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Quantifying patterns of temporal trends in species assemblages is an important analytical challenge
in community ecology. We describe methods of analysis that can be applied to a matrix of counts of
individuals that is organized by species (rows) and time-ordered sampling periods (columns). We
first developed a bootstrapping procedure to test the null hypothesis of random sampling from a
stationary species abundance distribution with temporally varying sampling probabilities. This pro-
cedure can be modified to account for undetected species. We next developed a hierarchical model
to estimate species-specific trends in abundance while accounting for species-specific probabilities
of detection. We analysed two long-term datasets on stream fishes and grassland insects to demon-
strate these methods. For both assemblages, the bootstrap test indicated that temporal trends in
abundance were more heterogeneous than expected under the null model. We used the hierarchical
model to estimate trends in abundance and identified sets of species in each assemblage that were
steadily increasing, decreasing or remaining constant in abundance over more than a decade of stan-
dardized annual surveys. Our methods of analysis are broadly applicable to other ecological
datasets, and they represent an advance over most existing procedures, which do not incorporate
effects of incomplete sampling and imperfect detection.

Keywords: temporal trends; species abundance; null model; hierarchical model; stream fishes;
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1. INTRODUCTION
Quantifying change in the structure of plant and
animal communities is an important challenge for
ecology in the twenty-first century (Walther et al.
2002). Species composition and abundance can
respond directly to long-term changes in abiotic fac-
tors (Dunson & Travis 1991) and indirectly to
changes in the occurrence or abundance of other
species (White et al. 2006). Dramatic and rapid
changes in community structure may result from the
addition or loss of keystone species (Mills et al.
1993), foundation species (Ellison et al. 2005), ecosys-
tem engineers (Jones et al. 1994) and some (but not
all) non-native species (Manchester & Bullock 2000).
Other changes may be more subtle, because the abun-
dance of individual species can gradually increase or
decrease over long periods of time, as in scenarios of
a ‘shifting baseline’ (Pauly 1995). Long-term trends
may be difficult to detect because of substantial
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short-term noise and variability in abundances
between consecutive samples.

However, not all observed changes in community
structure through time are biologically relevant. Most
measures of community structure and diversity are
sensitive to sampling effort and to the number of indi-
viduals counted (Gotelli & Colwell 2001). These
quantities are rarely constant through time, even with
standardized monitoring programmes. Rare species,
in particular, are expected to occur more often when
sampling is more thorough (Chao et al. 2009). Even
the appearance of a previously unrecorded species
need not signal a true change in community structure.
Biodiversity sampling is labour intensive and notor-
iously incomplete (Lawton et al. 1998), and ‘new’
species occurrence records—especially of plants and
invertebrates—are routinely made, even in sites that
have been well-sampled for many years (e.g. Longino
et al. 2002).

A variety of univariate and multivariate methods have
been proposed to quantify the degree of community
change through time (Collins et al. 2000; Fujiwara &
Mohr 2009), and to detect temporal trends in commu-
nity structure (Clarke 1993; Solow 1994). However,
with few exceptions (e.g. Dorazio et al. 2010), existing
methods do not account for incomplete sampling and
This journal is q 2010 The Royal Society
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Table 1. Empirical details of two data matrices and null model results for temporal change analysis. See text for definitions

of variables.

source Grossman et al. (1982) KBS (1995)

taxon stream fishes grassland insects

study site central Illinois stream reach successional grassland plot
sampling method seining sticky traps
observed number of species 55 9
estimated number of undetected species

(Chao 1984)
16 0

sampling interval � annual annual
timespan September 1963–September 1974 1989–2002
number of sampling dates (T ) 15 14
average count per sample (minimum,

maximum)

914 (87, 5344) 401 (71, 1152)

average count per species (minimum,
maximum)

266 (1, 4304) 624 (2, 2793)

total count (N) 14 142 5614
observed temporal change index (TC) 0.256 156.90

average of 1000 simulated values of TC
(95% confidence interval)

0.095 (0.082, 0.111) 39.16 (31.81, 47.22)

P(observed TCj null model) ,0.001 ,0.001
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imperfect detection. Instead, most methods assume
that the absence of a species from a sampling period
represents a ‘true’ zero, and not a detection error
(Royle & Dorazio 2008). Most procedures also ignore
species that may have been present in a region, but
were never detected in any of the samples (Colwell &
Coddington 1994).

In this study, we develop new methods for quantify-
ing temporal trends in species abundances that
account for errors in detection of individuals. Our
methods are appropriate for analysing species-specific
counts of individuals recorded from repeated surveys
of a single site. We first develop a bootstrap procedure
for testing a null hypothesis in which the counts are
assumed to have arisen from sampling a stationary dis-
tribution of relative species abundances with
temporally varying sampling probabilities. We then
develop a hierarchical model of the counts to estimate
species-specific trends in abundance while accounting
for species-specific probabilities of detection. Both
methods of analysis are illustrated for two long-term
datasets on stream fishes and grassland insects.
2. MATERIAL AND METHODS
(a) Data structure

The data for our analyses may be organized as a matrix
of counts of individuals of S species (rows) recorded
during T successive sampling periods (columns).
The matrix entry yij is the number of individuals
of species i that were observed at sampling time j
(i ¼ 1, . . ., S; j ¼ 1, . . ., T ). This simple data structure
arises in many ecological studies in which species
assemblages are repeatedly sampled at a site. Although
the samples do not have to be evenly spaced in time,
our methods are intended for analysis of long-term
trends in abundance, not for short-term or periodic
changes in abundance (e.g. seasonality). We illustrate
our methods with two datasets: a 13-year record of
annual counts of 55 fish species seined from a mid-
western USA stream (Grossman et al. 1982), and a
Phil. Trans. R. Soc. B (2010)
14-year record of annual counts of nine insect species
collected from sticky traps in a successional grassland
plot at the USA Kellogg Biological Station (KBS
1995). Table 1 summarizes sampling details for each
of these studies.

The sampling design and collecting methods for the
stream fish study have been described previously
(Whittaker 1976; Grossman et al. 1982, 1985) and
are only summarized here. A 120 m long � 23 m
wide section of Otter Creek, Vigo County, IN, USA,
was surveyed annually between 1962 and 1974. The
site contained a diversity of substrata and depths and
can be considered representative of many streams in
the midwestern USA. During the study period, the
site retained a relatively stable physical structure.
Fishes were sampled using a seine, and all collections
were supervised by a single investigator, so effort was
relatively consistent. There was some minor variation
present in sampling efficiency produced by differences
in stream depth among years, although the investi-
gators always attempted to keep the area sampled
constant. All fishes captured were identified to species
and counted, except in a few cases in which a species
was extremely abundant. In those cases, numerical
estimates were derived from subsamples of the total
catch. All fishes were immediately returned live to
the site, except for voucher specimens, which were
preserved for later identification (Grossman et al.
1982, 1985).

The insect data were collected as part of the Long
Term Ecological Research (LTER) network (LTER
2007) at the KBS in northern Michigan, USA. At
KBS, a set of seven 1 ha crop rotational treatments
have been replicated in six blocks on a single 60 ha
plot (KBS 1995). We used data from treatment 7, a
native successional treatment that was abandoned
after spring plowing in 1989. The plots are surveyed
with yellow sticky traps that are replaced weekly from
May to August. These traps collect insect predators,
many of which are identified only to family level
(Chrysopidae and Lampyridae). We used data for
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nine taxa that were identified to species and were
sampled in all years of the study. Within each sampling
season, we pooled data from all sticky traps and all
plots to generate annual counts for each species.
(b) Null model analysis

In this section we describe a null model for detecting
temporal trends in species’ abundances. We use the
term ‘null model’ to represent a model wherein an
S � T matrix of counts of individuals is assumed to
arise by randomly selecting individuals from the species
assemblage according to each species’ relative abun-
dance and a set of temporally varying sampling
probabilities. The key issue is that no particular ecologi-
cal process or mechanism is assumed to have generated
the matrix of counts; thus the model incorporates
simple sampling effects, but is ‘null’ with respect to pro-
cesses that might induce trends in species abundance
(Gotelli & Graves 1996). The total number of
individuals of species i in all sampling periods is

mi ¼
XT

j¼1

yij : ð2:1Þ

The total number of individuals of all species observed
during sampling period j is

nj ¼
XS

i¼1

yij : ð2:2Þ

Let N equal the total number of individuals summed
across all species and samples

N ¼
XS

i¼1

XT

j¼1

yij ¼
XS

i¼1

mi ¼
XT

j¼1

nj : ð2:3Þ

We define the relative abundance of species i in the
source pool of N individuals as

si ¼
mi

N
: ð2:4Þ

Similarly, we define the relative sampling intensity
during the jth survey as

qj ¼
nj

N
: ð2:5Þ

Under the assumptions of the null model, si is regarded
as the probability that an individual drawn from the
source pool of N individuals belongs to species i and
qj is regarded as the probability that an individual is
observed in the jth sampling period, regardless of
species.

To conduct a bootstrap test of the null model,
we first randomly assign each of the N individuals
in the total collection to a particular sample, with
probability qj. Once all the individuals are assigned,
we then assign them species identities by sampling
randomly with replacement from the distribution of
si values. This two-step process does not depend on
the order of conditioning; the same distribution
would be obtained by first assigning individuals to
species using the si values, and then assigning these
individuals to particular samples using the qj values.
Phil. Trans. R. Soc. B (2010)
This null model describes a multinomial sampling
process that is conditional on N, the total number of
individuals observed. The simulated number of indi-
viduals yij of species i in sample j depends on si, the
proportional representation of species i in the source
pool, qj, the proportion of individuals sampled at
time j, and N. The null hypothesis is that variability
among species in temporal trends is no greater than
would be expected from this simple model of sampling
with replacement from an underlying stationary distri-
bution of relative abundance. The alternative
hypothesis is that at least some species in the assem-
blage are systematically increasing or decreasing,
leading to changes in relative abundance that cannot
be accounted for entirely by sampling effects.

The null hypothesis is defined by the following
hierarchical model:

n1; n2; . . . ; nT � multinomialðN; q1; q2; . . . ; qT Þ ð2:6Þ

and

y1j ; y2j ; . . . ; ySj � multinomialðnj ; s1; s2; . . . ; sSÞ ð2:7Þ

and our randomization procedure is entirely consistent
with this model. Based on this model, the marginal
distribution of the counts is multinomial

y11; y21; . . . ; yST � multinomial

ðN ; s1q1; s2q1; . . . ; sSqT Þ: ð2:8Þ

Therefore, under the null hypothesis the expected
value of each count is proportional to the product of
species relative abundance and year-specific sampling
probability.

To estimate temporal trends from the observed
data, we first fit a simple linear model to the count
data for each species i

yij ¼ b0i þ b1i tj þ 1ij ; ð2:9Þ

where tj is time (in arbitrary units of years, months, or
time-steps), b0i is the intercept, b1i is the slope of the
regression for species i and the error term 1ij has a
normal distribution ð1ij � Nð0;s2

i ÞÞ.
We are interested in b1i, because it measures the

simple temporal trend in abundance for species i.
Temporal change (TC) in the entire assemblage can
then be quantified as the sample variance of the
estimated b1i values

TC ¼ 1

S � 1

XS

i¼1

ðb1i � �b1Þ2: ð2:10Þ

The larger the TC, the more heterogeneity there is in
the temporal trends of the component species, and the
more change in composition of the assemblage that
will be seen at future sampling dates. As described
below, the number of species generated in the null
assemblages was not constant. However, for both the
real and the simulated matrices, TC was calculated
only for species that were present at least once in the
matrix. Following standard procedures for resampling
tests (Manly 2009), we generated 1000 null assem-
blages, and calculated TC for each. We estimate the
probability of obtaining TC if the null hypothesis
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were true by comparing the observed TC to the
histogram of simulated TC values.

Because the results are potentially sensitive to the
assumption of simple linear trends in yij, we fit two
alternative regression models based on log–log and
log-linear transformations of ( yij þ 1) and tj. The
same transformations were applied to the real and
the simulated data. Although these alternative
models incorporated nonlinear trends in species tem-
poral trajectories, the transformations had no
qualitative effect on the outcome of the null model
tests. Therefore, we present results only from analyses
of the untransformed data fit with a linear trend line.
(c) Undetected species

The construction of the null matrix is similar to a
simulation of rarefaction (Sanders 1968; Hurlbert
1971), in which a small assemblage is simulated by
random draws of subsamples of nj individuals from
the larger sample of N. However, in rarefaction,
sampling is done without replacement (Simberloff
1978). Because our null model treats the source pool
as a permanent stationary distribution, we sampled
from it with replacement. In practice, the results will
not differ unless the sample sizes are so small that nj

is a relatively large fraction of N, which is not the
case for these datasets. Rarefaction also conditions
on nj, the observed count in a particular sample,
whereas our multinomial model conditions on N,
the total number of individuals.

This procedure implicitly addresses detection error
because species (especially rare ones) that are present
in the aggregated collection N may not be represented
in any particular sample nj. In some null assemblages,
species that were very rare in the original dataset may
be missing from all nj samples. Because biodiversity
sampling is notoriously incomplete, there are also
likely to be rare species in the assemblage that were
never encountered in the original samples (Colwell &
Coddington 1994). We expanded our null model to
incorporate these undetected species. We first
estimated the minimum number of undetected
species, Ŝ using a bias-corrected version of the familiar
Chao2 estimator (Chao 1984; eqn (2.4) in Colwell
2009)

Ŝ ¼ T � 1

T

� �
Q1ðQ1 � 1Þ
2ðQ2 þ 1Þ

� �
; ð2:11Þ

where Q1 is the number of species represented in
exactly 1 time period (‘uniques’), Q2 is the number
of species represented in exactly two time periods
(‘duplicates’) and T is the number of samples. The
Chao2 index estimates the number of undetected
species in the entire assemblage, not the number that
may be undetected in any single sample. For the
stream fish matrix, the estimated number of unde-
tected species (rounded to the nearest whole integer)
was 16. For the insect matrix, sampling was restricted
to nine common species, and the estimated number of
undetected species was 0.

Once the number of undetected species was esti-
mated, it was necessary to assign them each a
relative abundance si, so they could be included in
Phil. Trans. R. Soc. B (2010)
the simulation. Estimating these si values would
require knowledge of the precise form of the species
abundance distribution, a long-standing unsolved pro-
blem in ecology (McGill et al. 2007). As a simplifying
first approximation, we assumed that si for each unde-
tected species was equal to 0.5.si for the least abundant
species observed in the assemblage. The reasoning is
that if any of these undetected species occurred at a
frequency greater than this, they would probably
have been detected at least once in the original
sample. For the stream fish data, si for each of the 16
undetected species was set at 3.414135 � 1025.
Because many of the undetected species are probably
much more rare than this, our procedure allows for
the greatest possible influence of undetected species.
Nevertheless, the results for the stream fish matrix
were identical with and without the inclusion of unde-
tected species. However, because the observed number
of species is always a biased under-estimator of true
species richness, we present the full analyses here
with the undetected species included in the null
model.

If the observed value of TC is larger than those of
950 of the 1000 simulated TC values (p , 0.05,
one-tailed test), then the temporal trends in the set
of observed species are more heterogeneous than can
be accounted for by the null model: at least some
species are either increasing or decreasing more rapidly
than would be expected from sampling effects and
undetected species. The null model was programmed
and implemented in the statistical language R
(R Development Core Team 2008; see electronic
supplementary material, appendix A).
(d) Hierarchical model of trend in abundances

The null model provides a simple test for heterogen-
eity in species trends. If this null hypothesis is
rejected, the next step is to estimate the rate of
change in abundance of each species. As before, yij is
the count of species i in sample j. We assume that
the count yij depends on the abundance Nij present
during the jth survey and on each individual’s
probability of capture pij, as follows:

yij jNij ; pij � binomialðNij ; pijÞ: ð2:12Þ

To estimate trend, we assume population abundances
can be described as

Nij jlij � PoissonðlijÞ ð2:13Þ

and

lij ¼ li0 expðritjÞ; ð2:14Þ

where lij denotes mean abundance of species i during
survey j and where tj denotes the year of the jth survey.
Trend in lij values is specified using the familiar expo-
nential growth model (equation (2.14)), which
includes a species-specific intercept parameter li0

and a net population growth rate parameter ri.
Note that Nij is not actually observed. Nij is a par-

ameter of the model that represents the number of
individuals of species i which are present and available
to be captured during the jth survey. The observation
yij can be interpreted as a negatively biased estimator
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of Nij, with the level of bias depending on the magni-
tude of pij, the unknown probability of capture for
individuals of species i.

In the absence of replicated observations, we cannot
estimate temporal changes in both Nij and pij. There-
fore, we assume that capture probabilities vary
among species but not among surveys (i.e. we
assume pij ¼ pi). Even with this simplifying assump-
tion, the hierarchical model composed of equations
(2.12)–(2.14) contains more parameters than can be
estimated from the data. To solve this problem, Nij

may be eliminated from the model by integrating the
joint distribution of yij and Nij. This integration can
be done analytically to obtain the following margina-
lized version of the hierarchical model:

yij jpi; li0; ri � Poissonðpili0 expðritjÞÞ: ð2:15Þ

Note that this model may be viewed conceptually as a
Poisson regression model. For example, let mij denote
the Poisson mean for yij. The logarithm of mij is a
linear combination of the marginal model’s parameters

logðmijÞ ¼ logðpiÞ þ logðli0Þ þ ritj : ð2:16Þ

However, pi and li0 are not identifiable parameters
in equation (2.16) (i.e. both parameters cannot be esti-
mated); therefore, we combine these parameters into a
common regression intercept parameter (say, ai ¼

log(pili0)) to obtain

logðmijÞ ¼ ai þ ritj : ð2:17Þ

From this equation, the Tobservations, yi1; yi2; . . . ; yiT ,
can be used to estimate the parameters ai and ri. We
are interested primarily in the latter parameter ri,
which denotes the trend in abundance of species i;
however, our formulation of the intercept parameter
ai reveals explicitly the combined roles of mean abun-
dance and capture probability in the model.

The model specified by equations (2.15) and (2.17)
can be fitted to each species separately. However,
doing so may produce estimates of trend that are
unstable or highly imprecise for species whose abun-
dance appears to be low (as indicated by counts that
contain several zeros and ones). Therefore, we
extend the model as follows:

ri jb;s � normalðb;s2Þ ð2:18Þ

where b denotes the average trend in abundance
among species in this assemblage and s denotes the
level of variation in ri values among species. This
distributional assumption allows the counts of all
species to be analysed jointly so that information
associated with species of moderate or high abundance
can be used to stabilize the estimates of trend for
species of low apparent abundance. Nevertheless,
even with this assumption, there were not enough
data to reliably estimate trends for very rare species
that were represented by less than 10 individuals in
the entire survey (25 of 55 stream fish species, and
two of nine insect species).

Equation (2.18) implies an exchangeability of trend
parameters among species. This exchangeability for-
malizes the notion that although abundances may be
Phil. Trans. R. Soc. B (2010)
increasing, decreasing or constant for any particular
species, each is also a member of a common assem-
blage. We expect that the temporal trends of the
species in the stream fish assemblage are more similar
to one another than they are to, say, the temporal
trends of the species in the grassland insect assem-
blage. A restricted version of this model that
corresponds to the null model assumes an identical
growth rate ri ¼ b for all species, so that s ¼ 0. We
can fit this restricted model and compare it with the
unrestricted model to assess whether the data support
the null hypothesis that all species abundances have an
identical trend.

(e) Method of estimation

The hierarchical model described by equations (2.15),
(2.16) and (2.18) may be fitted by maximizing the
likelihood function obtained by integrating away the
latent trend parameters. In our situation, however,
this approach is counter-productive. In addition to
the minor technical challenges of computing the inte-
grals numerically, the trend parameters ri are the
quantities of primary scientific interest. Estimates of
these parameters and their uncertainties are actually
needed to solve the inference problem. We therefore
adopt a Bayesian approach to inference, which allows
every parameter in the model to be estimated directly,
including the species-specific trends in abundance.

In a Bayesian analysis, all inferences are based on
the joint posterior distribution of model parameters.
In our case the unnormalized, probability density
function (pdf ) of this distribution is

pða; r;b;sjY Þ/ pðb;s;aÞ
YS
i¼1

gðrijb;sÞ

�
YT
j¼1

f ðyij j expðai þ ritjÞÞ; ð2:19Þ

where a ¼ ða1; . . . ; anÞ0; r ¼ ðr1; . . . ; rnÞ0, and
Y ¼ ð y1; . . . ; ynÞ0. Here, g(.jb, s) denotes the pdf of
a normal distribution with mean b and variance s2,
f(.jmij) denotes the probability mass function of a
Poisson distribution with mean mij, and p(b, s, a)
denotes the pdf of the prior distribution of the
parameters b, s, and a.

The posterior pdf cannot be written in closed form
owing to the analytically intractable integrals in the
normalizing constant (not shown in equation (2.19)).
Therefore, we estimated the model’s parameters using
Markov chain Monte Carlo algorithms (Robert &
Casella 2004) to obtain an arbitrarily large sample of
the joint posterior distribution. Specifically, we fit the
model using the WinBUGS software (Lunn et al.
2000), which is an implementation of the BUGS
language for specifying models and doing Bayesian
analyses (Gilks et al. 1994).

To obtain the posterior sample, we assumed a set of
mutually independent noninformative prior distri-
butions for b, s and a. We assumed normal (0,
1002) priors for b and ai and a uniform(0, 10) prior
for s. Each of five Markov chains was independently
initialized and computed for a total of 21 000 draws.
The first 1000 draws in each chain were discarded as



3000

4000

5000

un
da

nc
e

3626 N. J. Gotelli et al. Detecting temporal trends
‘burn-in’, and every fifth draw in the rest of each chain
was retained to form the posterior sample. Conse-
quently, these calculations yielded a posterior sample
of 20 000 draws, which was used to compute estimates
of the model’s parameters and their 95% credible
intervals (see electronic supplementary material,
appendix B).
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Figure 1. Temporal trends in total abundance for the stream
fish samples of Grossman et al. (1982). The dashed
line indicates the regression line for a simple linear model
(nt ¼ 1371–6.212 tj; r2 ¼ 0.04; p ¼ 0.446).
3. RESULTS
(a) Null model analysis

For the stream fish data, there was a non-significant
decreasing trend in total abundance (figure 1),
caused primarily by extremely high abundances in
the November 1966 sample (n8 ¼ 5344 individuals).
For the null model analysis, this decreasing trend
leads to the expectation of negative slopes for individ-
ual species, with a moderate amount of variation
among species (figure 2a). However, the observed
slopes were much more heterogeneous than this expec-
tation: several species showed sharply increasing or
decreasing trend lines (figure 2b), and the observed
TC index was larger than that of all 1000 simulated
assemblages (table 1).

For the insect data, there was a marginally non-
significant increasing trend in total abundance
(figure 3), with systematically greater abundances
during the final sampling years. For the null assemblages
created from this matrix, most species had increasing
trend lines (figure 4a). However, the observed slopes
were again much more heterogeneous than expected
(figure 4b). As with the stream fish data, the observed
heterogeneity among slopes (TC) was greater than
that of any of the simulated assemblages (table 1).

(b) Trends in abundances

For the stream fish data, the hierarchical model ident-
ified seven species with significant increases in
abundance, 17 species with significant declines in
abundance and six species with no significant trend
(figure 5). A negative estimate of average trend,
b̂ ¼ �0:152 (95% credible interval: (20.289,
20.024)), also indicates that species with declining
abundances outnumbered those with increasing abun-
dances. There is little doubt that trends in population
abundance differed substantially among species. The
posterior distribution of s (figure 6a) provides
virtually no support for the hypothesis that s ¼ 0.

For the grassland insect data, the hierarchical
model identified two species with significant increases
in abundance, three species with significant declines in
abundance and two species with no significant trend
(figure 7). The estimate of average trend,
b̂ ¼ �0:026 (95% credible interval: (20.352,
0.297)), reflects the nearly equal numbers of species
with increasing and decreasing abundances. As with
the stream fish data, the posterior distribution of
s (figure 6b) does not support the null hypothesis
(s ¼ 0) of identical trend lines for these seven species.
4. DISCUSSION
The null model and the hierarchical model provide
complementary information on temporal trends, and
Phil. Trans. R. Soc. B (2010)
they both point to strong temporal re-organization of
stream fish and insect grassland assemblages over
periods greater than a decade. Because the insects
were sampled in a successional plot, it is no surprise
that strong temporal trends would be detected, as veg-
etation structure and arthropod prey assemblages were
systematically changing through time. In fact, the two
most rapidly increasing species, Harmonia axiridis and
Hippodamia glacialis, never appeared in any of the traps
until 6 and 7 years, respectively, after the sampling
began. This is exactly the pattern that would be
expected in a classic facilitation model of succession
(Connell & Slatyer 1977). On the other hand, the
abundance of the most common species in the
samples, Coccinella septempunctata (�x ¼ 200 individuals
per year), did not change significantly during the
14-year successional sequence (figure 7).

The pattern for the stream fishes is more complex.
Although no obvious physical changes were observed
in the habitat during the 15-year sampling period,
17 species showed significant declines, whereas only
seven species increased in abundance. The causal
mechanisms behind these patterns are unclear because
both generalist and specialist species were found in
both categories, as were representatives of most
North American taxonomic groups. Perhaps the pre-
ponderance of declining populations suggests that
some species successfully invaded the site early in the
time series, but were not able to sustain populations
through local reproduction and began to decline. It
is probable that flow variation plays some role in
these trends, perhaps facilitating establishment of
species in benign periods and causing substantial mor-
tality during periods of high water (Grossman et al.
1982, 1998). High flow events may cause substantial
mortality in stream fishes, especially if they occur
during the reproductive period and destroy an
entire year-class (Grossman et al. 1982, 1998).
However, there was no evidence during the sampling
period of declining flows or increased numbers
of extreme flow events that might be linked to
the decreasing abundance of 17 of the 55 species
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Figure 2. Observed and simulated trend lines for the stream fish data of Grossman et al. (1982). (a) Results of a single replicate

of the null model simulation, in which total abundances for each species are sampled randomly from the abundance distri-
bution of all species pooled through time. See text for details of the simulation model. Each line is the least-squares
regression for one of the simulated species. (b) Same graph for the observed data.
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Figure 3. Temporal trends in total abundance for the
insect samples of the successional plot. The dashed line
indicates the regression line for a simple linear model
(nt ¼ 268 253.0 þ 34.4 tj; r2 ¼ 0.27; p ¼ 0.057).
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(Grossman & Sabo 2010). The decreasing trends in
abundance of many stream fish species (figure 5) are
consistent with a shifting baseline scenario, but the
causes of these declines are still unknown.

The results of both the null model and the hierarch-
ical model are potentially sensitive to the functional
form that is used to describe temporal trends. For the
null model analysis, the results for these datasets
were the same when the trends were fit with linear,
Phil. Trans. R. Soc. B (2010)
semi-logarithmic, or log–log transformations of the
original data. The estimated heterogeneity among
species in temporal trends does not seem to be sensitive
to the fitting procedure, perhaps because deviations
caused by extreme sample numbers (such as the high
counts in the stream fish dataset in 1966) are also incor-
porated into the pattern in the null assemblages. Both
the null model and the hierarchical model assume
that species are independent of one another. However,
it is unclear how the violation of this assumption
(from strong species interactions) would systematically
affect the estimates of temporal trends in abundance.

Because the hierarchical model is being used for
parameter estimates of change (rather than just a
simple dichotomous null model test), it is potentially
more sensitive to violation of its assumptions. As we
noted, one important assumption in this model is
that capture probabilities are constant through time.
Although this assumption may not be true, it probably
matches the perspective of most field biologists, who
typically assume that long-term monotonic changes
in species counts with standardized sampling methods
primarily reflect changes in abundance, rather than
changes in detection or capture probabilities.

If species-specific capture probabilities are not con-
stant, the magnitude of the deviations between
observed and expected counts may be inflated. As
long as these deviations do not vary systematically
with time, the point estimates of trend will not be
affected, although the credible intervals may be too
narrow. Alternatively, if the deviations between
expected and observed counts vary systematically
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Figure 4. Observed and simulated trend lines for the insect data from the successional plot. Details as in figure 2.
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Figure 5. Hierarchical model estimates of ri, the intrinsic rate of increase (¼ ln(l)) for 30 species of stream fishes. Each circle
represents the estimated ri, and the error bar is the asymmetrical 95% credible interval.
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with time, say changing from positive to negative
values, the trend estimates will be very sensitive to an
incorrect assumption of constant capture probability.
For the datasets we analysed, there was no evidence
of a systematic lack of fit (figure 8).
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In the hierarchical model, the assumption of con-
stant sampling probabilities was necessary only
because of the extremely simple and unreplicated
structure of the data matrix. With replication, it may
be possible to estimate parameters for temporal
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Details as in figure 5.
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trends in both abundance and detection probabilities.
For example, the KBS insect data actually consist of
weekly sticky trap counts collected from six replicated
plots. Rather than pooling the data as we have done in
this analysis, the individual trap records could be fit to
a more complex hierarchical model (Royle & Dorazio
2008; Kery et al. 2009). The hierarchical model
could also be expanded to incorporate species-specific
covariates Z (such as body size, geographical range
size, or degree of habitat specialization) that might
be of interest for conservation purposes. Species-
specific covariates could be used to model either the
mean structure of the elements of r in equation
(2.18) or their covariances.
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Both the bootstrap test and the hierarchical model
assume that changes in abundance through time are
monotonic. If species show more complex patterns of
temporal change (such as periodic fluctuations),
these could be accommodated by fitting polynomial
or sine functions to the time series. However, at least
for these datasets, diagnostic analysis of residuals indi-
cated little evidence for departures from linearity over
the time periods that were sampled. Moreover, a
monotonic function is appropriate for very short data
series such as these (T ¼ 15 samples for stream fishes
and T ¼ 14 samples for grassland insects).

Finally, the frequent occurrence of rare species in
natural assemblages continues to pose statistical



1962 1964 1966 1968 1970 1972 1974

1

2

5

10

20

50

100(a) (b)

(c) (d )

nu
m

be
r 

of
 f

is
h

1962 1964 1966 1968 1970 1972 1974

1

2

5

10

20

50

100

1990 1992 1994 1996 1998 2000 2002

10

20

50

year

nu
m

be
r 

of
 in

se
ct

s

1990 1992 1994 1996 1998 2000 2002

50

100

200

500

year

Figure 8. Estimated trends for representative stream fish and insect species. (a,b) Estimated trends in captures of stream fish
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challenges. In the null model, all species, no matter
how rare, are included in the analysis, and the null
assemblages even incorporate the possibility of species
that were never detected in any of the samples. In
theory, rare species can contribute to the size of the
observed TC index. For example, if all of the rare
species occurred in only the very first or the very last
sample, the sample variance in the trend lines would
tend to be large compared to that found for the null
assemblages. However, less extreme distributions of
rare species look very similar to those generated by
the null model, and therefore would not contribute
substantially to the TC index.

In the hierarchical model, the assumption of
exchangeability of ri values allowed us to use infor-
mation from common species to estimate trends for
less common species. Nevertheless, when abundance
is so low that there are fewer than 10 individuals
counted in 14 or more consecutive annual samples,
estimating temporal trends with any statistical model
is a dubious exercise. For these cases, auxiliary infor-
mation, stratified sampling and additional data may
be necessary (Dixon et al. 2005).

In summary, quantifying temporal trends in species
abundances is an important forecasting problem.
Given the accelerating rates of habitat alteration and
global climate change, the strong heterogeneity that
we detected in the stream fish and grassland insect
datasets (figures 5 and 7) may be typical; it seems unli-
kely to us that most long-term temporal trends will be
accounted for entirely by the sampling effects in our
null model. In these cases, the hierarchical models
Phil. Trans. R. Soc. B (2010)
provide a sensible framework for predicting what the
future may hold.
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