in most applications the birth states of those young
will be sufficiently close to each other that lumping
them in but a few classes, to be represented by their
class mean, will not cause much of a discretization
error. An additional complication is caused by the
lack of an explicit expression for M0

E, which hence has
to be determined by numerically solving an equation
(an efficient numerical scheme may be found in
Kooijman 2009a). However, none of these problems
is fundamental.
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The previous developments show that it is possible
to express the DEB model in a form compatible with
the ideas from §§2 and 3. Another matter is that the
DEB equations are far more complicated than the
simple equations to which we restricted ourselves in
§2, so that one cannot immediately apply the concrete
recipe given there. Below we shall systematically
discuss any technical problems that this complication
may give.

The fact that in the DEB model the i-state is higher
dimensional in principle does not greatly complicate
the calculation of the kernels kij from §2. One only
has to interpret the various scalar expressions from
which the kij are calculated as vectors and matrices.
(The last two state variables can be dropped from con-
sideration since close to equilibrium the inequality
conditions in equation (4.2) are never violated.)

A greater problem is the multiplicity of birth states.
These even do not come in a finite number but in
a continuum. Rigorously extending the proofs in
Diekmann et al. (2007) to this case brings considerable
technical difficulties with it. At a more practical level,
the local stability of systems with infinitely many
birth states can in general no longer be determined
from the analysis of a characteristic equation. For
the case of finitely many birth states, it is possible
in principle to extend the calculations of Diekmann
and co-workers by further invoking the vector–
matrix formalism. All that results is that the matrix
in equation (2.16) becomes correspondingly larger.
Where equation (2.16) contains a 2 � 2 matrix, with
n birth states, that matrix will become an (n þ 1) �
(n þ 1) one. (When, as in the DEB model, the attribu-
tion of birth states has to be solved from an equation,
one has to differentiate through that equation and
solve the resulting linear equations for the required
derivatives.)

A similar extension holds if the number of environ-
mental variables, be they resources, toxicants or
predation pressures, is larger than one. Assuming for
the time being that all these variables satisfy simple
differential equations, with m environmental variables
the matrix will become of size (n þ m) � (n þ m).
Of course, with any increase of n or m, the calculations
will become more forbidding and will ultimately fail
when either number becomes infinite. (An example
where the number of environmental variables is infi-
nite are models where a resource has a continuous
size distribution, with the speed of ingestion depend-
ing on the form of this distribution in a non-trivial
manner, as is the case in various published size
structured predator–prey models.)

It may be expected that even the cases with a conti-
nuum of birth states and/or environmental variables
may ultimately be handled by some discretization,
such as is anyway done in numerical calculations.
However, theorems that the stability bounds found
by such approximate calculations approximate the
ones of the original model are still pending.

In short, we are still a long way from tackling the full
complexity of the DEB model in a rigorous fashion
outlined in §§2 and 3. Given their well-specified math-
ematical structure and their great and still manageable
(e.g. through individual-based simulation) biological

http://staff.science.uva.nl/~aroos/
http://staff.science.uva.nl/~aroos/
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realism, DEB-style models provide an interesting
pointer, as well as set of test cases, for how to proceed.
5. DISCUSSION
We have in the past (Metz & Diekmann 1986) promul-
gated representing structured population models by
partial (integro-)differential equations (PDEs) for the
density of the population over its i-state space, like
in Kooi & van der Meer (2010) for example. In
hindsight, in a strict mathematical sense a lot turned
out to be wrong with this formulation, as it can be
interpreted rigorously only for a very special subset
of the biological systems for which it was envisioned
as representational. However, in the cases we have
scrutinized so far, the validity of the biological con-
clusions arrived at this way is not affected by these
mathematical difficulties (see below).

A first problem with the PDE framework is that in
theory it is possible to start with a cohort of equal indi-
viduals so that there is no population density to begin
with. The same problem may occur in the probably
more familiar problem of diffusive movement in
space. However, there this initial singularity disappears
immediately after t ¼ 0. In the case of structured
populations with deterministic i-state movement,
these point masses stay intact till the ancestral popu-
lation has died out. So, if we are interested in
asymptotic calculations only, there is not much to
worry about. A bigger problem is that for many
models the mechanism itself creates distributions
over the i-state space that do not admit a density,
like when all individuals are born equal and move in
exactly the same manner through a k-dimensional
i-state space, k . 1. In that case all individuals born
after t ¼ 0 are concentrated on a one-dimensional
curve in a k-dimensional space. Perhaps, these techni-
cal anomalies could still be handled by using some sort
of ‘weak solution’ concept. However, we found it
easier to start from a representation of the population
state as a measure, which is what it ultimately is
anyway!

On top of this then comes the problem of the
dependence of the differential equation describing
the i-state movement on the current state of the
system, consisting of the population and, say, its
food. We already discussed in the introduction how
this biologically reasonable assumption gets us in
deep waters mathematically. In Diekmann et al.
(2001), we therefore proved the existence and
uniqueness by interpreting the population equations
as an input–output operator from environment to
environment and solving the fixed-point problem
that appears when we connect input and output.
(Solving here means constructing the solution by
means of abstract mathematical operations, like
integrations and taking limits, which is different from
arriving at an explicit expression or constructing an
efficient numerical algorithm.) However, that is as
far as we got.

We believe that we have now found a way to the
shallows again by moving from a dynamics on a
space of measures to one on a space of histories of
the birth rate and environment. The latter spaces
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have a more amenable structure, both since they
represent some smoothed representation of the popu-
lation state and since they look only at the subset of
the population states that remain after the effects of
all too bumpy initial conditions have worn off. Yet,
this space is still sufficiently large that a meaningful
stability theory can be built on it.

The fact that the PDE formalism cannot be con-
sidered mathematically fully sound in practice
detracts but little from the papers seemingly based
on that formalism, for these actually never use the
formalism in the form in which they present it. For
example, they use numerical techniques like the Esca-
lator Boxcar Train for the following population
trajectories over time (de Roos 1988, 1997; de Roos &
Metz 1991; de Roos et al. 1992), which is eminently
compatible with the delay equation formalism (but
for the representation of the inoculum, which however
enters in the main scheme in a compatible way, as an
influence on the resource dynamics and a birth
stream), or they formally calculate a characteristic
equation, which can be seen to be the same as they
would have got from the delay equation formalism,
except that they move in a different order through the
various calculation steps. (More in particular, a formal
integration along characteristics, which one can do
either in the PDE or after a few of the standard steps
for arriving at a characteristic equation, to wit inserting
exponential test solutions into the equation and separ-
ating terms, leads precisely to the ingredients of the
delay equation formalism, as this integration is no
more than the following of individuals over their lives
from which the latter formalism is derived in a direct
manner. However, beware: handling discontinuities in
the coefficient functions can be rather tricky in the
PDE formalism. Here, the delay equation formalism
proves its mettle also for practical calculations.)

This ends the exposition of the technical mathe-
matical problems and ways to overcome them. For a
finale, let us take one last look at how the various
model structures connect to real ecology. We see-
mingly failed to take account of the spatial extent of
populations. In principle, this can be remedied by
taking space as an extra i-state variable. In the delay
equation formalism, space would come in as an
additional component of the birth state. So in prin-
ciple not much changes. However, practically there
are two problems. One is that in the general case it is
no longer possible to derive a characteristic equation.
Only for particular simple shapes of the spatial
domain (amenable to a description with a separable
coordinate system), it may be possible to calculate a
so-called dispersion relation, which in essence fulfils
the same role. The second difficulty is that movement
in space is generally modelled as random. In the sim-
plest case, where we have only a finite number of
locations each supporting a well-mixed population,
calculations for random movements, similar to those
for the deterministic movements of the i-state that
we considered so far, probably are rather painless,
but at the time of writing even that work still has to
be done.

A further lack of realism is that we only considered a
single species in isolation, but for its dependency on a



3530 O. Diekmann & J. A. J. Metz Passing from individuals to populations
dynamical food source. The general existence and
uniqueness results of Diekmann et al. (2001) immedi-
ately apply to the multi-species case. We already
indicated how the calculation procedures extend in
the case where the other species can be represented
as scalars, similar to the resource in our ‘single’ species
model. For more than one structured species, we may
expect the calculations to go along similar lines, pro-
vided the number of interaction variables can be kept
finite. However, the work needed to get anywhere
useful increases very fast with every increase in
model complexity.

In summary, in principle, the ideas proposed in §§2
and 3 allow a fair amount of extension. In practice, it
is for the time being probably better first to simplify
the models considerably before even asking your local
mathematician to work on them, as mathematicians
also have to learn their trade by increasing the
complexity of the problems they work on in small steps.
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