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Nature is rich with many different examples of the cohesive motion of animals. Previous attempts to

model collective motion have primarily focused on group behaviours of identical individuals. In contrast,

we put our emphasis on modelling the contributions of different individual-level characteristics within

such groups by using stochastic asynchronous updating of individual positions and orientations. Our

model predicts that higher updating frequency, which we relate to perceived threat, leads to more syn-

chronized group movement, with speed and nearest-neighbour distributions becoming more uniform.

Experiments with three-spined sticklebacks (Gasterosteus aculeatus) that were exposed to different threat

levels provide strong empirical support for our predictions. Our results suggest that the behaviour of

fish (at different states of agitation) can be explained by a single parameter in our model: the updating

frequency. We postulate a mechanism for collective behavioural changes in different environment-induced

contexts, and explain our findings with reference to confusion and oddity effects.
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1. INTRODUCTION
The ubiquitous features observed in animal collectives

have inspired researchers from a range of disciplines to

describe, model and reproduce these extraordinary dis-

plays of coordinated behaviour (Sumpter 2006). Most

group-living animals are able to move coherently and

collectively, preserving common features such as

coordinated turns, maintenance of internal structures

and apparently leaderless movement. Examples include

the tightly bound tori exhibited by large shoals of sardines

under predation pressure (Parrish et al. 2002) and the

striking pre-roosting displays of starlings (Ballerini et al.

2008). Despite considerable research interest in group

coordination there is still a significant gap between

theory and experimental data. Attempts to bridge this

gap are hindered by the emergent nature of collective

motion (Viscido et al. 2004), and matching modelling

studies to empirical data—as, for example, in Buhl et al.

(2006) and Yates et al. (2009)—remains a challenging

goal in this field.

Models have been central to understanding the mech-

anisms behind collective animal motion (Krause &

Ruxton 2002). Individual-based models in particular

have allowed researchers to examine the emergence of
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different collective behaviours resulting from simple

mechanisms at the level of the individual (Krause &

Ruxton 2002). These models typically assume that iden-

tical individuals react to the position and movement of

their nearest conspecifics by a combination of alignment,

attraction and repulsion (Krause & Ruxton 2002). Orig-

inally based on the extensive work by Aoki (1982),

these simple ideas were also adopted in physics (Vicsek

et al. 1995), computer science (Reynolds 1987) and con-

trol engineering (Liu et al. 2003). In biology, the

connection between the metric inter-individual distance

and the subsequent behaviour has given rise to a family

of models investigated computationally (Couzin et al.

2002) and tested empirically (Tien et al. 2004). Models

have been successful in shaping explanations and under-

standing mechanisms for different collective behaviours

(Couzin et al. 2002, 2005; Hoare et al. 2004; Viscido

et al. 2005; Hemelrijk & Hildenbrandt 2008), but only

at a qualitative level.

One of the earliest empirical studies to quantify indi-

vidual trajectories in collective motion was performed

three decades ago (Aoki 1980). In his experiments,

Aoki filmed shoals of tamoroko (Gnathopogon elongatus)

and Japanese horse mackerel (Trachurus japonicus) under

controlled conditions and extracted time series of the

positions of individual fish from his films. Aoki assembled

the distribution of speeds and nearest-neighbour distance

distributions of individuals within fish shoals. It is

surprising that so few models incorporate these findings
This journal is q 2010 The Royal Society
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and no model explains them. Most modelling studies,

for example, use a constant and homogeneous speed

(e.g. Couzin et al. 2002). Some studies have used

Aoki’s data by drawing an instantaneous speed at each

time step from an appropriate distribution (Aoki 1982;

Huth & Wissel 1992), but they do not explain the

emergence of this distribution from first principles. In

this article, we construct a model in which the speed

distributions are emergent purely from the local inter-

actions between the group members, and discuss its

consequences in the context of experimental work on

fish shoals.
2. MATERIAL AND METHODS
(a) Computational model

We have developed an individual-based model of group inter-

actions, based on local rules, that replicates the speed

distributions found in Aoki’s and our experiments. The

basis of our approach is to adopt stochastic asynchronous

updating of individual fish positions and orientations;

rather than using deterministic and sequential updating at

each time step, fish can react to external stimuli with a sto-

chastic rate. The average behaviour of individuals over short

time intervals then varies probabilistically. Models with asyn-

chronous updating have been previously introduced in

simple one- and two-dimensional models (O’Loan & Evans

1999; Liu et al. 2003; Raymond & Evans 2006; Şamiloğlu

et al. 2006), but we believe their potential to explain empirical

observations in real animals, such as effectively modelling fish

speed distributions, has been overlooked.

Individuals are represented by points on the plane moving

continuously in a toroidal space (a square box of side length

L with periodic boundary conditions). The notation and

nomenclature below follows that of Couzin et al. (2002).

Let N be the number of individuals indexed i, with positions

xi ¼ (xj, yj) and direction of motion ui. We assume that each

individual reacts with an identical stochastic rate, enabling us

to exploit a particle-picking approach to exactly simulate

the implicit underlying master equation of the system. The

algorithmic implementation of our model contains aspects

of earlier work (Tsitsiklis et al. 1986; O’Loan & Evans

1999; Couzin et al. 2002) and proceeds as follows:

1. Choose individual j at random, where j [ f1, . . ., Ng
(equal probabilities).

2. Decide which one of the two behavioural rules j will follow

in this step (probabilities p and (1 2 p), respectively).

3. Update xj and uj according to the behavioural rule chosen

in step (2).

N realizations of steps (1)–(3) constitute one update step of

length Dt seconds. The duration of this update step cor-

responds to the reciprocal value of the rate at which

individuals update. The output of the model is obtained by

recording the positions of all individuals every T ¼ lDt

seconds, where l � 1. This is analogous to how data of

animal motion are obtained empirically where individual

positions and orientations are sampled according to the

frame rate of video recordings (Aoki 1980; Buhl et al.

2006). In our simulations, we keep T fixed and only vary

Dt and therefore also l.

We use purely metric behaviour rules in this implement-

ation, based on those of Couzin et al. (2002). We will
Proc. R. Soc. B (2010)
defer commenting on the appropriateness of this approach

given recent findings (Ballerini et al. 2008) until the discus-

sion. Each individual obtains information from interaction

zones—zone of repulsion (zor), zone of orientation (zoo)

and zone of attraction (zoa)—which are described by con-

centric circles, centred on the individual, of radius rR, rO

and rA, respectively. Both the zoo and the zoa are punctured

by a ‘blind angle’, a, in which individuals cannot perceive

other individuals. Suppose individual j has been chosen in

the algorithm described above; our first behavioural rule,

which is selected with probability p, implements either align-

ment or repulsion. The individual tries to move away from

conspecifics within its zor or aligns to conspecifics in its

zoo, where, in common with other models of collective

motion, repulsive motion takes precedence over alignment.

The distance of j to its nearest neighbour determines the

behaviour. Let R [ f1, . . ., Ng be the set of individuals

within the zor of j, excluding j. If jRj � 1, the desired direc-

tion of motion of j is given by

udesired
j ¼ angle �

X
i[R

rij

jrij j

 !
;

where angle (y) denotes the angle the vector y makes with

the horizontal axis and rij ¼ (xi 2 xj) is the vector in the

direction from j to i. However, if the distance from j to

its nearest neighbour is larger than rR, then j aligns with its

conspecifics. Let O [ f1, . . ., Ng be the set of individuals

within the zoo of j, excluding j. If jOj � 1, the desired

direction of motion of j is given by

udesired
j ¼ 1

jOj
X
i[O

ui :

If both R and O are empty, then udesired
j ¼ uj , and the

individual does not deviate its direction. It executes this

move with an instantaneous speed v ¼ vO.

In the alternative case, we select our second behavioural

rule with probability (1 2 p). In this case, individual j gets

attracted to conspecifics in its zoa and the distance rij once

more determines its behaviour. Let A [ f1, . . ., Ng be the

set of individuals within the zoa of j, excluding j. If jAj � 1,

the desired direction of motion of j is given by

udesired
j ¼ angle �

X
i[A

rij

jrij j

 !
:

Once more, if A is empty, then udesired
j ¼ uj , and no

deviation occurs. Subsequent movement happens at instan-

taneous speed v ¼ vA. Throughout this study, we choose

p ¼ 0.5, in agreement with previous research in which an

equal weight is assigned to orientation and attraction in indi-

viduals (Couzin et al. 2002). For both behavioural rules, once

the desired direction of motion for j is calculated, the

updated direction of motion, new(uj), is found by rotating

the individual j by at most bDt from uj towards udesired
j .

Here, b denotes the maximum turning rate for individuals.

Every time an individual j is updated, it is moved by v

units in the updated direction

newðx jÞ ¼ x j þ vDt
cosðnewðujÞÞ
sinðnewðujÞÞ

� �
;

where v is selected to be either vO (alignment or repulsion) or

vA (attraction), as described above. The average speed

of an individual, over many update steps, is consequently



Table 1. Experimental conditions and corresponding

treatment identities (IDs) from most agitation (1) to least
agitation (4).

treatment ID experimental conditions

1 shallow water (2 cm), bright light (690 lux)
2 deep water (8 cm), bright light (690 lux)
3 shallow water (2 cm), dimmed light (20 lux)
4 deep water (8 cm), dimmed light (20 lux)
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given by vav ¼ pvO þ (1 2 p)vA. Parameters used in the

model simulations are as follows: N ¼ 8, L ¼ 168.73 cm,

T ¼ 0.04 s, p ¼ 0.5, a ¼ 2708, b ¼ 408, vO ¼ 8.44 cm s21,

vA ¼ 2vO, rR ¼ 5.06 cm, rO ¼ 20.25 cm, rA ¼ 33.75 cm;

values of Dt are given in the figure legends and justified in

the electronic supplementary material.

In a simple stochastic implementation, all individuals

would have an identical instantaneous speed, independent

of the rule they follow and the behaviour of their fellow indi-

viduals. This would produce an unskewed Poisson

distribution for the individual speeds (when averaged over

time) that is not supported by empirical data. The novelty

of our implementation is that individuals adopt differing

speeds according to the behavioural rule they follow. In

such a way, we can obtain skewed distributions for the

individual speeds as observed in empirical data (see below).

An inherent parameter in our model is the length of the

update step Dt (in seconds). This parameter reciprocally

rescales the reaction rates in the system: small values of Dt

imply rapid updates, while large values of Dt imply slow

updates. It is important to stress at this stage that we are

not explicitly relating the size of Dt to biological or neurologi-

cal reaction times of animals (but discuss the possibility of a

connection later in this article). In addition, no direct phys-

ical meaning should be attached to the instantaneous

positions on time scales close to Dt. The fact that some indi-

vidual might not move for one or more update steps does not

imply they have stopped; rather that they are reacting more

slowly to their surrounding than their fellows. At first

glance it may appear that the same effect we obtain by vary-

ing Dt could be obtained by varying the speed at which

individuals move. This is not the case. In our model, differ-

ent values of Dt do not alter the average speed at which

individuals move but they do alter the average rate at which

individuals act upon information from within their sensory

zones. Imposing different average speeds (i.e. changing vA

and vO) changes the relationship between the average speed

of individuals and the extent of their sensory zones.

(b) Experimental methods

We extended Aoki’s experiments (Aoki 1980), using small

shoals of eight three-spined sticklebacks, Gasterosteus

aculeatus, within an indoor circular tank of 1 m radius.

From individual movement trajectories, we constructed the

distributions of the individual speeds of fish within a shoal

and the distribution of the individuals’ distances to their

nearest shoal mates (nearest-neighbour distances). To test

predictions from our model, we designed a number of new

experimental treatments (table 1) to produce varying levels of

agitation in the fish, comprising most agitation (treatment 1),

least agitation (treatment 4) and intermediate agitation

levels. This allowed us to compare different model outcomes

under different conditions to experimental data under

parallel conditions. Evidence suggests that sticklebacks are

in a greater state of agitation or excitement in higher light

levels since, in experiments, fish of this species have preferred

shaded regions in tanks (Ward et al. 2008). Fish that perceive

a higher predation threat tend to use more shaded areas than

fish that do not perceive the same level of threat (McCartt

et al. 1997). This suggests that they perceive a lower preda-

tion threat in shaded areas than in well-lit areas. An

explanation for this could be that fish can see approaching

predators that are not in shaded areas better from the

shade, and that fish are less likely to be seen in shade
Proc. R. Soc. B (2010)
(Helfman 1981). We also varied the water depth in our

experimental tank. Given the white background of the

tank, the fish bodies are clearly visible and thus make fish

potentially conspicuous to overhead predators, such as

kingfishers and herons. In this situation sticklebacks show

a strong tendency to move into deeper water (J. Krause

2008, unpublished data).
3. RESULTS
(a) Model output

Our model produces skewed speed distributions (in two

dimensions) similar to empirical data as an emergent

property of our novel update scheme (figure 1c,d). Indi-

vidual speeds are approximated by calculating the

distance covered by fish over a fixed time step, with

each time step T comprising many multiples of Dt. This

is analogous to how speed distributions are determined

empirically, where fish speeds are averaged over a range

of video frames (see electronic supplementary material;

see also Aoki 1980). The effect of varying Dt is striking:

large values of Dt promote a strongly positively skewed

distribution, and small values reduce the skewness and

give rise to speed distributions that resemble normal,

or Gaussian, distributions (figure 1c,d). We do not

claim to reproduce speed distributions of real fish quanti-

tatively as the influence of important factors on the speed

distributions is unknown (e.g. interaction with environ-

ment). Rather, we show that our model is capable of

producing similar speed distributions to the data without

a priori assumptions or explicit addition of stochastic

noise. Furthermore, our model suggests that the shape

of the speed distributions can be varied by changing

one parameter in our model.

From the speed and nearest-neighbour distance distri-

butions of the simulated shoals, we extracted three

summary statistics: the standard deviation of the speed

distributions, skewness of the speed distributions and

the median of the nearest-neighbour distance distri-

butions. Substantial changes in the summary statistics

for different values of Dt are observed (figure 2a–c).

Most prominent is the reduction in nearest-neighbour

distance (for a given fish, this is the distance between

this fish and the fish closest to it). Such a decrease in

nearest-neighbour distances, or more compact group

structures have previously been observed in empirical

experiments for increasing threat or agitation levels

(Krause 1993; Tien et al. 2004; Carere et al. 2009). The

effect of Dt on the summary statistics highlights that this

parameter is important for biological interpretation and

is not just an invisible model implementation parameter.

We propose that values of Dt in our model correspond

to states of agitation in animals. For example, low values
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Figure 1. In (a) and (b) we show empirical speed distributions for two different shoals of eight fish over 10 min in identical
experimental conditions (treatment 1 in table 1). Note how the shape of the speed distributions varies between groups. In
(c) and (d) we show simulated speed distributions for different values of Dt, which illustrate the model’s capability to produce
qualitatively similar speed distributions to those observed in the empirical data. To facilitate comparison, we have ensured that
all histograms in this figure have area 1. Summary statistics are given for comparison: (a) mean ¼ 13.3+6.2 (s.d.) cm s21,

skewness ¼ 0.1; (b) mean ¼ 9.1+4.8 (s.d.) cm s21, skewness ¼ 0.3; (c) mean ¼ 12.7+7.3 (s.d.) cm s21, skewness ¼ 0.6;
(d) mean ¼ 12.7+2.8 (s.d.) cm s21, skewness ¼ 0.2. See text for details of the data analysis and the model simulations.
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of Dt (that is, rapid updates) would correspond to high

states of agitation, which might occur when animals feel

threatened or at risk (Krause & Ruxton 2002). Our

model predicts that increasing agitation makes the speed

distribution of the shoal become more uniform and

causes the nearest-neighbour distribution to contract.

This allows us to form the following empirically testable

hypothesis: the speed distributions and nearest-neighbour

distributions of fish at different levels of agitation should

qualitatively correspond to distributions in our model,

where Dt is varied appropriately. Specifically, our model

predicts that:

— High states of agitation (low values of Dt) should result

in strongly peaked, unskewed speed distributions and a

contraction of nearest-neighbour distances.

— Low states of agitation (high values of Dt) should

result in well-spread distributions with positive skew

and an increase in nearest-neighbour distances.

(b) Empirical findings

Using our empirical system, we confirmed previous

results (Aoki 1980) in finding long-tailed and positively

skewed speed distributions (figure 1a,b). We then

extracted the same three summary statistics from the

empirical data as we did for the simulated data. To inves-

tigate the statistical significance of differences in the

measurements of the summary statistics across treat-

ments, we used a generalized linear mixed model
Proc. R. Soc. B (2010)
(GLMM), taking into account the differences between

shoals and the order in which the treatments were

applied. In our analysis of the empirical data, we found

that all three summary statistics were affected by one or

more of the treatments in a statistically significant way

(figure 2). Statistically significant differences between

treatment 1 and treatments 2 and 3 (e.g. figure 2d,f )

illustrate that water depth and light intensity can separ-

ately affect the animal’s movement patterns. The lack of

monotony in some of the trends is due to behavioural

factors we cannot control, which are discussed in the

electronic supplementary material. The fact that not all

of the summary statistics show statistically significant

differences between treatment 1 and treatments 2 and 3

is likely to be due to the fact that the contrast between

these treatments is not large enough.

Overall, our experimental findings confirmed the pre-

dictions from our model that increasing agitation in fish

makes the speed distribution of the shoal become more

uniform (i.e. it decreases the distribution’s standard devi-

ation and skewness, and makes the nearest-neighbour

distribution contract; figure 2).
4. DISCUSSION
This study is a combined modelling and empirical effort

that has successfully predicted and reproduced emergent

empirical properties of coordinated group behaviour from

a model based entirely on local interactions. Our model is

relatively simple and therefore provides an ideal starting
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point for the inclusion of individual characteristics and

excitement levels into models of collective motion based

on stochasticity. Our model produces novel predictions

as to how group properties will alter in different behav-

ioural contexts, and our experiments provide supporting

evidence for these predictions. This reveals the impor-

tance of threat or risk levels perceived by fish for the

composition of their movement trajectories and coordi-

nation. It has been suggested that fish react more

quickly to shoal mates in situations of higher perceived

risk or threat levels (Ward et al. 2008). However, to our

knowledge this is the first time that the updating fre-

quency of individuals has been modelled and tested

against empirical data explicitly.

Our parameter Dt is the mean inter-update time that

captures the relative frequency of updates within a given

sampling time frame. It is important to emphasize that

we are not making an explicit claim that this parameter

is derivable from neurological information; we regard

this parameter as controlling the dynamic averaging of

the positional information from nearby conspecifics.

The precise mechanism and quantities in our model pro-

vide an interesting avenue to be tested in further empirical

research, focused on understanding the physiological

interpretation of the stochastic rates we find emerging

from our qualitative model comparisons. The simulations

presented in figures 1 and 2 use values of Dt that are sig-

nificantly lower than the 0.1 s that has been previously
Proc. R. Soc. B (2010)
recorded as the reaction time for fish (Partridge & Pitcher

1980), indicating that many multiples of Dt make up a

responsive reaction from the organism. The effect of

reducing the step size in algorithms such as ours has pre-

viously been considered, but not in a biological context

(Tsitsiklis et al. 1986).

It has recently been argued that the behavioural rules

of collectively moving animals are based on the number

of conspecifics each individual tracks (‘topological frame-

work’) rather than on the distance between individuals as

in our model (Ballerini et al. 2008). Some of the phenom-

ena Ballerini and co-workers observed in their data

have been reproduced in extensive simulation studies

(Hildenbrandt et al. 2009) by assuming a priori that indi-

viduals only interact with a limited number of shoal

mates. However, we suggest that this is not necessarily

the only way in which the observations made in Ballerini

et al. (2008) may arise in a model. Furthermore, a simple

implementation of a topological framework in which indi-

viduals only interact with a fixed number of their nearest

neighbours would not affect the emergence of speed dis-

tributions in our model. For these reasons we have

continued to use a distance-based approach.

We suggest that by moving in a more coherent fashion

with shoal members, an individual is able to reduce the

risk of being targeted by predators as the ‘odd one out’,

often termed the oddity effect (Krause & Ruxton 2002).

The confusion effect—where predators find it more
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difficult to target an individual in a group than to target

an isolated individual—is easily broken if one individual

differs morphologically or behaviourally from others

(Krause & Ruxton 2002). For example, in a threatened

group where nearest-neighbour distances are generally

low, an individual with a large nearest-neighbour distance

will stand out from the crowd and probably be targeted by

predators. This provides a mechanistic explanation for

our findings: greater risk produces higher updating fre-

quencies and higher updating frequencies produce lower

oddity. Therefore, we suggest that the oddity effect

could be the driving force for the behavioural changes

in different contexts and the high degree of synchrony

characterizing threat-induced collective behaviours.

Finally, our method of measuring the uniformity

of speed distributions and nearest-neighbour distances

could provide a simple way of empirically assessing

stress levels of collectively grouping animals in a remotely

collectable and non-obtrusive way.
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