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Despite the fact that migration occurs in a wide variety of taxa worldwide, little is known about the con-

ditions under which migration is expected to evolve from an ancestral resident population. We develop a

model that focuses on ecological factors affecting the evolution of migration in a seasonal environment

within a genetically explicit framework. We model the evolution of migration for two common types of

migration: ‘shared breeding’ where migrants share a breeding ground with residents and migrate to a sep-

arate non-breeding area, versus ‘shared non-breeding’, where migrants share a non-breeding ground with

residents and migrate to a separate breeding area. Ecologically, migration is more easily established in the

shared-breeding case versus the shared-non-breeding case. Genetically, the additive effect of a migratory

allele affects its establishment more in the shared-non-breeding case versus the shared-breeding case,

whereas the dominance effect of the allele affects its establishment more in the shared-breeding case

versus the shared-non-breeding case. Generally, migratory alleles can invade even when residents are

competitively superior to migrants during the shared season. Partial migration occurs when the popu-

lation is polymorphic for migratory and non-migratory alleles, and is dependent upon which season is

shared and the additive and dominance behaviour of the migratory allele.

Keywords: migratory animals; genetics of migration; invasion analysis;

density dependence; habitat quality
1. INTRODUCTION
Migration is one of the most fascinating behaviours

found in nature, but how it evolved in such a wide var-

iety of taxonomic groups and geographical locations has

largely remained a mystery. There have been several

hypotheses that propose the steps involved in the tran-

sition from a sedentary to a migratory species over an

evolutionary time scale (Cox 1968, 1985; Levy &

Stiles 1992; Rappole & Jones 2002), but these are

often specific to a particular taxon or geographical

region and are difficult to test in contemporary popu-

lations. Perhaps more informative for understanding

why migration is so common are models that produce

quantitative predictions for the demographic conditions

under which migration is expected to evolve from a resi-

dent (sedentary) ancestral population. Lundberg (1987)

derived conditions for the evolution of partial migration

(i.e. some individuals in a population are migratory

while others are resident) under the scenario in which

migratory individuals shared a breeding site with the

residents but migrated to a separate non-breeding site

(what we term here as the ‘shared-breeding’ case).

Kaitala et al. (1993) extended this shared-breeding

model to include age-structure and a stochastic

environment, and earlier work by Cohen (1967) also

assumed a shared-breeding case. Bell (2000) studies

and Taylor & Norris (2007) derived conditions for

both partial and complete migration in a ‘shared-

non-breeding’ case, whereby migrants establish a new
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breeding site and return to the ‘resident’ site during

the non-breeding period. Although it is well documented

that partially migratory populations may be composed of

migrant and resident individuals that either share a breed-

ing site (e.g. Smith & Nilson 1987; Andriaensen &

Dhondt 1990; Boyle 2008) or share a non-breeding site

(e.g. Klein & Brown 1994; Alonso et al. 2000;

Morrissey 2004), no genetically explicit model has

been developed to compare the conditions under

which migration is expected to evolve under these two

different cases.

Kokko & Lundberg (2001) and Holt & Fryxell

(in press) examined conditions for migration using a

two-habitat model that allowed for populations to be

resident at both the ‘breeding’ or ‘non-breeding’ site.

Kokko & Lundberg (2001) found that migration evolves

when breeding sites are a limiting resource. Holt &

Fryxell (in press) demonstrated that a species capable

of persisting as residents in two separate sites is vulner-

able to the invasion of a migratory genotype if there is

a difference in geometric mean fitness between habitats.

While both models are useful under assumptions of

weak seasonality, it is likely that migratory behaviour in

many species arose from the ability of individuals to

take advantage of seasonal variation in resources (e.g.

Boyle & Conway 2007).

Thus, we still lack a general model for the evolution of

migration in a seasonal environment that incorporates

genetic, ecological and demographic information. In this

paper, we use a simple two-season population model

with a single genetic locus determining migratory behav-

iour to derive the conditions under which (i) a migratory
This journal is q 2010 The Royal Society
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Figure 1. Two cases under which migration may evolve from
a resident ancestor. (a) In the shared-breeding case, migrants
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allele can invade a resident population and (ii) a resident

allele can counter-invade a migratory population and

create a stable genetic polymorphism (i.e. partial

migration).

Our analysis uses a standard technique in theoretical

evolutionary genetics to understand the evolution of

migration, namely evolutionary invasion analysis (e.g.

Otto & Day 2007). An evolutionary invasion analysis

calculates whether a new mutation will spread in a

population. An evolutionary invasion analysis is particu-

larly applicable to our study of migration because we

focus on the initial evolutionary transition to migration.

During this initial transition, the ancestral population is

not migratory and the migratory behaviour must arise

by rare new mutations. The single locus two-allele

model will give insight into how the additive and

dominance effects of a migratory allele affect the

establishment of migration.
initially share a breeding site with residents and migrate to a
new site during the non-breeding period. (b) In the shared-
non-breeding case, migrants initially share a non-breeding
site with residents and migrate to a different site during the
breeding period. Under either case, if a migratory allele

invades a resident population, it may remain partially
migratory (both residents and migrants) or may evolve to
be completely migratory (loss of residents). Grey region,
resident site; black ring, migrant site.
2. OVERVIEW OF MODEL AND ANALYSIS
We start with a resident (non-migratory) ancestral

population in which non-migratory juveniles may exhibit

one-way dispersal from the natal site to the migratory

site. Dispersal is distinguished from migration in that dis-

persal occurs only once and is unidirectional, whereas

migration is the bidirectional movement of an individual

throughout its lifetime (Dingle 1996). Furthermore, our

model assumes that migration is a life strategy, such

that if an individual is migratory when it is born, then it

is migratory throughout its life.

We consider two cases whereby migration may evolve.

In the shared-breeding case, migratory individuals breed

randomly with resident individuals, they migrate to a

different site for the non-breeding season and, prior to

the subsequent breeding season, return to the resident

ancestral breeding grounds (figure 1a). In the shared-

non-breeding case, migratory individuals breed separately

from residents, but migratory offspring may be born on

either the resident or migrant breeding grounds provided

that both migratory and resident alleles are segregating

(figure 1b).

For migratory behaviour, we model a single locus in

which the wild-type allele (a) is resident and the alter-

nate allele (A) is migratory. Individuals that are

homozygous for the migratory allele take on the

migratory life strategy with probability x, and individuals

that are heterozygous for the migratory allele take on the

migratory life strategy with probability hx, where 0 ,

h , 1. Accordingly, the additive effect of the migratory

allele is x/2 and the dominance effect is h. When

migratory individuals breed separately from residents,

there is still gene flow between the migratory and resi-

dent lineages provided that either hx or x are less than

one. We assume that migratory individuals follow

environmental clues such that they time migration cor-

rectly. For instance, in the shared-non-breeding case,

migrants wait until just prior to the breeding season to

migrate. This assumption coincides with the finding

that in blackcaps (Sylvia atricapilla), the probability of

migrating and migratory activity is genetically correlated

(Pulido et al. 1996).

We assume strong seasonality such that, in the shared-

breeding case, migratory individuals over-winter but
Proc. R. Soc. B (2010)
cannot stay and breed at the migratory site (birth rate is

zero) and that, in the shared-non-breeding case,

migratory individuals breed but cannot ‘over-winter’ at

the migratory site (survival is zero). Allowing for juvenile

dispersal in the shared-non-breeding model has impor-

tant consequences because an individual with a resident

genotype born from heterozygote parents on the

migratory breeding grounds would otherwise die if it

stayed there for the non-breeding season. In the shared-

breeding model, the migratory non-breeding site acts as

a black-hole sink (sensu Gomulkiewicz et al. 1999) for

individuals with a resident genotype that happen to

disperse there.

The fitness of a genotype is defined by its density-

dependent birth rate, its density-dependent survival

during the non-breeding season, its probability of surviv-

ing migration if it is migratory and its probability of

surviving dispersal if it is dispersive. It is assumed that

all adults survive the breeding season.

Discrete-time recursion models are derived for both

the shared-breeding and shared-non-breeding models

(see appendix A). Table 1 is provided as a guide to the

parameters that are presented in the recursion models

and will aid in the interpretation of stability conditions

presented in §3. We analyse the situations under which

a migratory allele that arises by mutation can invade an

ancestral resident population that is at demographic equi-

librium. Upon the introduction of a migratory allele, a

local stability analysis is performed to determine whether

the resident equilibrium is stable. If stable, then the over-

all growth rate of migratory genotypes is less than 1 and it,

therefore, does not invade the resident population. If

unstable, then the migratory allele can invade the popu-

lation. In addition, we also derive conditions for the

stability of the migratory equilibrium upon introduction



Table 1. Definitions of parameter values used in the models. (HF, high fecundity; LS, low survivorship.)

parameter description value

general
Q type of generation time 0 ¼ non-overlapping, 1 ¼ overlapping

x, h probabilities that an individual will be migratory.
An individual with an AA genotype is
migratory with probability x. An individual
with an Aa genotype is migratory with a
probability hx

x varies from 0.5 to 1, h equals 0.5

sM migratory survival 0.95
sD dispersal survival 0.95
m12 dispersal probability of non-migratory juvenile

from resident site to migratory site
0.05

m21 dispersal probability of non-migratory juvenile
from migratory site to resident site

0–1.0

bR density-independent birth rate for residents f0.5 for LF–HS, 1.0 for HF–LSg (assuming overlapping
generations)

bM density-independent birth rate for migrants varies

b0R density-dependent effect on birth for residents f7.02 � 1026, 7.02 � 1025, 2.63 � 1026, 2.63 � 1025g
b0M density-dependent effect on birth for migrants varies
dR density-independent survival for residents f0.95 for LF–HS, 0.7125 for HF–LSg
dM density-independent survival for migrants varies
d0R density-dependent effect on survival for residents 5 � 1026

d0M density-dependent effect on survival for migrants varies

equilibrium parameters
M̂ migrant population size depends on model and equilibrium; generally a complicated

function
R̂ resident population size depends on model and equilibrium; generally a complicated

function

stability of residents to migratory invasion at equilibrium
B̂MR birth rate of a migrant–resident mating bM �N̂b0M
B̂RR birth rate of a resident–resident mating bR �N̂b0R
DM survival of migrants (shared breeding) dM � R̂B̂RRm12d0M
DR survival of residents (shared breeding) dR � ðQþ B̂RRð1�m12ÞÞR̂

� �
d0R

JM survival of migrants (shared non-breeding) dM � ðQþ ð1�m12ÞðbR � b0RR̂ÞÞR̂
� �

d0M
JR survival of residents (shared non-breeding) dR � ðQþ ð1�m12ÞðbR � b0RR̂ÞÞR̂

� �
d0R

stability of migrants to resident invasion at equilibrium
�BM average birth rate of a migrant M̂B̂MM þ R̂B̂MR

� �
= M̂ þ R̂
� �

�BR average birth rate of a resident M̂B̂MR þ R̂B̂RR

� �
= M̂ þ R̂
� �

�B overall average birth rate M̂�BM þ R̂�BR

� �
= M̂ þ R̂
� �

VM survival of migrants (shared breeding) dM � QM̂ þ xsM
�BðM̂ þ R̂Þ þ ð1� xÞm12sD

�BðM̂ þ R̂Þ
� �

d0M

VR survival of residents (shared breeding) dR � QR̂þ ð1� xÞð1�m12Þ�BðM̂ þ R̂Þ
� �

d0R

CM survival of migrants (shared non-breeding)

dM � ðQR̂þ sDð1� xÞm21M̂ðbM � M̂b0MÞ

þ sMM̂ðQþ xðbM � M̂b0MÞÞ þ xR̂ðbR � R̂b0RÞ

þ ð1� xÞð1�m12ÞR̂ðbR � R̂b0RÞÞd0M

CR survival of residents (shared non-breeding)

dR � ðQR̂þ sDð1� xÞm21M̂ðbM � M̂b0MÞ

þ sMM̂ðQþ xðbM � M̂b0MÞÞ þ xR̂ðbR � R̂b0RÞ

þ ð1� xÞð1�m12ÞR̂ðbR � R̂b0RÞÞd0R
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of a resident allele. Together, these conditions are infor-

mative about when a population is expected to be

resident, partially migratory and completely migratory

with respect to the alleles that are present in the

population.

Finally, we explore the effects of the following par-

ameters on the stability of the resident and migratory

equilibrium: density-dependent and independent
Proc. R. Soc. B (2010)
components of birth and survival, and the probability of

a genotype migrating or dispersing. We also examine the

consequence of overlapping versus non-overlapping gen-

erations. Overlapping generations may be important

with respect to the evolution of migration because in the

shared-breeding case, with overlapping generations,

allele frequencies do not attain Hardy–Weinberg

proportions after random mating.
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3. RESULTS
(a) Conditions for invasion of the migratory allele

In the shared-breeding model, the resident equilibrium is

unstable (migratory allele can invade) when the following

condition holds (see table 1 for complete list of terms and

the appendix for the derivation of this equation):

1

2
ðA+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4C
p

Þ. 1

A ¼ ðQþ hxB̂MRÞs2
MDM þ ðQþ ð1� hxÞð1�m12ÞB̂RRÞDR

C ¼ QðQþ hxB̂MR þ ð1� hxÞð1�m12ÞB̂RRÞs2
MDMDR:

ð3:1Þ

When generations are non-overlapping (Q ¼ 0),

condition (3.1) simplifies to hxB̂MRs2
MDM þ ð1� hxÞ

ð1�m12ÞB̂RRDR . 1, which is easily interpretable as the

sum of the growth rates of migratory Aa individuals and

non-migratory Aa individuals must be greater than 1.

The C term adjusts the growth rate to account for

overlapping generations (Q ¼ 1).

In the shared-non-breeding model, the resident equili-

brium is unstable when at least one of the following two

conditions hold:

ðQþ xbMÞs2
MJM . 1 ð3:2aÞ

or

1

2
ðA +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4C
p

Þ . 1

A ¼ ðQþ hxbMÞs2
MJM þ ðQþ ð1� hxÞð1�m12Þ B̂RÞJR

C ¼ ðQþ hxbMÞs2
MJMðQþ ð1� hxÞð1�m12Þ B̂RÞJR

þ hxbMsMm21sDJMð1� hxÞ B̂RJR:

ð3:2bÞ

Condition (3.2a) defines the stability of the resident

equilibrium unless m21 (probability of dispersal from the

migratory site to the resident site) is large and x is

small, otherwise condition (3.2b) defines stability.

When condition (3.2a) dominates, destabilization of

the resident equilibrium in the shared-non-breeding

case is driven by the success of homozygous (AA)

migrants. This is in contrast to the shared-breeding

case, where destabilization is driven by heterozygous

(Aa) individuals. The reason is that, in the shared-non-

breeding case, there is a degree of inbreeding occurring

owing to assortative mating. In the shared-non-breeding

case only AA and Aa migrants mate with each other,

whereas in the shared-breeding case, AA, Aa and aa

individuals (both migrants and residents) randomly mate.

When x is small and m21 is large, resident Aa individ-

uals contribute to destabilizing the resident equilibrium.

The requirement that m21 needs to be large indicates

that dispersal of resident Aa individuals to the ancestral

grounds is an important factor destabilizing the resident

equilibrium.
(b) Equivalence between shared-breeding

and shared-non-breeding models

Here, we determine the demographic conditions under

which the shared-breeding and shared-non-breeding

models are equivalent with respect to the invasion of the
Proc. R. Soc. B (2010)
migratory allele. Although Taylor & Norris (2007)

stated that the conditions would be the same for the

shared-breeding and shared-non-breeding cases, we

show that is actually not correct. The shared-breeding

and shared-non-breeding models are demographically

equivalent when the growth rates of the migratory allele

are the same. To determine these conditions, we set x¼ 1,

h¼ 1 and Q ¼ 0, which follow the assumptions of the

Taylor & Norris (2007) ecological model.

Under these assumptions, in the shared-breeding case,

the growth rate is bMdMs2
Mð1� b0M=bMR̂Þ, and, in the

shared-non-breeding case, the growth rate is

bMdMs2
Mð1� d0M=dMR̂ðbR � b0RR̂ÞÞ. Equating these growth

rates leads to the equivalence condition:

� b0M
bM

¼ � d0M
dM

bR � b0RR̂
� �

: ð3:3Þ

Condition (3.3) says that the shared-breeding case (left

side of equation) is equivalent to the shared-non-breeding

case (right side) if the scaled effect density dependence on

migratory birth rates in the shared-breeding case is

bR � b0RR̂ times greater than the scaled effect of density

dependence on migratory survival rate in the shared-

non-breeding case. In other words, if the scaled effects

of density dependence on birth and survival are equal,

then a migratory allele will have an easier time invading

the shared-breeding case versus the shared-non-breeding

case.

When generations are overlapping (Q ¼ 1), the

equivalence condition is

� b0M
bM

¼ � d0M
dM

1þ bR � b0RR̂
� �

1þ 1

bM

� �
: ð3:4Þ

The equivalence condition (3.4) demonstrates that the

shared-breeding case is even more strongly favoured when

generations are overlapping compared with when gener-

ations are non-overlapping because the term

1þ bR � b0RR̂ is multiplied by 1 þ 1/bM, which is greater

than one. Overall, our analysis demonstrates that the

shared-breeding and shared-non-breeding cases are not

ecologically equivalent with respect to the invasion of

the migratory allele.

(c) Numerical analysis for the invasion of the

migratory allele: the effects of life history and

probability of migration

Two common life histories in animals are species that

have high fecundity and low survivorship (HF–LS) and

species that have low fecundity and high survivorship

(LF–HS). Figure 2a,b shows that when the scaled den-

sity-dependent effects on birth are equal to the scaled

density-dependent effects on survival in the ancestor, a

migratory allele can invade more easily in the shared-

breeding versus shared-non-breeding case for both the

HF–LS and LF–HS life histories, in agreement with

the analysis in §3b. The migratory allele invades more

easily because it can invade when (i) the migratory site

is of poorer quality and (ii) migrants are poorer

competitors relative to residents.

When the scaled density-dependent effects on birth are

greater than ð1þ bR � b0RR̂Þð1þ 1=bMÞ times the scaled

density-dependent effects on survival, the analysis in

§3b predicts a migrant allele will invade more easily in
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Figure 2. Conditions under which a migratory allele is able to invade a resident population in relation to competition (y-axis)

and relative site quality (x-axis). In the ancestor, scaled density-dependent effects on birth in the shared-breeding case and on
survival in the shared-non-breeding case are equal for the (a) high-fecundity and low-survival (HF–LS) life history and for the
(b) low-fecundity and high-survival (LF–HS) life history, respectively with x ¼ 1.0 and h ¼ 0.5. Parts (a,b) support the predic-
tion from condition (3.4) that the migrant allele will invade more easily in the shared-breeding case for both life histories when
density-dependent effects on birth and survival are scaled to be equal. In the ancestor, scaled density-dependent effects on birth

in the shared-breeding case are 10 times greater than the scaled density-dependent effects on survival in the shared-non-breed-
ing case for the (c) HF–LS life history and for the (d) LF–HS life history, respectively, with x ¼ 1.0 and h ¼ 0.5. Parts (c,d)
support the prediction from condition (3.4) that the migrant allele can invade more easily in the shared-non-breeding case for
both life histories when density-dependent effects on birth are stronger than effects on survival. In (e, f ), the demographic par-

ameters are the same as in (a,b), except the migration probability is lowered to x ¼ 0.5. Parts (e, f ) suggest that the invasion of
the migratory allele is not affected strongly by x in the shared-breeding case, but is affected strongly in the shared-non-breeding
case. In the shared-breeding scenario, the sharp threshold along the x-axis occurs because the probability of survival cannot be
greater than 1.0. Thus, if the resident ancestors’ survivorship is 0.7125, the maximum value of dM/dR is 1.4. For (a,c,e), dR ¼

0.7125 and bR ¼ 1.0, and for (b,d,f ), dR ¼ 0.95 and bR ¼ 0.5. For (a– f ), d0R ¼ 5� 10�6, for (a,e) b0R ¼ 7:02� 10�6, for (b,f )

b0R ¼ 2:63� 10�6, whereas for (c) b0R ¼ 7:02� 10�5 and for (d) b0R ¼ 2:63� 10�5. All other parameter values are fixed across
panels: Q ¼ 1, m12 ¼ 0.05, m21 ¼ 0.05, sM ¼ 0.95 and sD ¼ 0.95.
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the shared-non-breeding case. Figure 2c,d illustrates this

point by showing a large reduction in the parameter

space, allowing for migration in the shared-breeding

case and an increase in parameter space in the

shared-non-breeding case.

Lastly, when the migration rate is reduced from x ¼

1.0 to x ¼ 0.5, the stability conditions do not change for

the shared-breeding case but dramatically changed for

the shared-non-breeding case (compare figure 2a with

2e, and figure 2b with 2f). This difference occurs in

both types of life histories.
(d) Conditions for counter-invasion of

the resident allele

For the shared-breeding model, a population that is fixed

for the migratory allele has an unstable demographic

equilibrium in the presence of a rare resident allele (i.e.

the resident allele is able to invade a fully migratory popu-

lation potentially resulting in a partially migratory

population) when:

1

2
ðA +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4C
p

Þ . 1

A ¼ Qþ hx �BMð Þs2
MVM þ Qþ ð1� hxÞð1�m12Þ �BRð ÞVR

C ¼ Q Qþ hx �BM þ ð1� hxÞð1�m12Þ �BRð Þs2
MVMVR:

ð3:5Þ

The form of condition (3.5) is the same as condition

(3.1), although they will differ quantitatively because

the equilibrium structure of a population fixed for the

migratory allele is different from that of a population

fixed for the resident allele. In particular, provided that

x , 1, both migratory and resident individuals will be pre-

sent when a population is fixed for the migratory allele A.

In the shared-non-breeding model, the instability con-

ditions for the migratory equilibrium are similar in form

to condition (3.2). If either of the following conditions hold,

ðQþ ð1�m12ÞbRÞCR . 1 ð3:6aÞ

or

1

2
ðA+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2� 4C
p

Þ. 1

A¼ Qþ hx bM�M̂b0M
� �� �

s2
MCM

þ Qþ ð1� hxÞð1�m12Þ bR �R̂b0R
� �� �

CR

C ¼ Qþ hx bM�M̂b0M
� �� �

s2
MCM

Qþ ð1� hxÞð1�m12Þ bR �R̂b0R
� �� �

CR

þ hx bM�M̂b0M
� �

sMm21sDCMð1� hxÞ bR �R̂b0R
� �

CR

ð3:6bÞ

then the fully migratory equilibrium is unstable to the inva-

sion of the resident allele. Condition (3.6a) defines the

stability condition when resident AA individuals are

absent. This occurs when x is large.
(e) Numerical analysis for counter-invasion of

the resident allele

The season that is shared between migrants and residents

influence the stability of the equilibrium when the popu-

lation is fixed for the migratory allele (figure 3). In the
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shared-breeding case and for HF–LS species, migrants

can often be much weaker competitors (figure 2a,e),

which tends to allow the resident allele to counter-invade

the migratory population, resulting in a stable polymorph-

ism (partial migration) that occurs under a range of x

values (figure 3a,b). For an LF–HS species in the

shared-breeding case, a stable polymorphism is typical

over a broad range of x (data not shown). In the shared-

non-breeding case, the results for both life histories are

similar (figure 3c,d shows conditions for HF–LS species

only). Opposite to the shared-breeding case, as x! 1,

the conditions for a stable polymorphism decline

(figure 3c,d). When x ¼ 1, the resident allele never invades

(always complete migration) and when x ¼ 0.5, the resi-

dent allele always invades (always partial migration).

(f ) Resident reservoir for migratory invasion

If the probability of the migratory strategy is low, con-

ditions favouring the evolution of migration are very

restrictive or non-existent in the shared-non-breeding

case, but remain identical or nearly identical in the

shared-breeding case (see figure 2, comparing top

versus bottom). The reason for the difference is that, in

the shared-breeding case, resident individuals persist on

the ancestral grounds. By contrast, in the shared-

non-breeding case, resident individuals typically die on

the migratory breeding grounds when dispersal rates are

low. In the shared-non-breeding model, if the dispersal

rate between the migratory and resident breeding

grounds is increased, the conditions for the evolution

of migration become more favourable and fully recover

as m21! 1.
4. DISCUSSION
We provide a model that combines genetic and demo-

graphic information to predict the conditions under

which (i) a migratory allele will invade a resident popu-

lation and (ii) a population will be partially migratory.

Our analysis shows that the shared-breeding and shared-

non-breeding cases are not equivalent. The properties

of heterozygotes determine whether a migratory allele

invades in the shared-breeding case, whereas, in the

shared-non-breeding case, the properties of homozygotes

determine the invasion conditions of the migratory allele

(provided the probability of migration is relatively high

and dispersal rates are low). Furthermore, there are also

purely demographic (non-genetic) reasons for the differ-

ences between the shared-breeding and shared-non-

breeding cases. In the shared-non-breeding case,

migrants experience increased density-dependent effects

because they must over-winter with residents after the

population has undergone a period of growth through

birth. In the shared-breeding case, migrants over-winter

separately from residents and, thus, do not experience

strong density-dependent effects during survival because

the migratory non-breeding population is initially not as

large as the resident non-breeding population.

It is important to note that while ecologically the

shared-breeding case is favoured, genetically the shared-

breeding case is more sensitive to the dominance effect

of a migratory allele. If a migratory allele is strongly reces-

sive (h� 0.5), then the benefit of the shared-breeding

case as a result of ecology may be counterbalanced by
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Figure 3. Counter-invasion of resident alleles in migratory populations and conditions for partial migration in relation to com-
petition (y-axis) and relative site quality (x-axis). (a,b) The shared-breeding case and (c,d) the shared-non-breeding case with
different values of x for each panel. For all panels, the partial migration (grey) region represent the conditions in which the

growth rate of the resident allele is greater than 1 in a population otherwise fixed for the migratory allele (i.e. a stable poly-
morphism will occur). The dark region represents conditions in which the growth rate of the resident allele is less than or
equal to 1 (counter-invasion is not successful and population remains migratory). For the shared-non-breeding case, x ¼ 1
is not shown because the resident allele never invades (population always completely migratory) and x ¼ 0.5 is not shown
because the resident allele always invades (population always partially migratory). All panels represent the case for HF–LS

species and all parameters, except x, correspond to figure 2a,b. (a) x ¼ 1; (b) x ¼ 0.5; (c) x ¼ 0.85; (d) x ¼ 0.7.
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the recessivity of migration. Although the shared-breeding

case is sensitive to the dominance effect of a migratory

allele, the shared-non-breeding case is sensitive to the

additive effect of the migratory allele. In the shared-

breeding case, a reduction in x from 1.0 to 0.5 did not

affect the establishment of the migratory allele, but in the

shared-non-breeding case, its establishment was strongly

affected.

Ecologically, our results suggest that a comparison

between the scaled effects of density dependence on birth

and the scaled density-dependent effects on survival will

differentiate whether migration is more likely to evolve

through shared breeding versus shared non-breeding.

When generations are overlapping, the condition for the

shared-breeding case to be preferred over the shared-

non-breeding case is that the scaled density-dependent

effect on birth is less than ð1þ bR � b0RR̂Þð1þ 1=bMÞ
times the scaled density-dependent effects on survival.

When generations are non-overlapping, the condition is

that the scaled density-dependent effect on birth is less

than ðbR � b0RR̂Þ times the scaled density-dependent effects

on survival.
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We assume strong seasonality such that non-migratory

individuals born on the migratory breeding grounds die

during the non-breeding season (shared-non-breeding

case). Likewise, non-migratory individuals that disperse

to the non-breeding grounds also die during the breeding

season (shared-breeding case). Further analysis is

required when weaker seasonality is assumed, allowing

for survival on migratory sites throughout the year. Holt &

Fryxell’s (in press) model assumes weak seasonality, and a

promising approach may be to integrate explicit genetic

information in their model.

The threshold of invasion by the migratory allele is

characterized by a positive relationship between the qual-

ity of the migrant site during the non-shared season and

the competitive ability of residents during the shared

season (figure 2). How high these competitive asymme-

tries and site-quality ratios can reach before the

migratory allele is unable to invade depends on the

interaction between life history and whether it is a

shared-breeding or shared-non-breeding case.

Our results support the empirical work of Berthold &

Querner (1981) that partial migration in a species can
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be genetically determined as opposed to environmentally

determined. More broadly, our results suggest that partial

migration occurs under the shared-non-breeding case

when there is a migratory site of high quality and migrants

are poor competitors relative to residents, or when the

migratory site is of lower quality and migrants are rela-

tively better (but not superior) competitors relative to

residents (figure 3c,d). Partial migration occurs in the

shared-breeding case when migratory-site quality is not

too high and the relative competitive ability of migrants

is not too low (figure 3a,b). It is fairly easy to infer why

stronger relative density dependence on migrants

promotes the evolution of partial migration in the

shared-non-breeding case. When migrants are strong

competitors, complete migration evolves and cannot be

invaded by the resident allele. It is more difficult to

infer why weaker density dependence on migrants favours

partial migration in the shared-breeding case. Insight into

why weaker density dependence favours partial migration

is that the resident allele initially invades primarily

through offspring of Aa � AA matings. On average, an

Aa � AA mating involves individuals that have the

migratory life strategy. If the birth rate of migratory

parents is restricted by density dependence, then growth

rate of the resident allele will also be restricted. A result

consistent with this inference is that as the probability of

migration declines, the resident allele will not invade

when the quality of the migratory site is high. With a

high-quality migratory site and a lower probability of

migration, the resident site has a higher equilibrium

number of AA individuals upon the introduction of a

non-migratory allele (a). There is, accordingly, stronger

density dependence.

Our results are consistent with the general results of

Kokko & Lundberg (2001) (eqns (12a,b)) and Holt &

Fryxell (in press) and indicate that important insight into

differences between the shared-breeding and shared-non-

breeding models of migration is gained by explicitly

modelling underlying density-dependent effects.

Evolutionary stable strategy models that subsume density-

dependent birth and survival into a single reproductive

term (often modelled as r) can overlook demographic pro-

cesses that differentiate types of migration, such as shared

breeding versus shared non-breeding.

The genetic model used in this paper follows the stan-

dard approach in evolutionary invasion analysis that

assumes a single allele arises by mutation that causes

migratory behaviour (Otto & Day 2007). During the

initial evolutionary transition to migration in an otherwise

non-migratory species, alleles must first arise through

mutation, which occurs at a low rate. Even if there are

several loci that may affect migration, there may be a

low probability that more than one locus is segregating

an allele that causes migration. In species that are

migratory, genetic studies have found supporting evi-

dence that the behaviour is polygenetic (Berthold 1988;

Pulido & Berthold 2003; Pulido 2007), but it is impor-

tant to note that the present-day polygenetic nature of

migration is probably the result of thousands to millions

of years of history as a migratory species. During this

period, there has been time for alleles at different loci

that affect migration to arise by mutation and establish

themselves in a population. A polygenic model of

migratory behaviour is probably necessary to understand
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present-day evolutionary processes in species that have a

long history of migratory behaviour, particularly with

respect to understanding evolutionary response to

environmental change (Pulido et al. 2001).

Our model did not allow for the possibility that resi-

dency and migratory behaviour may depend on an

individual’s sex, age or both (e.g. Newton 2008, ch.

15). At the individual level, a mixed-strategy involving

both residency and migration may be an evolutionary

stable strategy when generations are overlapping (Kaitala

et al. 1993).

Our work should be viewed as a foundation in which

specific evolutionary and ecological circumstances can

be overlaid and for which specific parameters such as

habitat quality, density dependence and the genetic con-

trol of migration can be relatively easily adjusted to

derive predictions about specific taxa or geographical

regions.
C.K.G. and D.R.N. were supported by Discovery Grants
from the Natural Sciences and Engineering Research
Council of Canada and funding from the University of
Guelph. D.R.N. was supported by an Early Researcher
Award from the Ontario Government. C.M.T. was
supported by the National Science Foundation under grant
no. 0434642. We thank the Associate Editor M. Bonsall
and three anonymous reviewers for their insightful
comments that greatly improved the paper.
APPENDIX A. THE EVOLUTION OF MIGRATION IN A
SEASONAL ENVIRONMENT

Individuals are diploid. The number of resident individ-

uals is Ri and migrant individuals is Mi for i [ fAA, Aa,

aag. The order of events during the life cycle is birth!
migration or dispersal! survival!migration. An

indicator variable Q denotes overlapping Q ¼ 1 versus

non-overlapping (Q ¼ 0) generations.

(a) Shared-breeding model

During reproduction, three types of matings can occur

at the level of resident and migratory individuals. A

resident can mate with a resident, a resident can mate

with a migrant or a migrant can mate with a migrant.

The number of viable offspring when a resident mates

with a resident is BRR, when a resident mates with a

migrant the number of offspring is BMR and when a

migrant mates with a migrant the number of offspring

is BMM. For simplicity, we assume BMR ¼ BMM. Birth

is density dependent and following Taylor & Norris

(2007) is modelled as BRR ¼ bR � b0RN and

BMR ¼ BMM ¼ bM � b0MN, where bi (i [fR,Mg) is the

density-independent birth rate and b0i (i [ fR, Mg) is

the effect of density-dependence on birth rate multi-

plied by N, the total population size (N ¼ RAA þ
RAa þ Raa þMAA þMAa þMaa). A linear assumption

in density dependence results in population dynamics

that tend to be non-oscillatory and non-chaotic. It is

important to emphasize that our model of birth gives

the number of viable offspring that survive up to the

non-breeding season. Accordingly, it incorporates both

birth and offspring survivorship during the breeding

season. Residents survive during the non-breeding

season with probability dR � d0RR; where R is the
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number of resident individuals. Migrants survive with

probability dM � d0MM; where M is the number of

migrant individuals. During migration, the probability

of survival is sM.

For N [ fR,Mg, after reproduction, the numbers of

offspring for each genotype are

N 0AA ¼
1

N

P
i[fM;Rg

P
j[fM;Rg

iAA jAABij

þ
P

i[fM;Rg

P
j[fM;Rg

iAA jAaBij

þ 1
4

P
i[fM;Rg

P
j[fM;Rg

iAa jAaBij

0
BBBBB@

1
CCCCCA;

N 0Aa ¼
1

N

P
i[fM;Rg

P
j[fM;Rg

iAA jAaBij

þ2
P

i[fM;Rg

P
j[fM;Rg

iAA jaaBij

þ 1
2

P
i[fM;Rg

P
j[fM;Rg

iAa jAaBij

þ
P

i[fM;Rg

P
j[fM;Rg

iAa jaaBij

0
BBBBBBBBB@

1
CCCCCCCCCA

and N 0aa ¼
1

N

P
i[fM;Rg

P
j[fM;Rg

iaa jaaBij

þ
P

i[fM;Rg

P
j[fM;Rg

iaa jAaBij

þ 1
4

P
i[fM;Rg

P
j[fM;Rg

iAa jAaBij

0
BBBBB@

1
CCCCCA:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ðA 1Þ

Following survival and immediately before the next

breeding season, resident numbers are

R00AA ¼ QRAA þ ð1� xÞð1�m12ÞN 0AA

� �
dR � d0RR
� �

;

R00Aa ¼ QRAa þ ð1� hxÞð1�m12ÞN 0Aa

� �
dR � d0RR
� �

and R00aa ¼ QRaa þ ð1�m12ÞN 0aa

� �
dR � d0RR
� �

9>=
>;

ðA 2Þ

where

R ¼ QRAA þ ð1� xÞð1�m12ÞN 0AA þQRAa þ ð1� hxÞ
ð1�m12ÞN 0Aa þQRaa þ ð1�m12ÞN 0aa:

The parameter m12 is the dispersal rate of non-

migratory offspring from the ancestral breeding grounds

to the migratory grounds. Migrants that survive to

breed are required to survive migration and survive the

non-breeding season resulting in the following recursive

step:

M00
AA ¼ QMAA þ xN 0AA

� �
s2
M dM � d0MM
� �

and M00
Aa ¼ QMAa þ hxN 0Aa

� �
s2
M dM � d0MM
� �

)
ðA 3Þ

where

M ¼ sM QMAA þ xN 0AA þQMAa þ hxN 0Aa

� �
þ sD ð1� xÞm12N 0AA þ ð1� hxÞm12N 0Aa þm12N 0aa

� �
:

M00
aa ¼ 0 because aa individuals are resident. sM is the sur-

vival of migrants during migration and sD is the survival

probability of disperses during dispersal.
(b) Shared-non-breeding model

Birth occurs separately, but for N [ fR,Mg offspring

numbers for both migrants and residents can be
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expressed as:

N 0AA ¼
ðbN � b0NNT ÞðN2

AA þNAANAa þ 1=4N2
AaÞ

NT

;

N 0Aa ¼

ðbN � b0NNT ÞðNAANAa þ 2NAA

Naa þNAaNaa þ 1=2N2
AaÞ

NT

and N 0aa ¼
ðbN � b0NNT ÞðN2

aa þNaaNAa þ 1=4N2
AaÞ

NT

;

9>>>>>>>>>>=
>>>>>>>>>>;

ðA 4Þ

where NT ¼ NAA þ NAa þ Naa.

Density-dependent survival occurs together on the

ancestral grounds. For individuals that were on the

migratory grounds during the breeding season, they

need to disperse or migrate to the ancestral grounds in

order to survive. Genotype numbers following survival

and migration are

R00AA ¼ QRAAþð1� xÞð1�m12ÞR0AA

� �
dR� d0RN
� �

þ sDð1� xÞm21M0
AA dM� d0MN
� �

;

R00Aa ¼ QRAaþð1�hxÞð1�m12ÞR0Aa

� �
dR � d0RN
� �

þ sDð1�hxÞm21M0
Aa dM� d0MN
� �

;

R00aa ¼ QRaaþð1�m12ÞR0aa

� �
dR � d0RN
� �

þ sDm21M0
aa dM� d0MN
� �

;

M00
AA ¼ sMQMAAþ sMxM0

AA

� �
dM� d0MN
� �

sM

þ xR0AA dR � d0RN
� �

sM

and M00
Aa ¼ sMQMAaþ sMhxM0

Aa

� �
dM� d0MN
� �

sM

þ hxR0Aa dR � d0RN
� �

sM;

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ðA5Þ

where the size of the population prior to survival is

N ¼ xR0AA þ hxR0Aa þ ð1�m12Þ
ð1� xÞR0AA þ ð1� hxÞR0Aa þ R0aa

� �
þQ RAA þ RAa þ Raað Þ
þ sDm21 ð1� xÞM0

AA þ ð1� hxÞM0
Aa þM0

aa

� �
þ sM xM0

AA þ hxM0
Aa þQ MAA þMAað Þ

� �
: ðA 6Þ

m12 is the dispersal rate of non-migratory offspring from

the natal grounds to the migratory grounds. m21 is the dis-

persal rate of non-migratory offspring from the migratory

natal grounds to the non-breeding grounds.

(c) Local stability analysis

There are six types of individuals in the two models: resi-

dent AA, Aa and aa individuals and migratory AA, Aa, aa

individuals. At demographic equilibrium, a Jacobian

matrix can be written given the changes in size of the

six types of individuals. Ordering the derivatives properly

results in a Jacobian matrix with block-diagonal structure

in which one block consists of aa individuals and the

second block consists of AA and Aa individuals when

analysing the stability of the resident equilibrium. Eigen-

values of the block consisting of AA and Aa individuals

gives the overall growth rates for these individuals near

the demographic equilibrium when that equilibrium is

subject to a small perturbation, such that an A allele is

introduced by mutation. The eigenvectors of the block

give the directions of growth. The stability of the fully

migratory equilibrium follows the same approach,
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except that the growth rate of the block consisting of aa

and Aa individuals is calculated. In §3, the instability con-

ditions of the demographic equilibria are given. Inspection

of the eigenvectors associated with the eigenvalues indi-

cates that when an instability condition is met, the

population moves away from an equilibrium point.
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