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In this paper, we describe a technique to evaluate the evolutionary dynamics of the timing of
spawning for iteroparous species. The life cycle of the species consists of three life stages, embryo-
nic, juvenile and adult whereby the transitions of life stages (gametogenesis, birth and maturation)
occur at species-specific sizes. The dynamics of the population is studied in a semi-chemostat
environment where the inflowing food concentration is periodic (annual). A dynamic energy
budget-based continuous-time model is used to describe the uptake of the food, storage in
reserves and allocation of the energy to growth, maintenance, development (embryos, juveniles)
and reproduction (adults). A discrete-event process is used for modelling reproduction. At a
fixed spawning date of the year, the reproduction buffer is emptied and a new cohort is
formed by eggs with a fixed size and energy content. The population consists of cohorts: for
each year one consisting of individuals with the same age which die after their last reproduction
event. The resulting mathematical model is a finite-dimensional set of ordinary differential
equations with fixed 1-year periodic boundary conditions yielding a stroboscopic map. We will
study the evolutionary development of the population using the adaptive dynamics approach.
The trait is the timing of spawning. Pairwise and mutual invasibility plots are calculated using
bifurcation analysis of the stroboscopic map. The evolutionary singular strategy value belonging
to the evolutionary endpoint for the trait allows for an interpretation of the reproduction strategy
of the population. In a case study, parameter values from the literature for the bivalve Macoma
balthica are used.

Keywords: adaptive dynamics; bifurcation analysis; bivalve Macoma balthica; dynamic energy
budget-structured model; iteroparous species
1. INTRODUCTION
In temperate regions, many species show a specific
timing of reproduction within the seasonal cycle. In
this paper, we develop a technique to evaluate the evol-
utionary dynamics of the timing of reproduction of
iteroparous species. We assume that the annual repro-
duction occurs at a fixed date in the year, and the
evolution of this life-history trait is studied. Our
approach combines physiologically structured popu-
lation modelling to describe the dynamics at the
ecological time scale with the adaptive dynamics
(AD) approach which occurs at an evolutionary time
scale. The developed technique can be used in a bifur-
cation analysis to explore how the reproduction
strategy of the population depends on individual and
environmental properties.

The life cycle of our model individual consists of three
life stages: embryos (no feeding, no reproduction),
r for correspondence (kooi@bio.vu.nl).
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juveniles (no reproduction) and adults, whereby the
transitions of life stages (gametogenesis, birth and matu-
ration) occur at fixed sizes. A dynamic energy budget
(DEB)-based model (Kooijman 2000; van der Meer
2006) is used to describe the uptake of food and the
allocation (following the fixed partitioning k-rule) to
either growth and maintenance or development (in
the case of embryos and juveniles) and reproduction
(for adults). The state of an individual is called the i-
state. The three i-state variables are the volume,
energy reserve density and the cumulative energy per
individual allocated to development and reproduction.
There is one unique state at gametogenesis (when
eggs are fertilized) for at the moment of spawning all
the i-state variables have a specific value. Development,
growth and death are modelled by continuous-time
processes.

From this individual model, a discrete population
model (Metz & Diekmann 1986; de Roos 1997;
Cushing 1998; Diekmann et al. 1998, 2001; Caswell
2001) is formulated. A discrete-event process is used
for modelling reproduction (the production of eggs
with a fixed size and energy content) at a fixed
This journal is q 2010 The Royal Society
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spawning date of the year forming annual cohorts.
The number of eggs produced, and therefore the
initial number of individuals in the cohort, equals
the ratio of the amount of energy allocated to repro-
duction by the adults and the initial energy content
of eggs.

The p-state variable of the population is the
number of individuals in each cohort. Only the for-
mation of the first year-class cohort leads to an
increase in individual numbers of the population.
Their numbers diminish owing to mortality at a con-
stant rate. Immediately after the last reproduction
event, the cohort dies. Hence, the maximum
number of cohorts equals the maximum lifetime of
an individual in years.

The dynamics of the population are studied in a
semi-chemostat environment. The inflowing food con-
centration is periodic (annual) and models a peaked
yearly algal bloom.

We will show that the state of the population–food
system is described by a finite-dimensional dynamical
system. Owing to the periodic forcing, one expects
that the long-term dynamic is a periodic solution
of the set of ordinary differential equations (ODEs)
for the i-state and p-state variables as well as the
food. There are discontinuities at discrete spawning
events. This periodic solution is calculated by solving
a boundary value problem with cyclic boundary con-
ditions at an arbitrary chosen time of the year. This
is equivalent to the calculation of the fixed point of
the associated Poincaré or stroboscopic map which
allows also for the analysis of its stability. When food
inflow is too low, there is no positive solution. On
the other hand, higher-order periodic solutions can
occur. The transitions between these different states
can be studied by a bifurcation analysis. For an intro-
duction to bifurcation analysis, we refer the interested
reader to Guckenheimer & Holmes (1985), Wiggins
(1990) and Kuznetsov (2004), for the applications in
ecological models to Bazykin (1998) and Kooi
(2003) and for the applications in AD to Kooi &
Troost (2006), Troost et al. (2007) and Dercole &
Rinaldi (2008).

We will study the evolutionary development of the
population using the AD approach (Metz et al. 1992,
1996; Dieckmann & Law 1996; Geritz et al. 1998).
The trait is the timing of reproduction (date of
spawning). This trait is a parameter in the population
model and it varies at the slow evolutionary time scale
due to rare small mutational steps, while the popu-
lation variables vary at the faster ecological time
scale. A time-scale argument justifies the assumption
that at the fast ecological time scale the population–
food system attains a stable periodic solution before
the next mutational step occurs.

Generally, the invasion fitness of a mutant into a
resident population is defined as its long-term expo-
nential growth rate in a given environment set by the
resident population (Metz et al. 1992). Here, we
used the dominant eigenvalue of the Jacobian matrix
of the stroboscopic map evaluated at the fixed point
of the resident–mutant system whereby the mutant
is absent. A change in the trait value can be studied
by the analysis of the outcome of the competition
Phil. Trans. R. Soc. B (2010)
between the resident and the mutant populations.
When the invasion fitness of the mutant is positive,
it can invade and finally replace or co-exist with the
resident. In the latter case, evolutionary branching
can occur, whereby the population undergoes
disruptive selection, and with small evolutionary
steps, an initially monomorphic population becomes
distinctively dimorphic. A sequence of replacement
steps may lead to convergence to an evolutionary
singular strategy (ESS), where the resident population
is not invadable by the mutant and the mutant not by
the resident. An evolutionary endpoint occurs when
the fitness gradient with respect to the trait becomes
zero. The stability of such an endpoint can be studied
by the analysis of the so-called pairwise and mutual
invasibility plots (PIP and MIP; Geritz et al. 1998,
1999). In these plots, the zero invasion curves in
the resident–mutant trait plane delimit the regions
with positive and negative mutant invasion fitness.
When explicit expressions for these curves exist, the
PIP and thereafter the MIP can be easily made. The
shape of these zero invasion curves directly fixes
the ESSs and their evolutionary stability (Geritz
et al. 1998).

In our case of a periodically forced population–food
system, we have no explicit expressions for the zero
invasion curves. We can, however, use a bifurcation
analysis with the resident and mutant trait being the
free or bifurcation parameters, to calculate these
curves numerically by continuation. In practice,
these curves can be calculated using computer
packages such as MATCONT (Dhooge et al. 2003) or
AUTO Doedel & Oldeman (2009). Because of the dis-
continuity of the periodic solution at the time of
spawning, the population model is piecewise smooth
and it is cumbersome to use these packages directly
for this study. Therefore, the bifurcation curves have
been computed by means of a predictor–corrector con-
tinuation method (Parker & Chua 1989; Allgower &
Georg 1990; Kuznetsov 2004) with a full control of
the numerical time-integration technique of the piece-
wise smooth ODE system with discontinuities at
spawning times.

A case study is elaborated in which the evolution-
ary dynamics of a bivalve Macoma balthica population
in a periodically (annual) forced semi-chemostat
environment is analysed. This bivalve feeds on
algae. The annual spawning date is the single evol-
utionary trait. The study of the ESSs gives insight
into the reproduction strategy of the population,
taking ecologically and evolutionary processes as
well as indirect effects via the environment (food)
into account.

Our approach is remotely linked to earlier work
on optimal life-history strategies (Kozlowski 1996;
Roff 2002; McNamara & Houston 2008), but with
the difference that a well-tested model of the
energy budget of the individual is used, by which
means trade-offs are explicitly accounted for. Fur-
thermore, by using AD, there is no need for using
optimality criteria that are always arbitrary. We there-
fore provide a more holistic approach, integrating
physiology, ecology and evolution, than the previous
work has offered.
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2. ECOLOGICAL MODEL FORMULATION
(a) Model for the individual

The three life stages, embryo, juvenile and adult, are
modelled by continuous-time processes for develop-
ment, growth and natural mortality. The age, a,
dependent DEB model (Kooijman 2000; van der
Meer 2006) for the changes of the structure V(a),
reserve density [E](a) and cumulative energy allocated
to development and reproduction H(a) (in the sequel
referred to as maturity; Thieme 1988; van der Meer
2006) reads

dV

da
¼ hV ðV ; ½E�Þ

¼ kðf _pAmg=½Em�Þ½E�V 2=3 � ½ _pM�V
k½E� þ ½EG�

; ð2:1aÞ

d½E�
da
¼ hEðt;V ; ½E�Þ

¼

�f _pAMgV�1=3½E�
½Em�

V0 � V , Vb;

f _pAMgV�1=3 f ðtÞ � ½E�½Em�

� �
Vb � V

8>>><
>>>:

ð2:1bÞ

and

dH

da
¼ hHðV ; ½E�Þ

¼

1� k

k
½EG�

dV

da
V0 � V , Vp;

1� k

k
½EG�

dV

da
þ ½ _pM�ðV � VpÞ

� �
Vp � V

8>><
>>:

ð2:1cÞ

where the so-called functional response f(t) will be
defined later. The initial values for the state of the indi-
vidual at gametogenesis is indicated by a subscript 0.
The initial structural volume of an egg is denoted by
V0 and [E0] is the reserve density. The initial maturity
H0 equals (1 2 k)/k[EG]V0. Embryos with volume
V0 � V , Vb neither feed nor reproduce. A juvenile
is born when the size of the embryo equals Vb.
The transition from a juvenile into an adult is at a
fixed puberty size Vp. The juveniles with volume
Vb � V , Vp consume food but do not reproduce.

Observe that the i-state variable H of equation
(2.1c) does not occur on the right-hand side of the
equations but it will appear below in the formulation
of the jump conditions at the spawning date. We can
directly derive for embryos and juveniles V0 � V �
Vp that

HðaÞ ¼ 1� k

k
½EG�V ðaÞ: ð2:2Þ

This models the state of maturation. The relationships
between the maturity H0 and Hp and the structural
volumes V0 and Vp read

H0 ¼
1� k

k
½EG�V0 and Hp ¼

1� k

k
½EG�Vp: ð2:3Þ

We assume starvation when there are not enough
reserves to pay the maintenance costs, that is, when
k(fṗAmg/[Em])[E]V2/3 2 [ṗM] V , 0. As a consequence,
Phil. Trans. R. Soc. B (2010)
dV/da � 0 and dH/da� 0. Hence, for adults, this means
that V � Vp and H � Hp and the i-state variable H
models the cumulative energy allocated to reproduction
given by H(t) 2 Hp.

Production of eggs during spawning is modelled by
a discrete process occurring (spawning) at a fixed
moment of the year. The adults empty their energy
reserves allocated for reproduction and the state of
maturity becomes Hp again. The number of eggs
produced equals the ratio of the amount of energy
allocated to reproduction by the adults and the initial
energy content of eggs. When the individuals have
reached their maximum lifetime, denoted by n [ N,
they die directly after their last reproduction event.
In the next section, reproduction will be modelled at
the population level.
(b) Food–population model

Since all individuals reproduce at the same time once
per year, it is advantageous to introduce a year-class
or a cohort. A new cohort is formed at spawning
events, and when they have reached their maximum
lifetime, each cohort dies after their last reproduction
event. The maximum lifetime in years is therefore
also the maximum number of cohorts.

Suppose there is a single founder cohort consisting
of identical individuals of the same age. When no
reproduction occurs, integration of the following
system

dV

dt
¼ hV ðV ; ½E�Þ;

d½E�
dt
¼ hEðX ;V ; ½E�Þ;

dH

dt
¼ hHðV ; ½E�Þ;

ð2:4aÞ

and

dN

dt
¼ �mN ; ð2:4bÞ

gives the dynamic development of the individuals and
the cohort as well, where t ¼ a þ t0 with a the age and
t0 the time at gametogenesis of this cohort. The i-state
variables, structural volume, energy reserves and
maturity represent directly that of the cohort since all
individuals are identical and the model is determinis-
tic. N is the number of individuals in the cohort and
this number decreases exponentially with mortality
rate m.

During integration, the state-dependent switches
defined in equations (2.1) are checked. The jump con-
ditions at the spawning date due to reproduction and
death after the last reproduction are derived below.

Owing to the discrete reproduction at one date of
the year, the population always consists of just n
cohorts. The dynamics of the population are studied
in a semi-chemostat environment. Therefore, in the
expression for hE, the first variable X is the time-
dependent food concentration in the reactor. The
inflowing food concentration is periodical with a
period of one year

XinðtÞ ¼ �X in 0:5þ 0:5 1þ cos
2pt

365

� �� �4
 !

: ð2:5Þ
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The power 4 is used to describe a peaked yearly algal
bloom. At t ¼ 0, the inflow of the food supply is maxi-
mum. The time at spawning t is measured relative to
this point in time. The maximum of the forcing
equals 8.5X̄in and the minimum 0.5X̄in.

The periodic forcing and reproduction with the
same period of 1 year enables us to introduce a stro-
boscopic map with a period of 365 days. Generally,
the time of reproduction is used as the monitoring
date. Then the discrete reproduction and death
after the last reproduction take place at the bound-
ary of the interval of 1 year at which the state
variables are a smooth function. The discontinuities
occur only at the boundary conditions. However,
later on, with the study of the evolutionary pro-
cesses, we will deal with two populations spawning
at different times. Therefore, we place the monitor-
ing date at the maximum food inflow rate. As a
result, the state variables are only piecewise
smooth with cyclic boundary conditions and jumps
at the spawning date. Then the time interval of
interest is t: 0 � t � 365 with t the spawning date
as an interior point.

We introduce cohorts labelled with a subindex i,
that is, i ¼ 1, . . . , n. At time t in that interval, the
individuals belonging to the first cohort i ¼ 1 have
age a ¼ 0 and for 0 � t � 365 their age is a ¼ (t 2 t)
mod 365. After 1 year, the surviving individuals
move to the second cohort i ¼ 2. The actual age of
the individuals belonging to cohort i reads a ¼ (t 2 t)
mod 365 þ (i 2 1)365. So gametogenesis for the first
cohort occurred at t0 ¼ t 2 365.

The state of the system within each year is
described by a finite-dimensional system consisting
of one ODE for the food X and for each cohort i,
one ODE for each of the three i-state variables: for
each cohort, the individual size Vi, reserves [Ei]
and maturity Hi, and one ODE for the p-state vari-
able: for each cohort the size Ni. At that event, the
population size changes discontinuously whereby
the step size depends on the energy stored for repro-
duction Hi 2 Hp, where Hp is the maturity
threshold.

Then for 0 � t � 365, we have for the system states

dVi

dt
¼ hVi

ðVi; ½Ei�Þ;
d½Ei �

dt
¼ hEi

ðX ;Vi; ½Ei �Þ;
dHi

dt
¼ hHi

ðVi ; ½Ei�Þ; ð2:6aÞ

dNi

dt
¼ �mNi ð2:6bÞ

and

dX

dt
¼DðXinðtÞ�XÞ�f _JXm

gf ðXðtÞÞ
X

i¼1;...;n

V
2=3
i Ni :

ð2:6cÞ

Here f(X(t)) is the Holling type II functional
response:

f ðXðtÞÞ ¼
0 if V � Vb

XðtÞ
Xk þXðtÞ if V . Vb

8<
: ; ð2:6dÞ
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where Xk is the half-saturation constant and we use
the fact that embryos do not feed.

Now we formulate the interior jump conditions at
the spawning data. The number of eggs produced by
the adults form the size of the new cohort

lim
t#t

N1ðtÞ ¼ kr

X
i¼1;...; n

limt"tNiðtÞðlimt"tHiðtÞ �HpÞ
½E0�V0

;

ð2:7Þ

where [E0]V0 is the energy content of one egg and kr is
the efficiency. The size of cohorts Ni is discontinuous at
t because at that instant for i ¼ 1 a new cohort is formed
by the newborns and for i ¼ 2, . . . , n the individuals
become 1 year older, while the cohort of age-class n
dies. For the transition of the other cohorts, we have

lim
t#t

NiðtÞ ¼ lim
t"t

Ni�1ðtÞ for i ¼ 2; . . . ; n; ð2:8Þ

whereby cohort n dies at t ¼ t.
For the i-states, the structural volume and the state

of maturity change discontinuously because the energy
allocated to reproduction is used for making eggs.
So, we have at t ¼ t

lim
t#t

V1ðtÞ ¼ V0; lim
t#t

ViðtÞ ¼ lim
t"t

Vi�1ðtÞ; ð2:9aÞ

lim
t#t
½E1�ðtÞ ¼ ½E0�; lim

t#t
½Ei�ðtÞ ¼ lim

t"t
½Ei�1�ðtÞ; ð2:9bÞ

and

lim
t#t

H1ðtÞ ¼ H0; lim
t#t

HiðtÞ ¼ minðlim
t"t

Hi�1ðtÞ;HpÞ;

ð2:9cÞ

for i ¼ 2, . . . , n.
For the food, we have the continuity condition

lim
t"t

XðtÞ ¼ lim
t#t

XðtÞ: ð2:10Þ

In order to reformulate the problem in terms of the
classical nonlinear dynamical system theory, we define
the vector of state variables as follows:

X ¼ ðV1 � � �Vn½E1� � � � ½En�H1 � � �HnN1 � � �NnXÞT

ð2:11Þ

The ODEs for these variables together with the initial
conditions for the newborn cohort and reproduction
rules, and the cyclic boundary conditions, form a
periodically forced system of ODEs. We are looking for
periodic solutions of that system and its stability on
the ecological time scale. The stroboscopic map is
defined as

Xyþ1 ¼ FðXyÞ; ð2:12Þ

where y [ N denotes the year at t¼ 0, that is, at the date
where the food inflow is maximum. The fixed point of
this nonlinear stroboscopic map F gives the periodic sol-
ution of the periodically forced system.

Its stability can be studied by an analysis of this
stroboscopic map (Kuznetsov 2004). The eigenvalues
of the Jacobian matrix of the map F evaluated at the
fixed point give the local asymptotic behaviour. In
our numerical study, the Jacobian matrix is
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approximated by finite differences. For a stable peri-
odic solution, all eigenvalues must lie inside the unit
circle in the complex plane. The periodic solution
with the forcing period of 1 year need not be stable
in general. To study how the stability depends on the
value of a specific parameter, a numerical bifurcation
analysis can be performed. Starting from the fixed
point solution for the initial parameter value, the bifur-
cation parameter is varied. During this continuation,
the eigenvalues are calculated and they are used to
localize critical points where eigenvalues cross the
unit circle, that is, where the stability changes. These
critical values set the bifurcation points. A period dou-
bling occurs when an eigenvalue equals 21. At a
transcritical bifurcation, one eigenvalue equals
1. This happens, for instance, where the population
goes extinct. Another possibility is the so-called Nei-
mark–Sacker bifurcation where the magnitude of a
pair of complex-conjugated eigenvalues equals 1.
Since we are interested in the effects of the time of
spawning t, this parameter is taken as a bifurcation
parameter.
(c) Fixed points

At a fixed point, the cyclic boundary conditions read

~V ið365Þ ¼ ~V ið0Þ; ½~Ei�ð365Þ ¼ ½~Ei�ð0Þ;
~Hið365Þ ¼ ~Hið0Þ ð2:13aÞ

and

~Nið365Þ ¼ ~Nið0Þ; ~Xð365Þ ¼ ~Xð0Þ;
i ¼ 1; . . . ; n: ð2:13bÞ

Where the solution is denoted by a tilde, this indicates
periodic dynamics.

Observe that the ODE (2.6b) is de-coupled from the
other equations and can be solved directly. When the
mortality rate m is constant, the result is an exponential
decay of the number of individuals given by

lim
t"t

~NiðtÞ ¼ lim
t#t

~N1ðtÞexpð�365miÞ: ð2:14Þ

Substitution into equation (2.7) gives

1 ¼ R0 :¼ kr

X
i¼1;...; n

expð�365miÞðlimt"t ~HiðtÞ �HpÞ
½E0�V0

;

ð2:15Þ

where limt�t H̃i(t) is the energy allocated to maturity and
reproduction at spawning date. Hence, a necessary con-
dition for a periodic population dynamic is that each
individual replaces itself during its lifetime n. This
means that the sum of all fertilized eggs produced by
one individual at the n spawning events, denoted by
R0, equals 1.

For iteroparous species, we assume that they
reproduce possibly every year till the last reproduction
before they die. Owing to our starvation condition,
we have, as long as the individual stays alive,
H � Hp, and therefore it reproduces at the spawn-
ing date. Hence, once a cohort has begun to reproduce
it will reproduce each subsequent year until the
individuals die.
Phil. Trans. R. Soc. B (2010)
(d) Zero and positive fixed point

stability analysis

We first analyse the zero fixed point, where Ni ¼ 0,
i ¼ 1, . . . , n, and thereafter the positive fixed point,
where Ni . 0, i ¼ 1, . . . , n. The obtained results are
relevant for the next step, which is the study of the
invasion of a mutant population into a
resident population. Since Ñi ¼ 0, food is not
consumed and equation (2.6c) gives the
zero fixed-point periodic solution for the food
X̃(t) ¼ Xin(t).

The structure of the Jacobian matrix evaluated
at this zero fixed point is indicated below
where non-negative elements are denoted by an
asterisk.
DV1ð365Þ
D½E1�ð365Þ
DH1ð365Þ
DVnð365Þ
D½En�ð365Þ
DHnð365Þ

DN1ð365Þ
DNnð365Þ

DXð365Þ

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

V1 ½E1�H1 Vn ½En�Hn N1 Nn X

¼

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

0 0 0 0 0 0 P11 P1n 0

0 0 0 0 0 0 Pn1 Pnn 0

� � � � � � � � �

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

DV1ð0Þ
D½E1�ð0Þ
DH1ð0Þ
DVnð0Þ
D½En�ð0Þ
DHnð0Þ

DN1ð0Þ
DNnð0Þ

DXð0Þ

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

ð2:16Þ
The expressions for the elements of the Ni-block
matrix follow from
DN1ð365Þ ¼ kr expð�365mÞ

�
Xi¼n

i¼1

DNið0Þðlimt"t ~HiðtÞ �HpÞ
½E0�V0

;

..

.

DNnð365Þ ¼ expð�365mÞDNn�1ð0Þ:



Table 1. List of symbols. The symbols in the column labelled ‘dimension’ stand for: t, time; e, energy; L, length of the

organism; l, the length of the reference volume of environment. This reference volume is measured in the arbitrary unit V.
The parameter values for an individual life cycle of the Baltic tellin M. balthica are from van der Veer et al. (2006, table 1).
The egg energy content is E0 ¼ [E0]V0 ¼ 0.0059 J; hence, assuming that V0 ¼ 1029 cm3, we have [E0] ¼ 0.59 � 107 J cm23.

symbol dimension interpretation value unit

a t age days
[E] eL23 reserve density J cm23

H e energy allocated to maturity
and reproduction J

N #l23 population density V21

t t time days
V L3 structural volume cm3

X # l23 food density V21

D t21 dilution rate 0.1 d21

[E0] — initial egg reserve density 0.59 � 107 J cm23

[Em] eL23 maximum energy density 2085 J cm23

[EG] eL23 costs of growth 1900 J cm23

f — scaled functional response — —
fJ̇Xm

g # L22 t21 maximum area-specific ingestion rate 1 cm22 d21

Hp e maturity threshold 22.8 J
n — maximum lifetime 2 yr
fṗAmg eL22t21 maximum area-specific assimilation rate 32.9 J cm22 d21

[ ṗM] # t21 L23 volume-specific maintenance rate 24 J cm23 d21

V0 L3 initial egg volume 1029 cm3

Vb L3 structural volume at birth 1026 cm3

Vp L3 structural volume at maturation 0.048 cm3

XK # l23 half-saturation coefficient 100 V21

X̄in # l23 proportionality coefficient 1000 V21

input food density

k — allocation coefficient 0.8 —
kr — efficiency reproduction into eggs 1.18 � 1025 —
m t21 mortality rate 0.001 d21

t t spawning date days
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The Ni-block matrix P reads

P11 ¼ kr expð�365mÞ ðlimt"t ~H1ðtÞ �HpÞ
½E0�V0

;

..

.

P1n ¼ kr expð�365mÞ ðlimt"t ~HnðtÞ �HpÞ
½E0�V0

;

P21 ¼ expð�365mÞ;

..

.

Pnðn�1Þ ¼ expð�365mÞ;

and all other elements are zero.
The diagonal block matrix P for the population

number variables Ni is decoupled from the i-state vari-
ables and food variable system because of the zero
elements in the matrix of the two associated rows indi-
cated in equation (2.16). Consequently, the
characteristic equation is partitioned and the eigen-
values are those of the two block matrices.
Calculations show that for the reference parameter
values in table 1, the eigenvalues for the remaining
block matrix belonging to the i-state variables and
the food variable are inside the unit circle. Some of
the eigenvalues are zero and this has to be taken into
account in the calculation of the fixed point.
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Hence, the stability of the zero fixed-point solution
is determined by the n eigenvalues of the diagonal
block matrix P. Observe that this matrix is precisely
a classical linear Leslie matrix (see Cushing 1998; Cas-
well 2001). On the first row, the class fertilities and on
the sub-diagonal the year-to-year survival probabilities
are shown. The eigenvalues and eigenvectors of this
non-negative matrix are described by the Perron–
Frobenius theorem (Caswell 2001, p. 83). Further-
more, it allows for the use of net reproductive rate
denoted by R0 for the evaluation of the stability
(Caswell 2001, p. 83): R0 . 1 unstability and R0 , 1
stability. Here we use the dominant eigenvalue of the
block matrix P. For the reference parameter values,
one of the real eigenvalues is inside the unit circle
but the other is outside and therefore the zero fixed-
point solution is unstable. This finalizes the analysis
of the zero fixed point where Ni ¼ 0, i ¼ 1, . . . , n.

Besides this zero fixed point, there can be positive
solutions where Ni . 0, i ¼ 1, . . . , n. The analysis of
these positive solutions is straightforward since no
degeneracies nor partitions of the Jacobian matrix
occur. Therefore, the eigenvalues of the Jacobian
matrix directly dictate the stability properties.
3. EVOLUTIONARY MODEL FORMULATION
We will study the evolutionary development of the
population in the reactor using the AD approach. It
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is assumed that the ecological time scale (here a few
years) is much faster than the evolutionary time scale
(several generations). The ecological time scale is set
by the rate of convergence to the stable periodic sol-
ution. The evolutionary time scale is set by the rate
of change of the trait parameter, the low mutation
rate. The trait is the timing of the reproduction t.
Hence, individuals from the resident and mutant
population have the same physiological parameter
values except for the timing of reproduction t. Time-
scale separation gives that in studying the dynamics of
the trait the population dynamic is at a steady state,
that is, at a stable fixed point of the stroboscopic
map, equation (2.12).

In order to study the effects of a mutational step, we
introduce, besides the steady-state resident population
with trait value t ¼ tr, a mutant population with a
slightly different trait value t ¼ tm. As a result, the
dynamics of the extended dynamical system now con-
sisting of two populations is studied. In a similar way
as for a one population system, a stroboscopic map
can be formulated. Both populations compete for the
same food X, so the ODE for the food reads

dX

dt
¼ DðXinðtÞ �XÞ � f _JXm

gf ðXðtÞÞ

X
i¼1;...; n

V
2=3
i;r Ni;r þ

X
i¼1;...; n

V
2=3
i;m Ni;m

 !
;

ð3:1Þ

where the additional subscript denotes the resident, r,
or mutant, m, population.

In summary, the governing equations for the resi-
dent and mutant population in the chemostat reactor
are formed by equations (2.12) whereby the vector of
state the variables reads

X ¼ ðVi;r ½Ei;r�Hi;r Ni;r Vi;m ½Ei;m�Hi;m Ni;m XÞT; ð3:2Þ

where for all i-states and p-states, v [ fV, [E], H, Ng,
and both populations, P [ fr, mg

vi;P ¼ ðv1;P . . . vn;PÞT: ð3:3Þ

To study invasion of the resident population by a
mutant population, we consider the stability of the
fixed point whereby Ni,r . 0 and the mutant is
absent, Ni,m ¼ 0, i ¼ 1, . . . , n.
4. BIFURCATION ANALYSIS TECHNIQUE
For the periodically forced system studied here, we use
the bifurcation analysis approach to calculate the PIP
and MIP. Regions of co-existence of the resident and
mutant populations are bounded by transcritical bifur-
cations of the stroboscopic map (Kooi & Troost 2006;
Troost et al. 2007, 2008). At these curves, the system
consisting of the resident and mutant populations
together with the ambient food is structurally unstable
with the leading eigenvalue equal to 1, whereby one
population (here we assume first the mutant popu-
lation) is absent and its invasion rate is zero. These
curves mark the regions of co-existence.

Applying bifurcation theory means that the ESS is
fixed by a point tm ¼ tr where two transcritical bifur-
cation curves (one where the resident population is
Phil. Trans. R. Soc. B (2010)
absent and the other where the mutant population
is absent) intersect. Observe that at this point there
is no unique solution because the two populations are
identical and therefore only the sum of the numbers
of individuals that make up the populations is fixed.
The type of ESS can be found by performing a one-
parameter bifurcation analysis where tr ¼ tm þ 1,
where 1 is small.

As for the zero solution of the one-population map,
it is possible to derive analytically some general results
before performing a numerical bifurcation analysis
whereby all parameters need to possess a value,
except the free bifurcation parameter (here the trait).
The situation is similar to that discussed above for
the zero fixed-point solution whereby the number den-
sity of the population was zero, that is, Ni ¼ 0 in the
mutant population. The food density X(t) is now not
equal to the input function Xin(t) but is set by the resi-
dent population. Nevertheless, there is a partitioning
of the Jacobian matrix, here for the mutant i-state
variables Vi,m, [Ei,m], Hi,m and the mutant p-state
Ni,m, i ¼ 1, . . . , n and a coupled set consisting of
the food density X and the complete resident
population i-state and p-state variables. The block
matrix related to the latter set of variables equals the
Jacobian matrix of the dynamical system with the
resident population alone in the chemostat. Since the
mutant population has number density zero, there is
effectively no competition and this gives the
decoupling. We assume that the invaded resident
population possesses a stable fixed point.

Consequently, also in this case, we need to evaluate
only the stability of the n-dimensional system for Ni,m,
i ¼ 1, . . . , n. Since the periodic solution of the resident
population system with spawning date tr is stable, the
invasion fitness (Metz et al. 1992) is just the dominant
eigenvalue of the Jacobian block matrix P for the
mutant population with spawning date tm evaluated
at Ni,m ¼ 0, i ¼ 1, . . . , n. When this dominant eigen-
value is outside the unit circle, the mutant can
invade; otherwise it cannot.

Alternatively, using the expression for R0 in
equation (2.15), we can obtain the following invasion
fitness s ¼ ln R0 for the mutant population with
spawning date tm

s ¼ ln kr

X
i¼1;...; n

expð�365miÞðlimt"t Hi;mðtÞ �HpÞ
½E0�V0

 !
:

ð4:1Þ

Here Hi,m(t) is calculated using the food dynamics set
by the resident population.
5. CASE STUDY
Many students of marine invertebrates have con-
sidered the fitness consequences of the timing of
reproduction only in terms of the short-term prospects
of the offspring (Thorson 1966). For example, it has
recently been argued that spawning of the marine
bivalve M. balthica, which seems to be triggered by a
temperature threshold, has shifted forward within the
season as a result of global change (Philippart et al.
2003). This may have caused a temporal mismatch
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with the onset of the spring bloom which is believed to
be of vital importance for the early larvae. Generally
speaking, it is, however, not immediately obvious
why emphasis should be put on the earliest life phase
of the offspring. Adults themselves may profit from
the food peak and by these means increase the total
reproductive output. It might also be more profitable
for the young to experience the food peak at a later
stage and a larger size (Schultz et al. 1991). The
debate on whether growth and development of invert-
ebrate larvae are indeed food limited under natural
conditions has not been settled yet (Strathmann
1996).

In this section, we present results of our analysis for
the bivalve M. balthica. Our exploration on the optimal
time of spawning for this bivalve may contribute to the
discussion on the importance of the food conditions
during the earliest life larval phase of marine invert-
ebrates. The parameter values of the DEB model for
M. balthica were estimated in van der Veer et al.
(2006) and are given in table 1. Macoma balthica
lives buried in sandy sea beds of the coastal zones of
the Northern Atlantic. Along the European coast, M.
balthica occurs from the White Sea at 708 N to the Gir-
onde estuary at 458 N. In the Dutch Wadden Sea
where M. balthica is a dominant species, it can be
found from the upper regions of the intertidal to the
outer parts of the tidal inlets and into the coastal zone.
It feeds only on algae. In the Dutch Wadden Sea, M.
balthica spawns in April (Philippart et al. 2003), while
the chlorophyll levels, which are indicative of algal
abundance, peak in May (Philippart et al. 2003).

We also studied the impact of a number of par-
ameters related to the interaction of the population
with the environment while keeping all DEB for the
individuals the same as in table 1. We studied the
temperature effects affecting the physiological rates
using the Arrhenius relationship whereby the ambient
temperature (and therefore also the internal tempera-
ture of most marine organisms) fluctuates annually.
The parameter values in the periodic forcing function
for the food given in equation (2.5) also varied.
Furthermore, we increased the maximum lifetime
from 2 to 5. The results are not discussed here.
(a) Bifurcation analysis results

We start with the analysis of the ecological model in
which the trait, the time of spawning t, is fixed for
the resident population.

For the parameter values given in table 1, the zero sol-
ution where Ni¼ 0, for i ¼ 1, 2, is unstable. The
dominant eigenvalue of the 2� 2, Jacobian block
matrix for the p-state variables Ni, i ¼ 1, 2, is larger
than 1 and the other eigenvalues are inside the unit
cycle. The positive solution is, however, stable for the
parameter values given in table 1. This stable periodic
solution of the resident population is shown in figures 1
and 2 for t¼ 211 days. From the analysis below, we
know that this trait value belongs to an ESS. Figure 1a
gives the annual cycle of the inflowing food concen-
tration Xin(t) and the ambient food concentration X(t).
The food concentration increases at spawning. This is
because the newly laid eggs do not feed while the
Phil. Trans. R. Soc. B (2010)
adults in the second year-class cohort died. In general,
the difference between Xin(t) and X(t) is due to feeding
of the population which causes some delay, well known
for predator–prey interactions.

The number of individuals in each cohort Ni(t),
i ¼ 1, 2, is depicted in figure 1b. These numbers are
continuously decreasing due to mortality and discon-
tinuously due to the disappearance of the second
year-class cohort after their final spawning event;
only at spawning is there an increase due to egg
production of the first-year cohort. The transition
from each year-class cohort to the next year-class is
continuous; all individuals move to the next class.

In figure 2, the changes of the i-state of the individ-
uals in their first- and second-year classes are depicted,
where age is related to time of year by a ¼ ((t 2 t) mod
365) þ (i 2 1)365, where i is the year class. In
figure 2a, the size v of the eggs is small at spawning.
They hedge and become juvenile at Vi ¼ Vb, and
become mature at Vi ¼ Vp, i ¼ 1, 2. Observe that
there is always growth; the individuals do not shrink,
not even during time periods where the food density
is low. Figure 2b shows the annual changes in the
energy allocation to the reserve buffer [Ei](t) together
with the expression f(t)[Em] (see equation (2.1b)). In
figure 2c, the energy allocation to development and
the reproduction Hi(t) is shown.
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The PIP and MIP shown in figure 3 summarize the
evolutionary results. Figure 3a is the PIP. In the grey
regions, the mutant is able to invade the resident
population, that is, the mutants fitness is positive. At
the interior boundaries, the invasion fitness is zero.
The point on the principle diagonal where the fitness
gradient is zero is an ESS. The MIP (figure 3b) is
obtained as the superposition of the PIP and its
mirror image along the principle diagonal (Geritz
Phil. Trans. R. Soc. B (2010)
et al. 1998). On the right side of the point ss2, there
is a plus below the diagonal and a minus above the
diagonal. That is, the local fitness gradient from
above points towards ss2. On the left side of the
point ss2, there is a minus below the diagonal and a
plus above the diagonal. Hence, the local fitness gradi-
ent from below also points towards ss2. This
description is that of the AD framework.

Now we give a description of the results of applying
the bifurcation analysis approach. Here we only refer
to the MIP (figure 3b). In this diagram, the transcriti-
cal bifurcation curves are drawn. There are two types
of curves. At one curve, the size of the mutant popu-
lation is zero, and at the other type of curve, the size
of the resident population is zero. These curves mark
the trait values where the invasion rate of the zero-
size population is zero. There is an ESS at the intersec-
tion point on the diagonal where these curves meet.
There are two ESSs: point ss2 at tr ¼ 211 days and
point ssþ at tr ¼ 31.2 days.

The transcritical curves close to the point ss2

enclose a region where the two populations can co-
exist (see MIP; figure 3b). However, this interior
point is unstable (the leading eigenvalue of the
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Jacobian matrix evaluated at points in this region is
outside the unit cycle). Figure 4b is a one-parameter
diagram showing the population size Nr ¼

P
i¼1
2 Nr,i

of the resident population and Nm ¼
P

i¼1
2 Nm,i of

the mutant population as a function of the trait tm,
where tr ¼ tm þ 5. This line is also drawn in
figure 4a, which is a detail of figure 3b. The interior
equilibrium is always unstable (at the ecological time
scale) and therefore branching does not occur and
point ss2 is a stable ESS. The diagram shows that
there is no mutual invasibility. The zero fixed point
is stable below the right (catastrophic) transcritical
bifurcation point and the positive fixed point is stable
above this bifurcation point.

In a similar way, we find that the local fitness
gradient points, in both directions, away from ssþ.
This point forms a separatrix. Starting with a higher
resident trait values, mutational steps will lead to an
increase in the trait towards point ss2. On the other
hand, starting with a smaller trait value, mutational
steps lead to a decrease towards point ss2, where we
use the fact that the PIP is cyclic for t ¼ 0 and t ¼ 365.

For points that are more distant from the points ss2

and ssþ in figure 3b, the region of co-existence
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becomes very small and both curves are indistinguish-
able. Because the PIP is cyclic with a period of 1 year,
the transcritical bifurcation curves connect points ss2

and ssþ. When the two curves coincide, the dynamics
are the same as on the diagonal; at one side one
population wins while at the other side the other wins.
6. DISCUSSION
The main aim of this paper is to study the evolutionary
dynamics of the timing of spawning within the year.
The work here differs from that of Davydova (2004)
using semelparous species (n ¼ 1) in that the popu-
lation is iteroparous, that is, the individuals
reproduce annually and die immediately after the last
reproductive event (n � 2).

In the AD theory literature, the PIP and MIP are
constructed by calculation of the zero invasion fitness
curves (Metz et al. 1996; Geritz et al. 1998). Thereafter,
the shape of these curves directly fixes the ESS points
and their evolutionary stability (Geritz et al. 1998).
Eight different types of singular strategies are distin-
guished based on the second derivatives of the
invasion fitness evaluated at the point. The region of
invasion in the PIP (figure 3a) close to the point ss2

at tr ¼ 211 days is the same as in Geritz et al. (1998,
fig. 2, case (e)): it is ESS stable and convergence
stable. The local fitness gradient points towards this
point. For point ssþ at tr ¼ 31.2 days, the region of inva-
sion is the same as that in Geritz et al. (1998, fig. 2 case
(h): it is ESS unstable and convergence unstable.

In the AD approach, a mutational step is divided
into two steps. First a stable resident population is
invaded by the mutant population, second the
mutant population replaces the resident population
and this means that the new resident population is
also stable. In bifurcation terms, these two steps
mean that starting from a stable resident population,
first the resident–mutant system with zero mutant
population size but with a sightly different trait value
than the resident population is unstable. Second, the
resident population goes extinct and the mutant popu-
lation grows and reaches a stable fixed point. In our
approach, the stability of the new resident population
is checked when the next mutational step is analysed.

In a bifurcation analysis context, the zero mutant
invasion fitness curve is precisely the transcritical
bifurcation curve for the two-population system in
the two-dimensional trait space, where the trait of
the resident and mutant populations are the bifur-
cation parameters. Generally, this is achieved by the
calculation of the so-called test functions (see
Kuznetsov 2004) or by the calculation of the eigen-
values of the Jacobian matrix. It is also possible to
use the zero-invasion fitness curve defined in equation
(4.1). This simplifies the numerical calculations, for
there is no need to calculate the Jacobian matrix eval-
uated at the fixed point and its eigenvalues. However,
using the invasion fitness as a test function gives no
guaranty that the invaded resident population is
stable and, furthermore, no direct information about
whether invasion leads to replacement or co-existence.

The bifurcation diagram figure 3b is an alternative
to the PIP (figure 3a). The advantage of a bifurcation
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analysis is that it is also applicable when no simple
expression for the invasion fitness is available. Further-
more, because all types of bifurcations are calculated
as part of the analysis of the competitive two-
population system, the requirements (for instance,
the existence of a positive stably resident population)
that justify the application of the AD approach are
checked. Observe that in the bifurcation analysis
approach, we adhere strictly to the time-scale separ-
ation of the ecological and evolutionary time scales.
After a successful invasion of the mutant, it replaces
the resident population. This means that the temporal
change of the trait variables at the evolutionary
time scale, described by the canonical equation
(Dieckmann & Law 1996), is not studied: only the
calculation and evaluation of the stability of the evol-
utionary endpoints. In Dercole & Rinaldi (2008), the
dynamics of the canonical equation is studied in
great detail using the bifurcation analysis technique.

In de Roos et al. (2006), a size-structured
population–nutrient model is used to study the evol-
utionary changes in fish individual life history and
stock properties. In that article, many elements of
the AD approach are adopted. The invasion fitness is
computed by two-population competition simulations.
This approach is more universal and can be used for a
wide range of population models and also when the
ecological and evolutionary time scales are not separ-
ated (see also Troost et al. 2008). However, the
accuracy of the simulation can be problematic and
the calculations are much more time-consuming.

Although the results obtained for the bivalve
M. balthica are preliminary, it is tempting to compare
them with field data. From figure 3, we learn that
there are two ESS values, one is an evolutionary attractor
and the other is an evolutionary repeller. At the attract-
ing singular strategy, the species spawns about 150
days before the maximum food inflow (algal bloom).
This date is far away from what has been observed in
the field, where spawning occurs only one month
before the algal bloom (Philippart et al. 2003). At pre-
sent, knowledge at the individual level is much more
extensive than what we know at the population level,
including the description of food and predation
dynamics. DEB parameter values, for example, are rela-
tively well known (van der Veer et al. 2006). Hence, there
is a need for more data at the population level. Neverthe-
less, we can conclude that the accepted hypothesis that
the seasonal timing of spawning in marine invertebrates
is a response to seasonal fluctuations in food levels
was not confirmed by our model analysis. It might be
that, besides the dynamics of the food, the seasonal
fluctuations in predation pressure are important.

In conclusion, bifurcation analysis provides an inte-
grated approach for modelling and analysis of
ecological and evolutionary processes at both individ-
ual and population levels of organization. In the
future, the technique developed here will be used to
study the evolution of reproductive strategies such as
the timing of spawning of marine invertebrates or ver-
tebrates that spawn within small time windows
periodically (Olive et al. 1997; Watson et al. 2000;
Reitzel et al. 2004; Varpe et al. 2007, 2009).
Phil. Trans. R. Soc. B (2010)
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