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than does antagonism in plant–herbivore
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Coevolved mutualisms often exhibit high levels of partner specificity. Obligate pollination mutualisms,

such as the fig–fig wasp and yucca–yucca moth systems, represent remarkable examples of such highly

species-specific associations; however, the evolutionary processes underlying these patterns are poorly

understood. The prevailing hypothesis suggests that the high degree of specificity in pollinating seed para-

sites is the fortuitous result of specialization in their ancestors because these insects are derived from

endophytic herbivores that are themselves highly host-specific. Conversely, we show that in the

Glochidion–Epicephala obligate pollination mutualism, pollinators are more host-specific than are closely

related endophytic leaf-feeding taxa, which co-occur with Epicephala on the same Glochidion hosts.

This difference is probably not because of shifts in larval diet (i.e. from leaf- to seed-feeding), because

seed-eating lepidopterans other than Epicephala do not show the same degree of host specificity as

Epicephala. Species of a tentative sister group of Epicephala each attack several distantly related plants,

suggesting that the evolution of strict host specificity is tied to the evolution of pollinator habit. These

results suggest that mutualists can attain higher host specificity than that of their parasitic ancestors

and that coevolutionary selection can be a strong promoter of extreme reciprocal specialization in

mutualisms.
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1. INTRODUCTION
Parasitic lifestyles usually favour extreme specialization to

one or few host species because they require complex

adaptations to circumvent host defences and sustain life

on a single host (Ehrlich & Raven 1964; Price 1980;

Thompson 1994; Strauss & Zangerl 2002). Although

specific mechanisms underlying host specialization may

vary among taxa, the broad general understanding is

that host–parasite coevolution promotes specialization

in parasitic organisms (Thompson 1994, 2005). Strict

host specificity of parasites is often linked to high species

diversity because specialization to different hosts can

result in host-associated speciation (Mitter et al. 1988;

Farrell 1998; Schluter 2000; Coyne & Orr 2004).

In contrast, the evolutionary processes that determine

the level of specialization in mutualisms are far less under-

stood. Although many mutualisms do not evolve to

exhibit high degrees of specificity (e.g. most plant–

pollinator and plant–seed disperser interactions),

reciprocal partner specialization is often found in intimate

mutualisms, such as those between myrmecophytic plants

and their resident ants (Davidson & McKey 1993; Heil &

McKey 2003; Guimarães et al. 2007), ants/termites and

their cultivated fungi (Mueller et al. 1998; Aanen et al.
for correspondence (kawakita@s01.mbox.media.kyoto-u.

ic supplementary material is available at http://dx.doi.org/10.
b.2010.0355 or via http://rspb.royalsocietypublishing.org.

22 February 2010
9 April 2010 2765
2002; Currie et al. 2003) or various invertebrates and

their endosymbiotic micro-organisms (Moran & Telang

1998; Hosokawa et al. 2006). Both ultimate and proxi-

mate causes of specialization have been proposed,

including selection for elimination of less-cooperative

partners (Heil et al. 2005; Poulsen & Boomsma 2005)

and chemical or physical mechanisms of partner discrimi-

nation (Federle et al. 1997; Brouat et al. 2001; Edwards

et al. 2006; Grangier et al. 2009). However, the general

understanding of the evolutionary conditions favouring

specialization in mutualisms is still very limited (Thompson

1994, 2005), and modern molecular approaches continue

to refine our view of how mutualists are associated with

one another on both local and broad geographical scales

(Molbo et al. 2003; Mikheyev et al. 2006; Quek et al.

2007; Visser et al. 2009).

Perhaps, the most remarkable cases of reciprocal

specialization between mutualists are found in obligate

pollination mutualisms (Janzen 1979; Pellmyr 2003;

Herre et al. 2008). The fig–fig wasp and yucca–yucca

moth mutualisms are well-known examples of such

highly species-specific associations, in which the plants

are pollinated by one or, rarely, two insect species,

which in turn are highly host-specific seed parasites of

the plants they pollinate. Figs and yuccas have diversified

into more than 700 and 40 species, respectively, and a

corresponding high diversity of pollinator species have

evolved, each of which is obligately mutualistic with one

or few fig/yucca hosts (Weiblen 2002; Pellmyr 2003;

Herre et al. 2008). This level of specificity is unusual
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among pollination mutualisms because, although selec-

tion may favour plants depending on specialized visitors

for effective conspecific pollination, pollinators are gener-

ally expected to maximize the range of plants they visit to

optimize resource use (Pellmyr 2002; Gómez & Zamora

2006). The high specificity of pollinating seed parasites

is therefore considered to be the result of their inherently

parasitic lifestyle (Thompson 1994, 2005) because seed-

feeding insects commonly specialize to a narrow range

of host plants. Indeed, detailed ecological and phyloge-

netic studies of the yucca moth family Prodoxidae have

found that close relatives of the pollinators are also

highly host-specific herbivores (Pellmyr & Thompson

1992; Pellmyr 1999; Pellmyr et al. 2006), suggesting

that the high degree of pollinator-specificity is driven by

the parasitic part of the interaction and cannot be attrib-

uted to mutualistic selection (Thompson 1994, 2005).

However, a growing body of evidence suggests that the

current view of host specificity in pollinating seed para-

sites may require revision. Within the yucca moth

lineage, two cheater species have independently lost

their pollinating behaviour and oviposit in young fruits

to exploit the seeds that other yucca moth species have

pollinated (Pellmyr et al. 1996; Pellmyr 1999). In contrast

to their pollinating relatives, each of these cheater species

has evolved to use four to six yucca hosts (Pellmyr 1999;

Segraves & Pellmyr 2004), suggesting that host specificity

in the pollinators may not be determined solely by the

herbivorous habit of the moths (Pellmyr 2003). In the

fig system, non-pollinating agaonid wasps that are closely

related to and co-occur with pollinating fig wasps tend to

be less host specific than are the pollinators (Weiblen &

Bush 2002; Marussich & Machado 2007; but see

Lopez-Vaamonde et al. 2001; Jousselin et al. 2006,

2008). In addition, fig herbivores in general are domi-

nated by insects that feed on several locally available fig

hosts (Novotny et al. 2002, 2006). Given that shared pol-

linators can result in hybridization among closely related,

co-occurring figs (Machado et al. 2005), selection may

favour figs relying on specialist pollinators to achieve

effective conspecific pollination. Thus, these observations

indicate that pollinating seed parasites may in fact attain a

higher degree of host specificity than that of their parasitic

ancestors owing to coevolutionary selection arising after

the evolution of pollination mutualism.

We tested whether host specificity is greater in pollinat-

ing seed parasites than in their herbivorous ancestors in a

recently discovered mutualism between Phyllantheae

plants (Phyllanthaceae) and Epicephala moths (Gracillar-

iidae; Kato et al. 2003; Kawakita & Kato 2004a,b, 2009).

Currently, an estimated 500 species of Phyllantheae

plants exist that are pollinated by the ovipositing females

of Epicephala moths (Kawakita & Kato 2009; Kawakita

2010). Among them are plants of the genus Glochidion,

which is the largest radiation and comprises more than

300 species distributed throughout the Asian–Australian

tropics (Govaerts et al. 2000). Previous detailed assess-

ment of pollinator specificity in the Japanese species of

Glochidion has found that, although some Epicephala

species are associated with two closely related Glochidion

hosts in different parts of their ranges, each Epicephala

species is specialized to only one of the several co-occurring

hosts in all populations studied, thus showing very

strict local host specificity (Kawakita & Kato 2006).
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The Glochidion–Epicephala system is ideal for studying

the evolution of high host-specificity in pollinating seed

parasites because Glochidion plants are host to two other

genera of herbivores (Diphtheroptila and Caloptilia) that

belong to the subfamily Gracillariinae together with

Epicephala (Kumata 1982; Kuroko 1982); this situation

allows for comparison of host specificity among phylo-

genetically related genera that share the same host

plants. Diphtheroptila are leaf miners that use young

Glochidion leaves, whereas Caloptilia are leaf miners as

early instar larvae and, as they develop into late instars,

construct leaf rolls or induce leaf galls, depending on

species (Kumata 1982). Furthermore, Glochidion plants

are attacked by lepidopteran seed parasites that belong

to the families Carposinidae, Tortricidae and Pyralidae,

whose host specificity may be determined by a common

mechanism with that of Epicephala owing to their shared

larval diet.

In this study, we first conducted a molecular phyloge-

netic analysis of Gracillariinae to determine the relative

phylogenetic positions of Epicephala, Diphtheroptila and

Caloptilia within the subfamily. We then analysed host

specificity of the abovementioned Glochidion-associated

herbivores (Diphtheroptila, Caloptilia and non-gracillariid

seed-feeding lepidopterans) to test whether the level of

host specialization is indeed higher in Epicephala. We

also investigated the degree of host specificity in a candi-

date sister genus of Epicephala to determine whether the

high pollinator specificity is an ancestral condition predat-

ing the evolution of the pollination mutualism in

Epicephala.
2. MATERIAL AND METHODS
(a) Sampling

To determine the phylogenetic positions of Epicephala,

Diphtheroptila and Caloptilia within the subfamily Gracillarii-

nae, we first conducted a molecular phylogenetic analysis of

the subfamily based on the mitochondrial cytochrome oxi-

dase subunit I (COI) and the nuclear elongation factor-1

alpha (EF-1a), arginine kinase (ArgK ) and 18S rRNA

genes. Within Gracillariinae, Epicephala and Diphtheroptila

belong to the Parectopa group as proposed by Kumata

(1988), which is characterized by a highly distinct morpho-

logical synapomorphy (i.e. the female ostium bursae opens

on the sternite of the seventh abdominal segment). Caloptilia

belongs to the Gracillaria group (Kumata 1982) and thus is

probably distantly related to Epicephala. We sampled a total

of 45 non-Epicephala gracillariine species for phylogenetic

analysis with a particular emphasis on the Parectopa group,

including putative new taxa that have morphological affinities

to Epicephala (full list of species are provided in the electronic

supplementary material, table S1). An effort was made

to sample moths from a broad range of angiosperm hosts

to avoid sampling bias in our inference of generic relation-

ships. Representatives of the subfamilies Oecophyllembiinae

(Eumetriochroa hederae) and Lithocolletinae (Cameraria

niphonica) were also sampled, and species of Bucculatricidae

(Bucculatrix spp.) were used to root the entire gracillariid

tree. Because we were unable to include many gracillariine

genera in this analysis, our phylogenetic results remain

inconclusive with regard to the sister group of Epicephala.

However, firmly establishing the closest extant relative of

Epicephala is not straightforward because a large number of
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unnamed lineages continue to be discovered (Vargas &

Landry 2005; A. Kawakita & M. Kato 2009, personal

observation) and phylogenetic relationships among gracillar-

iine genera are difficult to resolve even by analyses of large

molecular data sets (A. Kawahara, University of Maryland

2009, personal communication), probably owing to rapid

radiation of extant genera. Rather, our purpose was to

determine how closely Diphtheroptila and Caloptilia are related

to Epicephala within the subfamily and to identify genera, if

any, that are more closely related to Epicephala. Such genera

share similar evolutionary background with Epicephala and

thus provide an opportunity to test whether the level of host

specificity in Epicephala is in fact exceptional in light of the

overall evolutionary trend among its closest relatives.

To compare the degree of host specialization in Epicephala

with those of Diphtheroptila, Caloptilia and the non-gracillariid

seed feeders, we analysed the mitochondrial COI and nuclear

EF-1a genes for these moths. Sampling was conducted within

precisely the same geographical range as that used to assess

pollinator specificity in our previous study (Kawakita & Kato

2006); this enabled a direct comparison of host specialization

among herbivores using the same sets of Glochidion species.

Diphtheroptila and Caloptilia were collected by sampling the

leaves containing the larvae and were reared to adults in the

laboratory. Seed-parasitic lepidopterans belonging to Carposi-

nidae, Tortricidae and Pyralidae were sampled by collecting

the fruits and were also reared to adults. To minimize the

possibility of analysing multiple siblings, only one moth per

tree per sampling event was used for the molecular analysis.

Diphtheroptila sp. attacking Bridelia balansae and Caloptilia

recitata infesting Rhus succendanea were used to root the

Diphtheroptila and Caloptilia trees, respectively, based on the

results of the phylogenetic analysis of Gracillariinae.

We also sampled moths of the leaf-miner genus Cuphodes

because this genus was identified as the putative sister taxon

of Epicephala in the Gracillariinae phylogeny (see §3).

Cuphodes moths are known to occur on species of Diospyros

(Ebenaceae) (Issiki 1957), Fabaceae (Kuroko 1982;

Robinson et al. 2001) and Rhamnaceae (M. Kato 1991, per-

sonal observation), but their host ranges have not been

investigated in detail. We therefore sampled Cuphodes from

various species of Diospyros, Fabaceae and Rhamnaceae

that occur in approximately the same geographical region

as the above-sampled Glochidion herbivores to determine

the degree of host specificity in a close relative of Epicephala.

Analysis was done using COI, EF-1a and additionally, ArgK

because we initially found one of the exemplars to fall into

largely different clades in the COI and EF-1a phylogenies,

which we suspected as the result of genetic introgression.

Full details of host association, sample size and locality

information for the sampled gracillariid moths are provided

in figure S1 and electronic supplementary material, tables

S1 and S2.

(b) Molecular phylogenetic analysis

We extracted moth genomic DNA from thoracic muscle using

a NucleoSpin Tissue kit (Macherey-Nagel, Düren, Germany).

PCR amplification and direct sequencing of the COI, EF-1a,

ArgK and 18S rRNA genes were conducted using the primers

and protocols detailed in Kawakita et al. (2004) and Kawakita

& Kato (2006, 2009). Heterozygous sites in EF-1a and ArgK

were identified as double peaks of similar height in the chro-

matograms of both forward and reverse strands and

accordingly coded using degenerate bases. Obtained
Proc. R. Soc. B (2010)
sequences have been deposited in the GenBank database

under accession numbers GU816251–GU816796.

Sequences of the protein-coding genes (COI, EF-1a and

ArgK) contained no introns, and thus the alignment was

straightforward. The alignment of 18S rRNA sequences

was performed using CLUSTALX 2.0 (Larkin et al. 2007) soft-

ware with default settings. Phylogenetic trees were

constructed for each of the following four datasets: the four-

gene dataset of Gracillariinae, the COIþ EF-1a datasets of

Diphtheroptila and Caloptilia, and the COIþ EF-1a þ ArgK

dataset of Cuphodes. We focus on the analyses of combined

datasets because initial analyses of individual genes suggested

no strongly conflicting phylogenetic relationships among

genes. However, there was a major incongruence in the place-

ment of one Cuphodes specimen between the mitochondrial

(COI) and nuclear gene datasets (EF-1a and ArgK; separate

phylogenies are provided in the electronic supplementary

material, figure S2), suggestive of mitochondrial introgression.

We therefore performed the combined analysis excluding this

anomalous Cuphodes individual. We did not construct phylo-

genetic trees for non-gracillariid seed parasites because each

of the three taxonomic groups (Carposinidae, Tortricidae

and Pyralidae) was represented by a single species having

minimal sequence variation (see §3).

Phylogenetic trees were constructed using maximum like-

lihood (ML) and Bayesian methods. We performed ML

analyses using the program TREEFINDER (Jobb 2008)

with substitution model chosen and fitted separately for

each gene. Nodal support was assessed using bootstrap

analyses with 1000 replications. Bayesian analyses were

performed using MRBAYES 3.1.2 (Ronquist & Huelsenbeck

2003) with substitution parameters unlinked among gene

partitions. Appropriate models of base substitution were

selected for individual genes using MRMODELTEST 2.3

(Nylander 2004).

Because neither Diphtheroptila nor Caloptilia was recov-

ered as sister to Epicephala on the Gracillariinae phylogeny,

we tested the robustness of this reconstruction using the like-

lihood-based approximately unbiased (AU) test (Shimodaira

2002) as implemented in TREEFINDER. We also determined

whether Epicephala, Diphtheroptila and Caloptilia each

colonized Phyllanthaceae plants independently by recon-

structing the ancestral host association using BAYESTRAITS

(Pagel et al. 2004). Each terminal taxon was coded as

either Phyllanthaceae or non-Phyllanthaceae feeder, and

ancestral states were reconstructed on the above-obtained

ML phylogeny using the ML criterion. To account for phylo-

genetic uncertainty, we also used a Bayesian framework by

integrating post-burn-in trees resulting from the Bayesian

phylogenetic analysis. Likelihood ratio or Bayes factor of

greater than 5 was considered significant evidence for the

occurrence of either state at ancestral nodes (Pagel 1999;

Pagel et al. 2004).

Analyses of Diphtheroptila and Caloptilia datasets recov-

ered several well-defined clades that are each associated

with two or more plant species (see §3). To detect any

host-associated divergence within each of these putative

species, we performed an analysis of molecular variance

(AMOVA) on each of COI and EF-1a datasets using

ARLEQUIN 2.0 software (Schneider et al. 2000). EF-1a

sequences with multiple heterozygous sites were analysed as

genotypes with unknown gametic phase. Analyses were not

performed for Cuphodes and non-gracillariid seed feeders

owing to small sample sizes per clade/species.
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Figure 1. Maximum-likelihood (ML) phylogeny of Gracillariinae based on 2548 bp of the combined mitochondrial COI and
nuclear EF-1a, ArgK and 18S rRNA genes. Nodal numbers indicate ML bootstrap values followed by Bayesian posterior prob-
abilities. Clades boxed in light green are those feeding on Phyllanthaceae plants, and species highlighted individually in dark
green are those associated with Glochidion plants. Pie graphs show the relative likelihoods of alternative host associations at
selected ancestral nodes: green, Phyllanthaceae host; blue, non-Phyllanthaceae host. Asterisks indicate significant differences

in likelihoods (i.e. likelihood ratio or Bayes factor of greater than 5). Taxon names in parentheses indicate host plants (species
name for Glochidion hosts and genus name for non-Glochidion hosts). Photographs show Glochidion fruit/leaves infested by
Epicephala, Diphtheroptila and Caloptilia larvae; arrows indicate a leaf roll and leaf galls. Scale bar, 0.005 substitutions per site.
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Full details of the molecular analyses are provided in the

electronic supplementary material.
3. RESULTS AND DISCUSSION
Phylogenetic analysis of Gracillariinae using the four-gene

dataset suggested that Epicephala, Diphtheroptila and
Proc. R. Soc. B (2010)
Caloptilia are not monophyletic and that they occupy sep-

arate positions in the phylogeny (figure 1). These

relationships were recovered by both ML and Bayesian

analyses, and an AU test rejected the hypothesis of

either Diphtheroptila or Caloptilia forming a monophyletic

group with Epicephala (p , 0.01 for both tests). Further-

more, Bayesian reconstruction of ancestral character
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states provided strong support for non-Phyllanthaceae

plants as the ancestral host for Gracillariinae (figure 1).

These results indicate that pollinating seed parasites

(Epicephala) are not derived from leaf herbivores with

which they share host plants, and that leaf-feeding

Diphtheroptila and Caloptilia each colonized Glochidion

plants independently. This contrasts with the situation

in yucca moths, for which direct sisters of the pollinators

are non-pollinating herbivores that feed on yuccas

(Pellmyr & Leebens-Mack 1999; Pellmyr 2003). Never-

theless, the shared use of Glochidion by the three genera

allows for a rigorous test of how different life histories

affect patterns of host specificity in different herbivore

clades by controlling for the effect of host plant species.

The analysis Diphtheroptila and Caloptilia COIþ EF-1a

datasets indicated that they each comprise four distinct

clades throughout our sampling range (figure 2). Both

COI and EF-1a recovered clades consisting of the same

sets of individuals, suggesting that there is no gene flow

among clades and thus they represent distinct species.

Individuals belonging to different clades can also be distin-

guished by wing pattern, male genitalia morphology and

larval feeding habit (A. Kawakita & M. Kato 2009, per-

sonal observation). The phylogenies of Diphtheroptila and

Caloptilia further indicated that these moths commonly

use more than one coexisting Glochidion species. We

found no evidence for host race formation in these moths

because the AMOVA analysis failed to detect host-associ-

ated genetic differentiation in either the COI or EF-1a

gene (p . 0.1 for all tests). Although we cannot completely

rule out the possibility of hidden divergence associated

with Glochidion species, we consider it very unlikely that

all the Diphtheroptila and Caloptilia species under consider-

ation are at incipient stages of such host-associated

divergence. Moreover, the level of host-associated differ-

entiation, if any, is overwhelmingly lower than that

found in Epicephala, in which individuals attacking differ-

ent Glochidion hosts in any population are

morphologically distinct and divergent by at least 4 per

cent uncorrected pairwise sequence difference in the

COI gene (Kawakita & Kato 2006). Therefore, these

results provide strong evidence that Epicephala are more

highly host specific than are their leaf-feeding relatives

that use the same sets of Glochidion hosts.

The observed increase in the level of host specializ-

ation in Epicephala, however, may simply be the result

of a shift to seed feeding, rather than coevolutionary

selection resulting from being a pollinator. We therefore

determined the level of host specificity in seed-infesting

lepidopterans that share the same larval food with

Epicephala moths. Non-gracillariid moths that emerged

from Glochidion fruits were morphologically identified as

either Peragrarchis syncolleta (Carposinidae) or as unde-

scribed species of Tritopterna (Tortricidae) or

Cryptoblabes (Pyralidae). Analysis of the COI and EF-1a

sequences in each of these moth taxa suggested that

there is very little sequence variation among individuals

sampled from four to five different Glochidion hosts and

that none of the base substitutions found were diagnostic

to host species (table 1). Although it is not straightfor-

ward to directly compare host specificity between

Epicephala and non-gracillariid moths, the level of host

specialization found in these groups is at the opposite

extreme from the pattern expected if seed feeding is to
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promote higher host-specificity. Therefore, these results

do not provide positive evidence that seed feeding favours

a higher degree of host specialization and are consistent

with the view that Epicephala host specificity is

determined by factors other than larval diet.

Another explanation for strict host specialization in

Epicephala is that such high host specificity is a common

feature among all the closest relatives of Epicephala, and

that pollinator habit evolved against a background of

high host specificity. To test this possibility, we examined

host specificity in species of Cuphodes, which was tenta-

tively suggested as the putative sister group of

Epicephala in the Gracillariinae phylogeny (figure 1).

Although an AU test did not reject the non-monophyly

of the Epicephala þ Cuphodes clade (p . 0.1), Epicephala

and Cuphodes share distinct apomorphies not otherwise

found in any genera of the Parectopa group (i.e. two

pairs of bristles on the seventh and eighth abdominal

segments in the males and anteriorly tilted posture of

resting adults; A. Kawakita & M. Kato 2009, personal

observation), suggesting that Cuphodes is probably one

of the closest relatives of Epicephala.

Analysis of the COI þ EF-1a þ ArgK dataset in

Cuphodes suggested that the sampled moths consist of

eight putative species (figure 3; also see electronic sup-

plementary material, figure S2), which can be

distinguished by wing pattern, male genitalia morphology

and larval mining pattern (A. Kawakita & M. Kato 2009,

personal observation). The obtained phylogeny

demonstrated that these species regularly use two to

four closely related plants (figure 3), suggesting that the

closest relatives of Epicephala do not show the same

degree of host specificity as Epicephala. Although the

use of different host plant families in Epicephala and

Cuphodes may make direct comparison difficult, available

evidence suggests that Cuphodes species exhibit much

broader host ranges than do the species of Epicephala.

For example, C. wisteriae uses Wisteria and Millettia,

which are distantly related genera within Fabaceae,

having diverged at least 50 Ma (Lavin et al. 2005),

whereas the age of the Glochidion crown group is esti-

mated to be less than 10 Ma (Kawakita & Kato 2009).

Similarly, Cuphodes sp. 4 feeds on two genera (Berchemia

and Berchemiella) of the Rhamnaceae family, although

the antiquity of their divergence is unknown. Thus,

these results indicate that the high degree of host special-

ization found in Epicephala is probably not an ancestral

condition predating the evolution of pollinator habit.

Taken together, the present results on host specificity

of Diphtheroptila, Caloptilia, Cuphodes and Glochidion-

feeding, non-gracillariid lepidopterans all indicate that

the level of host specialization in Epicephala is higher

than would be expected if host specificity were deter-

mined solely by the herbivorous habit of the moths.

Thus, our data are more consistent with the view that pol-

linator habit favours higher host specificity than the

ancestral parasitic lifestyle. What, then, is the ultimate

cause driving the strict host specificity of Epicephala? A

previous analysis of floral scent in Glochidion (Okamoto

et al. 2007) found clear differences in the chemical com-

position of floral volatiles among co-flowering Glochidion

species. These differences are perceived by host-seeking

Epicephala females (Okamoto et al. 2007) and probably

facilitate the attraction of species-specific pollinators.
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Figure 2. Maximum-likelihood (ML) phylogeny of Diphtheroptila and Caloptilia moths based on 1058 bp of the combined mito-

chondrial COI and EF-1a genes. Terminal symbols represent host Glochidion species followed by locality names. Numbers
above branches indicate ML bootstrap values followed by Bayesian posterior probabilities. Individuals belonging to two of
the Caloptilia clades were each identified morphologically as Caloptilia ryukyuensis and Caloptilia cecidophora. Symbols: filled
circle, G. obovatum; open circle, G. rubrum; filled square, G. lanceolatum; open square, G. zeylanicum; filled star, G. philippicum;
open star, G. acuminatum. Scale bars, 0.005 substitutions per site.
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Table 1. Summary of genetic variations in non-gracillariid Glochidion seed parasites. Each moth species was sampled from
four to five Glochidion hosts, and the number of base substitutions that were unique to individuals associated with a
particular host (diagnostic sites) are given for each gene.

bases sequenced
diagnostic sites
(variable sites)

family/species host species(locality number) moths sampled COI EF-1a COI EF-1a

Carposinidae
Peragrarchis syncolleta G. acuminatum 2 580 498 0 (1) 0 (3)

G. lanceolatum 1
G. obovatum 3
G. rubrum 1

Tortricidae
Tritopterna sp. G. lanceolatum 4 580 498 0 (2) 0 (14)

G. obovatum 1
G. philippicum 1
G. rubrum 3

G. zeylanicum 4
Pyralidae

Cryptoblabes sp. G. lanceolatum 1 580 498 0 (0) 0 (3)
G. obovatum 2

G. rubrum 2
G. zeylanicum 2
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Thus, selection may operate on Glochidion plants to pro-

duce distinct floral scents and attract specific pollinators

and thereby to avoid incompatible hybridization.

Although further experimentation is needed to determine

whether interspecific crosses result in fruit production,

any decrease in quantity and/or quality of hybrid fruits

is likely to facilitate reciprocal specialization by

Epicephala to species-specific floral volatiles. Thus, it is

possible that the high plant–pollinator-specificity in obli-

gate pollination mutualisms is driven by a plant’s interest

to avoid less advantageous hybridization.

Overall, our finding of strict host specificity in

Epicephala is in marked contrast with previous findings

in the yucca moth lineage (Pellmyr & Thompson 1992;

Thompson 1994, 2005). The closest relatives of the pol-

linating yucca moths, Prodoxus, feeds on inflorescence

stalks, fruit or, rarely, leaves of yucca plants and have

very similar degrees of host specificity with the pollinating

yucca moths (Pellmyr et al. 2006). We suggest that this

difference is because of contrasting patterns of flowering

phenology between yuccas and Glochidion. Because both

pollinating (Tegeticula and Parategeticula) and non-

pollinating (Prodoxus) yucca moths are short-lived (Powell

1984) and their life histories are strongly associated with

yucca flowers (Pellmyr 1999, 2003; Pellmyr et al. 2006),

the adult moths must emerge during a short period when

host flowers are available. However, coexisting yucca

species typically exhibit largely non-overlapping flowering

periods (Pellmyr 2003); thus, there is little opportunity

for both pollinating and non-pollinating yucca moths to

select among multiple hosts within a single population.

In contrast, most Glochidion species produce flowers and

leaves continuously from spring to autumn, and as many

as four species flower at the same time within our study

area. Under such circumstances, both leaf-feeding and

flower-infesting moths are provided with multiple available

hosts, but the latter are more selective in their host choice

owing to a broader range of coevolutionary traits with

which they are constrained. The occurrence of multiple

co-flowering host species is also the case in figs, for

which preliminary analysis of host specificity in pollinating

and non-pollinating fig wasps suggested that the former

tends to be more host-specific (Weiblen & Bush 2002;

Marussich & Machado 2007; but see Lopez-Vaamonde

et al. 2001; Jousselin et al. 2006, 2008).

Although our data clearly indicate that pollinating seed

parasites exhibit higher degrees of host specialization than

those of their parasitic ancestors, a more direct test of host

specificity would be to include non-pollinating Epicephala

seed parasites in the analysis. The most basal lineage of

Epicephala is a non-pollinator that attacks the seeds of

Flueggea, a close relative of Glochidion within the tribe

Phyllantheae. However, this species is currently known

only from Flueggea suffruticosa in southwestern Japan

(Kawakita & Kato 2009), where there are no other co-

occurring Flueggea species. Also, a derived clade of Epice-

phala has secondarily lost the pollinating habit, and

currently there are three species that are each specific to

a single Phyllanthus host (Kawakita & Kato 2009). How-

ever, closely related Phyllanthus hosts are rarely available

within the same population, which precludes a direct

comparison of host specificity with pollinating Epicephala

in this case as well. Within the yucca moth lineage, two

derived species have independently lost their pollinating
Proc. R. Soc. B (2010)
behaviour and oviposit in young fruits to exploit the

seeds that other yucca moth species have pollinated

(Pellmyr et al. 1996; Pellmyr 1999). These cheater species

evolved to use four to six yucca hosts (Pellmyr 1999,

2003), which is consistent with our hypothesis that polli-

nator habit promotes host specificity in pollinating seed

parasites. The cheater yucca moths are likely to have a

broader phenological window for successful oviposition

(Pellmyr 2003); thus, selection for host specialization

may have been relaxed in these derived non-pollinators.

Although further research is required to identify coe-

volutionary forces driving pollinator specificity, our

findings indicate that mutualistic selection probably

favours strict host specificity of pollinating seed parasites

in obligate pollination mutualisms. As shown in recent

population-level analyses of gene flow in figs and

yuccas (Machado et al. 2005; Smith et al. 2008, 2009),

pollinator specificity is likely to strongly impact patterns

of gene flow between coexisting plant species and play

an important role in facilitating reproductive isolation

between diverged populations. Thus, future studies of

coevolution and codivergence in the Glochidion–

Epicephala mutualism, as well as comparative analysis

across systems, are likely to substantially improve our

understanding of the role of coevolution in promoting

speciation and diversification in obligate pollination

mutualisms.
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