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Q fever is a worldwide zoonosis caused by Coxiella burnetii. Although ruminants are recognized as the

most important source of human infection, no previous studies have focused on assessing the character-

istics of the bacterial spread within a cattle herd and no epidemic model has been proposed in this

context. We assess the key epidemiological parameters from field data in a Bayesian framework that

takes into account the available knowledge, missing data and the uncertainty of the observation process

owing to the imperfection of diagnostic tests. We propose an original individual-based Markovian model

in discrete time describing the evolution of the infection for each animal. Markov chain Monte Carlo

methodology is used to estimate parameters of interest from data consisting of individual health states

of 217 cows of five chronically infected dairy herds sampled every week for a four-week period. Outputs

are the posterior distributions of the probabilities of transition between health states and of the environ-

mental bacterial load. Our findings show that some herds are characterized by a very low infection risk

while others have a mild infection risk and a non-negligible intermittent shedding probability. Moreover,

the antibody status seems to be a key point in the bacterial spread (shedders with antibodies shed for a

longer period of time than shedders without antibodies). In addition to the biological insights, these esti-

mates also provide information for calibrating simulation models to assess control strategies for C. burnetii

infection.
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1. INTRODUCTION
Q fever is a zoonotic disease caused by Coxiella burnetii, a

bacterium found worldwide in a wide range of animals.

Since 2007, Q fever has become an important public

health problem in several parts of Europe (McCaughey

et al. 2008; Karagiannis et al. 2009; Panaiotov et al.

2009; Schimmer et al. 2009). Although Q fever in

humans is asymptomatic in more than 60 per cent of

cases, it may lead to either an acute or a chronic disease

(Raoult et al. 2000). The acute disease is mainly flu-like

but severe complications, such as pneumonia or hepatitis

can occur. In its chronic form, endocarditis is the most

frequent manifestation, especially in patients with pre-

existing heart valve lesions. Abortion in pregnant

women can also occur. Recently, a large epidemic of Q

fever emerged in the southern part of the Netherlands

causing more than 3000 human cases since 2007

(Anonymous 2009). A link has been established between

some human cases and farms of small ruminants where

abortions owing to Q fever were detected (Schimmer

et al. 2009). Ruminants are recognized as the main

source of human infection (Norlander 2000; McQuiston &

Childs 2002). Infected animals shed the bacterium through
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various routes such as parturition products, faeces, urine,

vaginal mucus or milk (Berri et al. 2001; Arricau-Bouvery

et al. 2003; Guatteo et al. 2006). The transmission of infec-

tion both between ruminants and between ruminants and

humans is mainly owing to inhalation of aerosolized bacteria

or contaminated dust (Marrie 1990). The bacterium survives

very well in the environment (Welsh et al. 1958) and can

infect humans and animals for a long period after it has

been excreted by the host. Therefore, the control of infection

within ruminant herds is the most important factor influen-

cing the occurrence of human outbreaks. Besides these

obvious implications in terms of public health, controlling

the spread of Q fever is also motivated by economic and

animal health concerns. Indeed, in ruminants, the infection

may also cause abortions, infertility, metritis or chronic

mastitis (Plommet et al. 1973; Aitken 1989; Bildfell et al.

2000; Berri et al. 2001).

Previous studies of Q fever in ruminants have shown

that some infected animals shed the bacteria in a discon-

tinuous way: this intermittent shedding has been

described in the milk and faeces of goats (Arricau-

Bouvery et al. 2003) as well as in the milk, faeces and

vaginal mucus of cows (Durand 1993; Guatteo et al.

2007; Rodolakis et al. 2007). However, little information

is available on the characteristics of the spread of

C. burnetii within a cattle herd, a key point in the under-

standing and the control of the disease. Specifically, the

probability that a susceptible cow will become infected
This journal is q 2010 The Royal Society
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when introduced into a chronically infected herd, the dur-

ation of shedding for an infectious cow, the differences

between the shedding patterns of seronegative and sero-

positive cows, the probability of intermittent shedding

and the duration of non-shedding periods are all key par-

ameters, which have not been assessed. In order to

address these issues, we propose an original modelling-

based Bayesian approach to quantify the epidemiological

parameters related to the transmission of C. burnetii

within a dairy cattle herd.

We have built a dynamic discrete time individual-based

stochastic model describing the evolution of health states

with time for each animal. Because of the imperfection of

diagnostic tests (assessed by sensitivity (Se) and speci-

ficity (Sp) parameters), the observed health state of a

cow in our data can differ from its real health state.

Thus, this uncertainty in observations has to be explicitly

incorporated in the model to provide more accurate esti-

mates of the parameters, particularly of the transition

rates. We use the Bayesian paradigm to deal with this

uncertainty, the missing data (since for some animals

the health state was not identified at every moment in the

follow-up) and to account for the hierarchical structure

of the process (e.g. some parameters are herd-dependent).

Inference is performed from field data (described in

Guatteo et al. 2007) using Markov chain Monte Carlo

(MCMC) methodology (Gilks et al. 1996), which is

being increasingly used in epidemic modelling (O’Neill &

Roberts 1999; Cauchemez et al. 2004; Streftaris &

Gibson 2004; Höhle et al. 2005; Lekone & Finkenstädt

2006). Posterior distributions of model parameters are ana-

lysed and biological interpretations are proposed.
2. DATA
A one-month longitudinal study was carried out in five

French dairy cattle herds infected with C. burnetii, but

without any clinical sign attributable to Q fever. The

selected herds were chosen to satisfy two major criteria:

(i) the presence of the bacterium C. burnetii within the

herd; this was certified by a positive polymerase chain

reaction (PCR) result on bulk tank milk and more than

20 per cent of cows seropositive for C. burnetii, and (ii)

the absence of any control measure (i.e. antibiotics or vac-

cination directed against C. burnetii) before the end of the

study. The protocol of the study is described in detail in

Guatteo et al. (2007). To assess the dynamics of C. burne-

tii infection, the lactating cows of these herds were

sampled from one to five times on a weekly basis. The

observed individual state of each cow was determined at

each sampling time using an enzyme linked immunosor-

bent assay (ELISA) test (LSI ELISA Cox Ruminants,

Lissieu, France) on serum and a real-time PCR (LSI

Taqvet C. burnetii, Lissieu, France) on three different

samples (milk, faeces and vaginal mucus). The results

of the ELISA test were expressed by the ratio (S/P)

between optical densities of the sample and the positive

control, and a cow was considered seropositive when

the S/P ratio in serum was greater than or equal to 0.4.

For the PCR test, only the samples presenting a typical

amplification curve (demonstrating C. burnetii DNA

detection) with a Ct (cycle threshold) below 40 were con-

sidered positive. A cow was identified as PCR-positive

when at least one of its three samples was PCR-positive.
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At the initial point of the follow-up (t0), the sizes of the

five herds ranged from 24 to 79 lactating cows and a

total of 217 cows were tested (electronic supplementary

material, tables S1 and S2). Thereafter, 100 per cent of

the initially (at t0) PCR-positive cows, 100 per cent (or

50% in herds with more than 40 lactating cows) of the

initially seropositive/PCR-negative cows and 65 per cent

of the initially seronegative/PCR-negative cows were

retained for the follow-up. Thus, during the following

month, between 55 and 79 per cent of the cows of each

herd were tested every week (at t7, t14, t21 and t28) in the

same way in order to determine their individual health

state. The cows entering one of the herds during the

study (as a consequence of a purchase or a first calving)

were also included. According to the PCR results and the

ELISA test, at t0 between 35 and 74 per cent of cows

per herd were identified as PCR-negative/seronegative,

between 1 and 23 per cent were PCR-positive/seronegative,

between 2 and 35 per cent were PCR-positive/seropositive

and between 17 and 37 per cent were PCR-negative/

seropositive. At the endpoint of the follow-up (day 28 to

t28), the herds comprised between 24 and 81 lactating

cows. Altogether, 821 individual health states were

determined and 235 (complete or incomplete) temporal

trajectories of individual health status were available.
3. MODEL AND METHODS
Based on the available knowledge concerning the clinical

and epidemiological aspects of Q fever, an epidemic

model describing its spread within a dairy cattle herd

was built. First, the allowed transitions between the

health states of the epidemiological model are described.

Then, the dynamic model representing the temporal evol-

ution of observed individual health states is presented.

Finally, we detail the assumed priors and calculated pos-

terior distributions of the model parameters in the

Bayesian framework (using MCMC methods).

(a) Epidemic model

Each individual of the population of lactating cows is in

one of the four mutually exclusive health states at a

given time, as shown in figure 1. By inhaling bacteria

contained in the environment, a susceptible cow, S

(non-shedder without antibodies), can become infectious,

I2 (shedder without antibodies) and start shedding.

Either it manages to eliminate the bacterium and

becomes S again (non-shedder without antibodies and

then apparently susceptible) or it produces antibodies

and continues being infectious and shedding, Iþ (shedder

with antibodies). When it stops shedding, it becomes R

(non-shedder with antibodies). Since the shedding is

intermittent (Guatteo et al. 2007; Rodolakis et al.

2007), a transition from R to Iþ is assumed. Antibodies

can last for several years in humans (Fournier et al.

1998) and at least several months in cattle (Plommet

et al. 1973). Here, we assume that the probability of

observing a cow lose its antibodies over the period of

study (one month) is very low and negligible, especially

in chronically infected herds where immunity is probably

steadily stimulated. Therefore, no transition from health

states with antibodies (Iþ or R) to health states without

antibodies (I2or S) is allowed in our model. Shedders

(I 2 and I þ ) contribute to filling the environment



μ

ε1

I– I+ R

p

q
s

r

environmental
bacterial load

ε2

m 

S

Figure 1. Flow diagram describing the modelled spread
of C. burnetii within a cattle herd. The health states are:
S, non-shedder cow without antibodies; I 2 , shedder cow

without any antibodies; I þ , shedder cow with antibodies
and R, non-shedder cow with antibodies. The model par-
ameters are: p, the probability of infection or re-infection
(equal to 1 2 exp(2E) with E the environmental bacterial
load); m, the probability of transition from I 2 to S; q, the

probability of transition from I 2 to I þ ; r, the probability of
transition from I þ to R; s, the probability of transition from
R to I þ ; 11 and 12, the quantities of bacteria shed during a
time step by an individual I 2 and I þ respectively, and m,

the mortality rate of C. burnetii in the environment.
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compartment (E) with the bacteria: 11 and 12 are the

quantities of bacteria shed during a time step (one week

in our case) by an individual I 2 and I þ respectively.

The probability of infection or re-infection, p (transition

from S to I 2 ) is expressed at each time step as pt ¼

1 2 exp( 2 Et), where Et is the quantity of bacteria in

the environment of the herd at time t (one unit of Et

corresponding to a probability of transition from S to

I 2 of (1 2 1/e)). The mortality rate of C. burnetii in the

environment, m, includes the natural mortality of the

bacterium and its removal in relation to the periodic

cleaning of the cattle housing carried out by the farmer.

(b) Bayesian framework

We develop a dynamic discrete time individual-based sto-

chastic model to represent the temporal evolution of the

observed health state of each cow. This is done in two

main steps: first, the temporal evolution of the real individ-

ual health state is modelled using Markovian transitions and

second, the uncertainty of the observations is incorporated

using the Se and Sp of the two diagnostic tests.

Let R
ðiÞ
t;h [ fS; I�; Iþ;Rg be the real health state of

individual i belonging to herd h (i ] f1, . . . , N(h)g
with N(h) the total number of cows in the herd h, h ]

f1, . . . , Hg and H the number of herds) at time t (t ]

f0, . . . , Tg with t28 ¼ T and t0 ¼ 0). As illustrated by the

graph in figure 2, for t . t0, R
ðiÞ
t;h, depends on R

ðiÞ
t�1;h

and on Et,h, the quantity of bacteria in the environment

of herd h at time t. The transition probabilities can be

gathered in the matrix Qt,h:

Qt;h ¼

1� pt;h pt;h 0 0

m 1�m� q q 0

0 0 1� r r

0 0 sh 1� sh

0
BB@

1
CCA ð3:1Þ

where Qt;h;jk ¼ PðRðiÞt;h ¼ xkj RðiÞt�1;h ¼ xjÞ; for t ¼ 1, . . . ,T,

i ¼ 1, . . . , 4 and xj, xk ] fx1¼ S, x2 ¼ I 2 , x3 ¼ I þ ,

x4 ¼ Rg.
The transition probability from S to I2 varies with

time and herd since pt ¼ 12exp(2Et). This is not the

case for the other transition probabilities: m, q and r are
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assumed constant. As s is related to the intermittency of

shedding, possibly owing to a stress specifically occurring

in a given herd (like an anti-parasitic treatment or a modi-

fication in herd management), this parameter is

considered herd-dependent.

The initial real health states, R
ðiÞ
0;h, are independent

random variables with a probability distribution

specified by J, where Jxj
¼ PðRðiÞ0;h ¼ xjÞ for xj ] fx1¼ S,

x2 ¼ I 2 , x3 ¼ I þ , x4 ¼ Rg. The environment

dynamics is expressed by the equation:

Etþ1;h ¼ ð1� mÞEt;h þ 11 I�t;h þ 12 Iþt;h, as it is dependent

on the quantity of bacteria in the environment and the

prevalence of shedders (I�t;h ; I
þ
t;h) at the previous time

(figure 2). Since the beginning of the follow-up does

not correspond to the infection onset, the initial content

of C. burnetii in the environment of each herd, E0,h, is

not zero and has to be introduced and then estimated.

The observation level accounts for the uncertainty of

the observations O
ðiÞ
t;h and describes their relationship

with the real health states R
ðiÞ
t;h using the 4 � 4 matrix U:

U¼

SpPCRSpEl ð1�SpPCRÞSpEl

ð1�SePCRÞSpEl SePCRSpEl

ð1�SePCRÞð1�SeElÞ SePCRð1�SeElÞ
SpPCRð1�SeElÞ ð1�SpPCRÞð1�SeElÞ

0
BBB@

ð1�SpPCRÞð1�SpElÞ SpPCRð1�SpElÞ
SePCRð1�SpElÞ ð1�SePCRÞð1�SpElÞ
SePCRSeEl ð1�SePCRÞSeEl

ð1�SpPCRÞSeEl SpPCRSeEl

1
CCCA;

ð3:2Þ

where Ujk¼PðOðiÞt;h¼xkjRðiÞt;h¼xjÞ for t ¼ 0 ... T, i ¼ 1 ... 4

and xi, xk ] fx1 ¼ S, x2 ¼ I 2 , x3 ¼ I þ , x4 ¼ Rg.
We consider that the assumption of conditional inde-

pendence between ELISA and PCR is reasonable

because the two tests have different bases: ELISA relies

on the detection of antibodies, while PCR is a DNA-

based technique to detect bacteria. Enoe et al. (2000)

made the same assumption to assess the sensitivities

and specificities of a nested PCR and a microscopic

examination of kidney imprints for the detection of

Nucleospora salmonis in rainbow trout. Elements of U are

then defined as combinations of the specificities of the

PCR and ELISA tests (SpPCR and SpEl, respectively)

and their respective sensitivities (SePCR and SeEl).
(c) Bayesian inference: calculation of the posterior

distribution of the model parameters from

likelihood and prior distribution

In the Bayesian paradigm, the joint posterior distri-

butions of model parameters can be written

as pðJ;QjOÞ/ LðOjJ;QÞ*pðJ;QÞ; where LðOjJ;QÞ
and pðJ;QÞ are the likelihood function and the joint

prior distribution of model parameters, respectively,

and Q ¼
S

t¼1...T
h¼1...5

Qt;h (see the electronic supplementary

material for more details).

Since the uncertainty parameters of the matrix U are

fixed, they are not considered in the joint prior density

pðJ;QÞ. The Se of the ELISA test is set equal to 0.85

(according to a recent estimation; R. Guatteo 2009, per-

sonal communication) and the Sp is taken to be equal to



Ot,h

R1,h

h=1,...,H

U

E
0,h

Qh

R0,h R t,h

O1,h

E
1,h

E
t,h

t=1,...,T

i=1,...,N(h)

(i)

(i)

(i)
O0,h

(i)

(i)Jh
(i)

Figure 2. Network describing the temporal evolution of individual health states of animals within an infected dairy cattle herd.
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ðiÞ
t;h [ fS, I 2 , I þ , Rg represents the real and non-observed health state of individual i belonging to herd h (i [ f1, . . . N(h)g
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ðiÞ
t;h represents the observed
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of the uncertainty parameters (Se and Sp of tests) linking real and observed health states. Qh contains the parameters of tran-
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corresponding to the last three rows of matrix Qt;h described in equation (3.1).
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0.95, while for the real-time PCR, both Se and Sp

are fixed at 0.95. As no published data on the test

characteristics are available, these values were chosen in

accordance with expert opinion.

Available knowledge is incorporated into the model

through prior distributions. Given that C. burnetii with-

stands hard environmental conditions (Marrie 1990),

the median of its life expectancy (1/m) on the farm in

an infectious form is considered to be 4.5 weeks with a

95 per cent credible interval (CI) of 0.7–14 weeks. To

determine the prior distribution of the initial real health

state J, we use independent data from six other French

infected dairy cattle herds. On an average per herd 38

per cent (min ¼ 20.9%, max ¼ 50%) of cows were

observed to be in state S, 12 per cent (3.2%, 17.9%) in

state I 2 , 27 per cent (10.3%, 51.2%) in state Iþ and

23 per cent (14%, 29.4%) in state R (R. Guatteo 2009,

personal communication). As the initial proportions of

S, I 2 , Iþ and R should sum to 1 (as they represent a

partition of the individual health states), an appropriate

prior distribution of the initial health state J is a Dirichlet

distribution, D (3.5, 1, 2.5, 2). Its coefficients are chosen

to account for the observed proportions in the extra

data (e.g. proportion of S is 3.5/9 ¼ 38%, etc). Concern-

ing the transition parameters (p, m, q, r and s), minimally

informative prior densities reflecting the lack of infor-

mation are chosen. As these parameters are assumed to

lie between 0 and 1, beta distributions are used for the

probabilities of transition from S to I2 (p), Iþ to R (r)

and R to Iþ (s) health states. A Dirichlet distribution is

assumed for the probabilities of transition from I2 to

S(m) and Iþ (q), respectively, since the sum of m, q

and ‘the probability of staying in I 2 ’ is equal to 1. The

marginal distributions of m, q, and beta distributions

for r and s are rather flat. As C. burnetii spreads
Proc. R. Soc. B (2010)
moderately quickly in cows (Huebner & Bell 1951;

Angelakis & Raoult 2010), we use a beta distribution

with a median of 0.33 and a 95% CI ¼ (0.05–0.77) in

order to penalize high values of p. As the environmental

bacterial load E can be expressed with respect to the prob-

ability of infection p, the prior on E is deduced from the

prior on p (median ¼ 0.4, 95% CI ¼ (0.05–1.44)). Con-

cerning the excretion parameters 1, we faced a complete

lack of information. However, as 1 is the quantity of bac-

teria shed per week by a shedder cow, a plausible

assumption is that 1 ¼ 11 þ 12 is lower than the environ-

mental bacterial load E. Hence, we use a truncated

normal distribution with a median of 0.23 and

95% CI ¼ (0–0.72) for both 11 and 12. All these prior

distributions are detailed in table 1.

Since posterior distributions are not analytically tract-

able, inference is based on computationally intensive

methodology: MCMC methods based on the Gibbs

sampling algorithm implemented in JAGS 1.0.3 are

used. Bayesian MCMC allows datasets with missing

data to be fully modelled by sampling missing data

points from the posterior distributions (in equation S1

of the electronic supplementary material, the matrix O

is not entirely observed). Results are analysed with R

2.8.1 (R Development Core Team 2008) and R package

code (Plummer et al. 2009).
(d) Model adequacy

In order to check the model adequacy for the data, a sub-

sequent assessment is performed. We simulate infection

spread in five cattle herds with the same size, same initial

environmental content and same number of missing data

as in the original dataset, using parameters drawn from

inferred posterior distributions. The missing pattern
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(i.e. missing data during the follow-up are more frequent

for PCR-negative cows at t0 than for PCR-positive ones)

is not taken into account. The quantiles of the numbers

of transitions between observed health states in each

herd for a time interval of one week are calculated and

compared with the data.
4. RESULTS
Visual inspection of the chain pattern does not indicate

non-convergence of the MCMC algorithm (results not

shown). Most of the parameters have a potential scale

reduction factor of the Gelman–Rubin diagnostic

(Gelman & Rubin 1992) close to 1 (less than or equal

to 1.05). However, 5 of the 35 independent parameters

monitored have values of potential scale reduction

factors between 1.05 and 1.27. For these parameters,

the results have to be interpreted with care (for details

see the electronic supplementary material, table S3).

Median values and 95% CI of posterior densities (rep-

resented in the electronic supplementary material, figures

S1 and S2) of inferred parameters are given in table 1 and

in the electronic supplementary material, tables S3 and S4.

(a) Parameters of transition between health states

The spread of C. burnetii within a dairy cattle herd is

mainly characterized by shedding parameters and prob-

abilities of transition between health states, which are

also interpretable as sojourn times in these states (equal

to the inverse of transition parameters). For all these par-

ameters, the posterior distributions cover shorter intervals

than those defined by the prior distributions, which

reveals that the data provide information. The probability

of transition from the non-infectious state S to the shed-

der state I2 (corresponding to the infection risk) seems

moderate in some herds (for example in herd 3 with a

median p at time 1 of 0.073 and a 95% CI ¼ (0.014–

0.213)) but quite high in others (e.g. in herd 4 with a

median p at t0 of 0.466 and 95% CI ¼ (0.272–0.660)).

Whereas the transition from the shedder state without

antibodies, I 2 , to the non-infected state S is relatively

more rapid (median of m equal to 0.695 week21, 95%

CI ¼ (0.542–0.844)), the acquisition of antibodies in

the infectious state (transition I 2 ! I þ ) is rather rare

(median of q equal to 0.017 week21, 95% CI ¼ (0.001–

0.082)). Moreover, the duration in health state I 2 is

shorter than in I þ : posterior distributions do not overlap

and if we compare the medians, the median duration in

I2 is more than three times shorter than that in Iþ (1.4

versus 4.9 weeks, respectively). The median time spent

in state R before new shedding (representing the intermit-

tency of shedding) is less than 3.6 months in two of the

five herds (herds 4 and 5) but can potentially be longer

in the other three (e.g. 26.6, 95% CI ¼ (6.3–159.9) in

herd 1).

(b) Environment-related parameters

Concerning the shedding parameters, as the posterior

distributions of the quantities of bacteria excreted by

infectious cows without antibodies (11) and with anti-

bodies (12) are almost superimposed, we cannot

determine if I2 animals shed more than, at a similar

level to, or less than Iþ animals. For all but herd 5,

the posterior distributions of the environmental bacterial
Proc. R. Soc. B (2010)
load do not vary much with respect to time (electronic

supplementary material, figure S2). Therefore, it is not

possible to know how the environmental bacterial load

evolves with time. For herd 5, as the posterior distri-

bution shifts to the right from t0 to t28 it is possible

that the environmental bacterial load increases with

time (at t0: median of 0.261, 95% CI ¼ (0.045–

0.606), at t28: median of 0.558, 95% CI ¼ (0.201–

1.278)). Since at a given time posterior distributions of

E widely overlap, we cannot determine if environmental

bacterial loads differ between herds. For the parameter

m, the posterior distributions are close to the prior distri-

bution regardless of the herd. It seems that the dataset

does not contain sufficient information to assess this

parameter.

(c) Checking of model adequacy for the data

The goodness-of-fit is assessed in figure 3. We verify the

ability of the model to reproduce observed summary stat-

istics, defined as the total number of transitions per week

between observed individual health states for each herd,

during a month, when parameters are sampled from pos-

terior densities. Sixty-three per cent (expected 50%) of

observed summary statistics lie within the predicted

50% CI and 94 per cent (expected 95%) of them

belong to the 95% CI of the simulated numbers of

transitions.
5. DISCUSSION
This study, based on a Bayesian modelling approach, pro-

vides the first quantitative assessment of parameters

describing the spread of C. burnetii within chronically

infected dairy herds. Previous studies that focused on

Bayesian statistical inference of disease parameters have

already proposed discrete time stochastic epidemic

models (Morton & Finkenstädt 2005; Lekone &

Finkenstädt 2006). However, our approach differs from

these as it is individual-based.

The Bayesian framework enables the combination in

the same model of previous knowledge about C. burnetii

(mainly concerning the life-expectancy of the bacteria in

the environment and the proportions of different health

states within an infected herd) with information coming

from the present dataset. Moreover, it allows differences

between herds to be accounted for in a flexible manner

through a hierarchical representation of the processes

involved. The convergence of the MCMC is not perfect,

particularly for the initial real health states. Although esti-

mations of these parameters seem biologically consistent,

our dataset is probably not informative enough to provide

good assessments of all inferred parameters. However, for

most of the parameters, convergence is achieved, the

results are biologically plausible and the goodness-of-fit

is satisfactory overall. Nevertheless, the choice of simu-

lated missing data (that is, of cows with unknown health

states for the t7– t28 period) was made random whereas

in the field protocol, the selection of the weekly sampled

cows was not made at random. Moreover, a possible

way to further improve the adequacy of the model for

the data is to consider that the uncertainty on the

observed health states would differ for each observation

as a function of the quantitative results provided by the

diagnostic tests (S/P ratios for the ELISA and Ct values
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for the PCR). In fact, dichotomizing the test result of an

ELISA can be unnecessary and, to some extent, counter-

productive (Nielsen et al. 2007). The relevancy of this

option could be explored in further studies.

As shown by the present results, some chronically

infected herds (like herd 3) are characterized by a low

probability of infection and then a slow spread of the

disease while others (like herd 4) are characterized by

a quite high probability of infection and then faster

infection dynamics. Also, intermittency of shedding is

less likely to occur in some herds (like herds 1 and 3)

but seems usual in others (like herd 5).

When a cow becomes infected, clearance of the bac-

terium without seroconversion (transitions from I2 to

S) is very common, while the transition from the serone-

gative to the seropositive state (I 2! I þ ) is very rare,

which means that very few cows of the analysed dataset

seroconverted over the month studied (which did not

correspond to the beginning of the infection). Moreover,

in herds where the infection dynamics are faster, some

cows are restrained to transitions between the non-

infected state and shedding without antibodies state (S

$ I 2 ), while others are restrained to transitions

between the infectious seropositive state and the
Proc. R. Soc. B (2010)
non-shedding seropositive state (I þ $R). Thus, two

categories of animals seem to exist with two different

types of infection response: a response with or without

any antibody production. Finally, the antibody status

seems to play a major role in the involvement of a

given cow in the bacterial spread: shedders with anti-

bodies (I þ ) release bacteria for a longer time than

animals in the shedding state without antibodies.

Estimations of the environmental bacterial load are

also provided. Although these values do not have any

obvious biological meaning, they are related to the infec-

tion/re-infection probability of an animal within an

infected herd. Our results do not show if the infection

risk varies with time but it is likely that some herds (like

herd 5 and maybe herd 4 at the end of the study) have

quite high infection risks. As the present dataset does

not contain enough information to significantly update

the prior distribution of the mortality rate of C. burnetii

(parameter m), we cannot claim that this potential by

high probability of infection is owing to an ineffective

cleaning process of the cattle housing or is directly related

to differences in the prevalence of shedding cows. Further

work is needed to provide relevant indicators of the

environmental contamination. The time scale of our
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study is probably insufficient to investigate environmental

content variations; a period longer than one month is

probably required.

The present data do not distinguish real susceptible

individuals from non-shedding seronegative ones: all are

gathered in the unique category S. Thus, the estimated

transition rate from the non-shedding to the shedding

without antibodies state is a mix between an infection

rate and a re-infection rate. These two rates are different

as, in the latter, the cell immunity should already have

been activated. However, it is not possible with the cur-

rent diagnostic tests to differentiate primary infected

from re-infected animals. The relevance of cell immunity

tests (i.e. skin tests) to study the immunity responses in

chronically infected herds would be a profitable area of

research.

To conclude, this work provides, to our knowledge, the

first quantitative estimation of key parameters from field

data based on an original modelling approach, enabling a

better understanding of C. burnetii infection dynamics

within chronically infected dairy herds. Besides the biologi-

cal insights provided by the estimated values of parameters,

the outputs can be further used to calibrate a simulation

model representing the infection dynamics within a cattle

herd over a longer time scale and assessing the effectiveness

of different control strategies for C. burnetii infection.
The authors thank Annie Rodolakis and Raphaël Guatteo for
useful discussions on data and biological aspects related to
Q fever and the referees for their comments and suggestions.
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