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Modern whales are frequently described as an adaptive radiation spurred by either the evolution of

various key innovations (such as baleen or echolocation) or ecological opportunity following the

demise of archaic whales. Recent analyses of diversification rate shifts on molecular phylogenies raise

doubts about this interpretation since they find no evidence of increased speciation rates during the

early evolution of modern taxa. However, one of the central predictions of ecological adaptive radiation

is rapid phenotypic diversification, and the tempo of phenotypic evolution has yet to be quantified in

cetaceans. Using a time-calibrated molecular phylogeny of extant cetaceans and a morphological dataset

on size, we find evidence that cetacean lineages partitioned size niches early in the evolutionary history of

neocetes and that changes in cetacean size are consistent with shifts in dietary strategy. We conclude that

the signature of adaptive radiations may be retained within morphological traits even after equilibrium

diversity has been reached and high extinction or fluctuations in net diversification have erased any

signature of an early burst of diversification in the structure of the phylogeny.
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1. INTRODUCTION
With approximately 84 extant (Mead & Brownell 2005)

and 594 named fossil species (Paleobiology Database

online systematics archive Uhen 2010), cetaceans

(whales, dolphins, porpoises) represent what is arguably

the most successful invasion of the marine environment

by a group of tetrapods. The cetacean fossil record

spans roughly 53 Myr (Fordyce 2003; Berta et al.

2006), although modern whales and dolphins (Neoceti)

first appear around 34 Ma. Despite an extensive fossil

record, surprisingly little is known about the tempo of

the neocete radiation. It has, however, been suggested

to have been ‘explosive’, driven by the evolution of key

characters relating to sociality and brain size (Marino

et al. 2006), echolocation and baleen as key innovations

in the odontocetes and mysticetes, respectively (Fordyce

1992), or radiation into vacant niches following the

extinction of archaeocete lineages in the Early Oligocene

(Fordyce & de Muizon 2001; Fordyce 2003; Clementz

et al. 2006).

The near-simultaneous appearance of key innovations

and ecological opportunity provides a rationale for

hypothesizing that crown cetaceans might be the product

of an Early Oligocene adaptive radiation. Despite varied
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definitions (Givnish & Sytsma 1997; Losos 2009;

Olson & Arroyo-Santos 2009), a pervasive view of

adaptive radiation is that it is the product of rapid diver-

gence into new adaptive zones, resulting in a diverse,

ecologically disparate clade (e.g. Simpson 1944; Schluter

2000; Harmon et al. 2003). Under such an adaptive

radiation hypothesis, lineage diversification would be

expected to have been rapid early in neocete history,

along with simultaneous increases in ecological and/or

functional disparity as new lineages diverged to fill new

adaptive zones (Simpson 1944; Schluter 2000; Harmon

et al. 2003; Rabosky & Lovette 2008a,b). Both lineage

diversification and ecomorphological evolution in such

cases should show signatures of density dependence

(Rabosky & Lovette 2008a,b), transitioning from initially

rapid rates to slow, equilibrium rates as niche space fills

towards capacity (Freckleton & Harvey 2006).

The only quantitative test of the adaptive radiation

hypothesis in neocetes is equivocal. A recent exploration

of lineage diversification using a time-calibrated mole-

cular phylogeny finds no support for rapid speciation

early in the evolutionary history of extant cetaceans

(Steeman et al. 2009). Rather, Steeman et al. (2009)

suggest that patterns of ocean restructuring during the

Oligocene and Miocene are better explanations for

cetacean diversification. However, tests of the rapid-

speciation component of adaptive radiation based on

molecular phylogenies assume low and sometimes

constant rates of species turnover (Rabosky & Lovette

2008a,b), an assumption that may rarely be met in older

clades, and certainly seems to be violated by the Neogene

cetacean fossil record (Uhen & Pyenson 2007). Further-

more, such tests assume that lineage diversification is
This journal is q 2010 The Royal Society
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correlated with the evolution of morphological or

functional disparity, which may or may not be the case

(Gavrilets & Losos 2009). A more rigorous approach

would be to simultaneously test for signatures of adaptive

radiation in patterns of lineage diversification and in

the evolution of adaptive ecomorphological disparity.

Unfortunately, such approaches are remarkably infre-

quent (but see Harmon et al. 2003) and have yet to be

applied to crown group cetaceans.

We present a quantitative test of the adaptive radiation

hypothesis in modern cetaceans that investigates the

tempo of both lineage and ecomorphological evolution,

using body length as a proxy for the many ecological,

physiological and morphological traits that scale with

size (see review by LaBarbara 1989). We construct a

time scale for cetacean evolution incorporating most

extant cetaceans species, based on mitochondrial

sequence data and multiple fossil calibration points.

Using this tree as a framework, we determine the patterns

of lineage diversification and body size disparity, and test

whether they are consistent with an early adaptive radi-

ation. We then test whether dietary specialization may

have driven differences in body size evolution in Cetacea,

as is often the case for terrestrial mammals (e.g. Jarman

1974; Van Valkenburgh et al. 2004).
2. MATERIAL AND METHODS
(a) Time tree inference

We used BEAST v. 1.5.1 (Drummond & Rambaut 2007) to

simultaneously infer cetacean phylogeny and divergence

times for 84 cetacean taxa and two outgroups (hippopotamus

and pig). Our sampling comprised all taxa for which

cytochrome b (cytb) nucleotide sequences were available in

GenBank. Following an extensive search of the comprehensive

cetacean Paleobiology Database (Uhen 2010) and fossil

cetacean literature, we identified seven fossils that could be

unambiguously assigned to nodes within the phylogeny to

serve as calibration points. These fossils spanned 55–10 Myr

and were used to calibrate a relaxed molecular clock using

log-normally distributed priors. Full details of the phylo-

genetic analyses conducted are provided in the electronic

supplementary material accompanying this article.

(b) Lineage diversification

The summary statistic g can be used to determine the extent

to which branching events in a molecular phylogeny depart

from those expected under a constant-rates process. We

assessed g for our cetacean phylogeny using the Monte

Carlo constant-rates (MCCR) test (Pybus & Harvey 2000),

as this approach allowed us to account for missing taxa. To

further test for temporal slowdowns in diversification rate

consistent with adaptive radiation, we compared the fit of a

constant-rates or Yule model with exponential and logistic

density-dependent decline models of lineage accumulation

(DDX and DDL, respectively; Rabosky & Lovette 2008a)

using Akaike information criterion (AIC) scores and Akaike

weights (Burnham & Anderson 2002). MCCR tests and

rate fitting were done using the LASER package (Rabosky

2006) for R.

To identify potential diversification rate shifts within

crown cetaceans, we applied a recently developed method,

MEDUSA (Alfaro et al. 2009), to a diversity tree of ceta-

ceans. A diversity tree is a time-calibrated phylogenetic tree
Proc. R. Soc. B (2010)
where each tip has been assigned a species richness value,

based on taxonomic diversity. In previous studies (e.g.

Alfaro et al. 2009), species richness values have been assigned

to branches representing orders or other higher-level group-

ings of vertebrates. In our study, we assigned most tips a

diversity of one, as we were working with a species-level

tree. To account for missing species, we collapsed the

genera Mesoplodon and Globicephala, and assigned them

species richness values of 14 and 3, respectively. MEDUSA

is a stepwise procedure that first fits a birth–death model

to the diversity tree using a joint phylogenetic and taxonomic

likelihood function developed by Rabosky et al. (2007). Next,

the AIC score of this two-parameter model (one birth rate

and one death rate) is compared with a five-parameter

model where the birth and death rates are allowed to shift

on the optimal branch of the phylogeny. If this five-parameter

model (two birth rates, two death rates and a shift-location

parameter) produces a substantial improvement in the AIC

score, the five-parameter model is retained and compared

with the best eight-parameter model. This process continues

until the addition of rate parameters no longer improves the

overall AIC score. For this study, we used an improvement in

AIC score of 4 units or greater as the threshold for retaining

rate shifts (Burnham & Anderson 2002).

(c) Body size disparity

We compiled data on average adult female body length and

diet from the literature for each species in our phylogeny,

where available (electronic supplementary material, table

S3). Length estimates were preferred over mass as length

can be more accurately estimated from photos and carcasses

washed up on beaches (Whitehead & Mann 2000). Females

were used as they tend to be the larger sex in cetaceans.

Averages were preferred over maximum lengths so as to

minimize the effects of outliers, geographical variants or

misreported measurements. Body size data were natural log

(ln)-transformed prior for all subsequent analyses. We

defined three functionally different dietary categories: filter

feeders, cephalopod specialists (greater than 70% squid

in diet) and generalist fish eaters that can also include

squid and crustaceans in their diet. The orca (Orcinus

orca), which is the largest member of the dolphin family

(Delphinidae), is unique among extant cetaceans as at least

some populations specialize on large vertebrate prey such

as pinnipeds and other cetaceans (‘transient type’; Bigg

et al. 1990). The orca was therefore removed from our ana-

lyses, which looked for an association between size and diet.

To test whether cetacean body size evolution has slowed

through time, we used the node-height test (Freckleton &

Harvey 2006). We computed the absolute value of stand-

ardized independent contrasts (Felsenstein 1985) for body

size on our tree and correlated them with the height of the

node at which they are generated. Because independent con-

trasts are Brownian rate parameters for the branches over

which they are calculated (McPeek 1995), a significant posi-

tive relationship between node age and absolute contrast

value would indicate that rates of body size evolution

have slowed through time, consistent with niche-filling

(Freckleton & Harvey 2006). Following Harmon et al.

(2003), we also calculated mean subclade disparity through

time for body size. We compared observed body size disparity

across our tree with that expected under a pure Brownian pro-

cess by simulating body size evolution 10 000 times across our

tree. The mean subclade disparity values for the observed and
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simulated data were plotted against node age and the morpho-

logical disparity index (MDI) calculated. MDI quantifies the

overall difference in relative disparity of a clade compared

with the expectation under the null Brownian motion model

(Harmon et al. 2003). Negative MDI values indicate lower

subclade disparity than expected under Brownian motion

and are a common property of adaptively radiating clades.

All analyses were conducted in R using the packages APE

(Paradis et al. 2004) and GEIGER (Harmon et al. 2008).

To test whether body size differences among cetacean

clades may be explained by dietary specialization, we used

a model-fitting approach to assess the null model of evolution

under a pure Brownian process (Thomas et al. 2009). We

tested three alternative scenarios against this null model:

(i) the same rate but different means for dietary groups;

(ii) different rates and different means for dietary groups;

and (iii) different rates but the same mean. Internal branches

were assigned to dietary groups based on ancestral state

reconstructions conducted in MESQUITE v. 2.7 (Maddison &

Maddison 2009) using the MK1 likelihood model, which

assumes a constant transition rate between dietary categories,

as changes are rare. A difference of two negative log-

likelihood units was taken as support for one state over the

others. Where multiple states were equally likely, the

state with the highest proportional likelihood was used. We

assessed fit of the four models based on small-sample

corrected AIC (AICc) scores and Akaike weights. We also

repeated the dietary analysis using an Ornstein–Uhlenbeck

(OU) model of trait evolution (Hansen 1997), which allowed

size to evolve towards an adaptive optimum for each dietary

category. For simplicity, throughout the rest of the paper we

focus on the Brownian models, as the OU model fitted the

data worse than the best-fitting Brownian model. Full details

of the Brownian and OU model methods are given in the

Methods section of the electronic supplementary material.
3. RESULTS
(a) Time tree inference

Our time tree (figure 1) is broadly congruent with

other recently published studies of cetacean phylogeny

(McGowen et al. 2009; Steeman et al. 2009). The split

between hippopotamuses and cetaceans dates to 54.5 Ma

(95% high posterior density, HPD: 54.1–55.1), and

extant cetaceans (Neoceti) share a most recent common

ancestor at 36.9 Ma (95% HPD: 34.4–39.9). Crown mys-

ticetes originated at 28.8 Ma (95% HPD: 28–30.1).

Crown odontocetes originated at 34.8 Ma (95% HPD:

30.9–38.7) and show a gradual pattern of lineage

divergence. The sperm whales (Physeteroidea), beaked

whales (Ziphiidae) and river dolphins (Platinistidae,

Lipotidae, Iniidae and Pontoporidae) are old, originating

prior to 20 Ma. The remaining odontocete families

within the Delphinoidea are younger than 15 Myr old

and the most speciose cetacean clade, Delphinidae,

containing 36 of 84 species, is less than 10 Myr old.

(b) Lineage diversification

The MCCR test found no evidence for accelerated

diversification in the early history of cetaceans (g¼ 0.363,

p ¼ 0.72), a finding that is supported visually by a

lineage-through-time plot (figure 2). However, when we

compare the fit of the constant-rates model with the two

density-dependent decline models of diversification for
Proc. R. Soc. B (2010)
our tree, we are unable to find strong support for one

model over the others (table 1). Therefore, we are

unable to rule out a pattern of declining diversification

rates even though g is positive.

MEDUSA revealed strong support for a rate shift at

the node uniting crown Delphinidae, excluding Orca

and Orcaella (DAIC ¼ 15.07; figure 1). The net diversifi-

cation rate for this clade (0.2772 lineages Myr21) was

over three times higher than the background rate of diver-

sification in other cetaceans (0.086 lineages Myr21). In

order to account for potential biases in the MCCR test

or diversification models that might result from the explo-

sive delphinid radiation, we truncated our tree at 10 Ma,

just prior to the delphinid radiation, and recomputed g

and AIC scores for the fit of the three diversification

process models. The MCCR test still fails to provide a

significantly negative g (g ¼ 20.750; p ¼ 0.22), although

support for the two density-dependent decline models

increases slightly, relative to the constant-rates model

(table 1).
(c) Body size disparity

The node-height test resulted in a positive but non-

significant relationship between the absolute values of

standardized length contrasts and node age (r ¼ 0.212,

d.f. ¼ 71, p ¼ 0.064). A scatter plot of contrast values

against node age (figure 3) reveals that two young

contrasts, corresponding to those between O. orca and

Orcaella brevirostris, and between Feresa attenuata and

Globicephala species, are extreme outliers, with large

rate values. Repetition of the node-height test with these

outliers removed results in a significant positive relation-

ship between absolute standardized contrasts and node

age (r ¼ 0.218, d.f. ¼ 69, p ¼ 0.006), indicating that

body size evolution has slowed through time, which is

consistent with the niche-filling hypothesis (Freckleton &

Harvey 2006).

Subclade disparity through time is lower than expected

under a Brownian motion model of body size evolution

(figure 4). This is confirmed quantitatively by an MDI

of 20.17. Despite an overall pattern of decrease through

time, subclade disparity shows two increases: one occur-

ring shortly after the origination of neocetes and

another between approximately 11 and 6 Ma (approx.

0.7–0.825 relative time), coincident with the radiations

of several extant families, such as Delphinidae, Phocoeni-

dae and Balaenopteridae. We assessed the probability of

obtaining a negative MDI when the underlying evolution-

ary process follows Brownian motion by computing the

MDI between each of the 10 000 simulated datasets

and our cetacean data, and determining the proportion

of cases in which an MDI greater than or equal to

zero is obtained. The resulting proportion of 0.0542

suggests that our result is unlikely to be the result of mor-

phological evolution under a simple, one-rate Brownian

motion process.

Comparison of models of body size evolution in

relation to differences in diet results in preferential selec-

tion of the model with the same rate but different

phylogenetic means for the three dietary groups

(tables 2 and 3). Substantially more weight falls on this

model than any other. The next best models are the

Brownian motion model with different rates and different
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Figure 2. Lineage-through-time plot derived from the com-

plete, time-calibrated cetacean phylogeny. The upturn at
approximately 26 Myr after basal divergence indicates an
increased net rate of diversification over the past 10 Myr.

Table 1. Results from fitting diversification-process models
to the complete ultrametric cetacean tree and a tree
truncated at 10 Ma. Models are ranked from best to worst,
according to AIC scores and Akaike weights (wtAIC). dAIC

scores indicate the difference between the candidate model
and the best-fitting model. Also given is the log likelihood
(Lk) for each model.

model Lk AIC dAIC wtAIC

complete ultrametric cetacean tree
Yule 22.521 243.042 0 0.569
DDX 22.582 241.164 1.878 0.222
DDL 22.521 241.042 2.000 0.209

tree truncated at 10 Ma
Yule 225.354 52.709 0 0.399
DDX 224.580 53.161 0.452 0.318
DDL 224.701 53.402 0.693 0.282
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Figure 3. Plot of absolute body size (abs) contrasts against
node height for the node-height test. The two outliers are
contrasts between (a) O. orca and O. brevirostris, and (b) Glo-
bicephala spp. and F. attenuata. The regression line and 95%

confidence intervals are computed after removal of the
outliers.
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Figure 4. Mean subclade disparity through time (DTT) for
cetacean body size (lower solid line). The upper dashed
line indicates the median subclade DTT based on 10 000

simulations of character evolution on the cetacean phylogeny
under Brownian motion. The grey shaded area indicates the
95% DTT range for the simulated data.
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phylogenetic means for dietary groups, and the OU

model with different optimal sizes for each group.

DAICc for both of these models are greater than 4

(table 2), indicating that they fit relatively poorly in

comparison to the best-fit model (Burnham & Anderson

2002). The other two Brownian models performed

extremely poorly relative to the best model (table 2).
4. DISCUSSION
A central prediction of the adaptive radiation hypothesis

sensu Schluter (2000) is that phenotypes diversify early

in clade history along ecological axes. Our study reveals

clear evidence that body size niches were partitioned

early in the evolutionary history of modern Cetacea and

that these broadly correspond to different dietary strat-

egies. However, the case for a neocete adaptive radiation

is complicated by the lack of evidence for rapid initial

lineage diversification in the group. Like Steeman et al.

(2009), we found no evidence for an early burst of
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diversification in extant neocetes based on the g statistic

(Pybus & Harvey 2000). Although we did identify a phy-

logenetically restricted shift in diversification rate in the

Delphinidae, analysis of the tempo of neocete diversifica-

tion before this radiation still shows a pattern that is not

significantly different from a constant-rates process.
(a) Lineage diversification and the possibility of

adaptive radiation of modern cetaceans

It is well understood that extinction can mask the signal of

rapid initial diversification in molecular phylogenies

(Pybus & Harvey 2000; Rabosky & Lovette 2008a,b;



Table 2. Comparison of the fit of four Brownian motion (BM) models and one Ornstein–Uhlenbeck (OU) model of body

size evolution based on diet type in cetaceans. Models are ranked from best to worst, using the small-sample corrected
Akaike’s information criterion (AICc) and Akaike weights (wtAICc). dAICc scores indicate the difference between the
candidate model and the best-fitting model. Also given are the number of parameters for each model (K) and the log
likelihood (Lk).

model K Lk AICc dAICc wtAICc

BM: same rate/different means 4 211.121 30.898 0 0.96
BM: different rates/different means 6 211.025 35.473 4.575 0.01
OU: same rate/multiple optima 5 212.303 35.606 4.708 0.01

BM: same rate/same mean 2 216.522 37.235 6.337 0.02
BM: different rates/same mean 4 216.189 41.034 10.135 0.01

Table 3. Comparison of parameter estimates for the four Brownian motion (BM) models and one Ornstein–Uhlenbeck

(OU) model of body size evolution based on diet type in cetaceans. Models are ranked from best to worst based on AICc
scores, as in table 2. Body size values are phylogenetic means for Brownian models and optimal trait values for OU models.
The ‘strength of selection’ parameter, alpha, is estimated in the OU model only.

body size rates

model fish squid filter fish squid filter alpha

BM: same rate/different means 1.171 0.270 1.373 0.378–2.41 0.29–2.42 0.51–3.96 —

BM: different rates/different means 1.171 0.270 1.373 0.378–2.42 0.29–2.43 0.51–3.97 —
OU: same rate/multiple optima 0.936 2.469 4.119 0.42 0.42 0.42 0.71539
BM: same rate/same mean 1.700 1.700 1.700 0.378–2.41 0.29–2.42 0.51–3.96 —
BM: different rates/same mean 1.700 1.700 1.700 0.378–2.42 0.29–2.43 0.51–3.97 —
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Quental & Marshall 2009). Both g and the MCCR test

are conservative with respect to extinction, which can

lead to increased type II errors (Pybus & Harvey 2000;

Rabosky & Lovette 2008a,b). Furthermore, even if

diversification dynamics are density-dependent and

extinction rates are low, g values will be less negative

than the critical value of 21.645 if a clade has yet to

reach its equilibrium diversity, or if it has reached equili-

brium and a constant-rates pattern of diversification has

eroded the signal of density-dependent declines in rate

(Quental & Marshall 2009). Pybus & Harvey (2000)

warned that a non-significant g did not allow acceptance

of a null, constant-rates process. Our analyses using the

model-fitting approach of Rabosky & Lovette (2008a,b)

validate this. The two variants on a density-dependent

speciation process (Rabosky & Lovette 2008a) together

receive about the same weight as the constant-rates

diversification processes for our cetacean phylogeny. There-

fore, one possible explanation for not finding an early burst

of diversification in modern neocetes is that sufficient

extinction has occurred within the group to erase the signa-

ture of a rapidly radiating clade. Evidence in support of this

explanation comes from the cetacean fossil record; multiple

radiations that have left no living descendants, including

large predacious forms (Physteroidea) and open-ocean

piscivores (Kentriodontidae), or clades that were formally

more speciose but have subsequently waned and been

ecologically replaced (archaic river dolphin clades:

Lipotidae, Iniidae, Pontoporidae and Platinistoidea).

Uhen & Pyenson (2007) also found evidence of increased

rates of extinction for neocetes in the Late Miocene. Taken

together, these lines of evidence suggest that high rates of

turnover have affected cetaceans during the Neogene, but

whether it actually eroded the signal of an early burst of

diversification cannot be determined from our dataset.
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(b) The evolution of ecomorphological disparity

in cetaceans

Using the model-fitting approach of Thomas et al. (2006,

2009), we provide evidence for a correlation between

body size and diet, supporting the hypothesis that there

is an ecological basis for early size diversification in Ceta-

cea, which is indicative of an adaptive radiation (sensu

Schluter 2000). We found strong preference for a model

of body size evolution with different phylogenetic

means among dietary strategies but the same rate of size

evolution across Cetacea. The largest phylogenetic mean

body size was recovered for the Mysticeti, which includes

the largest animal to have ever lived, the blue whale

(Balaenoptera musculus). Extant mysticetes are specialist

filter feeders, using their baleen to filter small marine

animals (mainly zooplankton) from the water. The acqui-

sition of large body sizes by mysticetes, which occurred

in the Miocene (Fordyce & Barnes 1994), is commonly

ascribed to the abundance and ease of capture of their

highly nutritious prey.

Odontocetes differ from mysticetes in exhibiting a

general decrease in body size though time. Extant odonto-

cetes are typically fish or squid feeders, with fish feeding

being the ancestral, and more widely distributed, dietary

strategy. The phylogenetic mean body size for fish feeders

was larger than that found for squid feeders (table 3).

However, extant squid specialists are generally much

larger than their small piscivorous relatives. Squid feeders

form a polyphyletic assemblage nested within the gener-

ally piscivorous odontocetes. The small phylogenetic

mean of squid feeders indicates that this guild attained

their large body sizes from smaller ancestors. In fact, all

squid feeders are larger than the phylogenetic mean of

the group and all but one (Kogia breviceps) are larger

than the phylogenetic mean of fish feeders. Although
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our models show that rates of body size evolution have

been similar among dietary groups, distinct patterns of

selection appear to have been present in cetacean

guilds. While fish-feeding odontocetes declined in size

over time, large body size appears to have been selected

for in squid-feeding taxa. Existing research demonstrates

the functional utility of this condition for these taxa.

Extant squid specialists dive to great depths to hunt

and capture prey. Most species make routine dives of

800–1000 m (Heide-Jørgensen et al. 2002 and references

therein), and the deepest diver, the sperm whale (Physeter

catodon), dives to depths of 2035 m (Watkins et al. 1993)

for durations of at least 138 min (Watkins et al. 1985).

Larger animals have increased absolute oxygen capacities

and decreased mass-specific metabolic rates, providing

significant physiological advantages when diving to great

depths. Indeed, size scales positively allometrically with

odontocete dive capacity (Noren & Williams 2000). Our

disparity-through-time analysis shows that size variation,

and therefore possibly dietary strategy, was partitioned

among subclades relatively early in cetacean history.

This is in broad agreement with the fossil record, which

indicates that the teutophagous dietary strategy has

been present throughout most of the evolutionary history

of several odontocete families (Fordyce & Barnes 1994).

Although our disparity-through-time analysis shows

low levels of subclade disparity, there are some periods

of cetacean history that show elevated levels of subclade

disparity that are discordant with the hypothesis of adap-

tive radiation. This is particularly true during the period

between 11 and 6 Ma (figure 4). This may be a case of

‘the exception proves the rule’ as cephalopod specializ-

ation mostly occurs within clades that are old relative

to most odontocetes (Physeteridae, Kogiidae and

Ziphiidae), but recent transitions to squid specialization

have occurred within the past 10 Myr in the primarily

piscivorous Delphinidae (figure 1). The recent dietary

shift to squid feeding in Grampus and, in particular,

Globicephala (figure 3) explains the rapid increase in

body size of these taxa compared with their delphinid

relatives. Another delphinid, O. orca, also exhibits a

recent rapid increase in size at this time, which may be

explained by a different dietary transition. Orcas are

unique among extant cetaceans as they prey on large

marine mammals, including pinnipeds, sperm whales

(P. catodon) and grey whales (Eschrichtius robustus). The

rapid evolution of large body size in orcas presumably

reflects a response to this specific predatory strategy,

rather than an adaptation to deep diving and squid feeding.
5. CONCLUSION
Our analyses point to the importance of considering both

diversity and disparity when testing for predictions of

adaptive radiation. It is particularly notable that patterns

of morphological evolution can retain a signature of early

niche-filling, despite some evidence for secondary radi-

ations into areas of niche space not previously occupied

by the subclade in question (e.g. Globicephala). It may

be that the signature of adaptive radiation is retained in

patterns of ecomorphological disparity even after equili-

brium species diversity has been reached and high

extinction or fluctuations in net diversification have

erased any signature in the structure of the phylogeny.
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This would be expected if early lineage diversification

also results in ecological niche-filling, leaving limited

opportunity for subsequent switches in ecology by

younger members of extant subclades (Harmon et al.

2003). Alternatively, speciation and ecomorphological

diversity in neocetes may not be linked (i.e. if there was

no concomitant increase in lineage diversity when size

and dietary niches were partitioned). The rich cetacean

fossil record provides a valuable resource for testing

these ideas, once inclusive phylogenetic analyses become

available.
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