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ABSTRACT

Motivation: In the pursuits of mechanistic understanding of cell
differentiation, it is often necessary to compare multiple differ-
entiation processes triggered by different external stimuli and
internal perturbations. Available methods for comparing temporal
gene expression patterns are limited to a gene-by-gene approach,
which ignores co-expression information and thus is sensitive to
measurement noise.
Methods: We present a method for co-expression network based
comparison of temporal expression patterns (NACEP). NACEP
compares the temporal patterns of a gene between two experimental
conditions, taking into consideration all of the possible co-expression
modules that this gene may participate in. The NACEP program is
available at http://biocomp.bioen.uiuc.edu/nacep.
Results: We applied NACEP to analyze retinoid acid (RA)-induced
differentiation of embryonic stem (ES) cells. The analysis suggests
that RA may facilitate neural differentiation by inducing the shh and
insulin receptor pathways. NACEP was also applied to compare the
temporal responses of seven RNA inhibition (RNAi) experiments.
As proof of concept, we demonstrate that the difference in the
temporal responses to RNAi treatments can be used to derive
interaction relationships of transcription factors (TFs), and therefore
infer regulatory modules within a transcription network. In particular,
the analysis suggested a novel regulatory relationship between two
pluripotency regulators, Esrrb and Tbx3, which was supported by in
vivo binding of Esrrb to the promoter of Tbx3.
Availability: The NACEP program and the supplementary
documents are available at http://biocomp.bioen.uiuc.edu/nacep.
Contact: szhong@illinois.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Embryonic stem (ES) cells are capable of differentiating into all cell
types in an adult body, and can be triggered by different external
and internal signals (Ivanova et al., 2006). One of the major themes
in ES cell research is to find efficient ways of guiding ES cells to
differentiate into a desired cell type. We chose to approach this theme
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by comparing the differentiation processes triggered by different
external stimuli or internal perturbations.

Differentiating mouse ES cells by withdrawing certain growth
factors [usually leukemia inhibitory factor (LIF)] leads to generating
a mixture of all cell types (spontaneous differentiation) (Hong et al.,
2009). Alternatively, exposing ES cells to certain growth factors can
lead to enrichment of certain cell lineages during differentiation.
Examples include retinoid acid (RA)-induced differentiation that
enriches neuronal cells (Jones-Villeneuve et al., 1983), and activin-
induced differentiation that enriches mesendoderm cells (Sulzbacher
et al., 2009). Besides growth factors, repressing individual
regulatory proteins can also induce differentiation. Although we
previously showed that the repression of a chromatin modeling
factor may encourage ES cells to differentiate and express neural
markers (Hong et al., 2009), in general, it is not clear whether
the repression of ES cell regulators may encourage differentiation
toward any specific cell lineages (Lu et al., 2009).

We hypothesized that if two ES cell regulators are in the
same regulatory pathway, the temporal transcriptional responses
to repressing them should be similar, as opposed to the temporal
responses of repressing a third ES regulator that is not in this
regulatory pathway or acting to inhibit this pathway. We also
hypothesized that if a transcription factor (TF) inhibits a signaling
pathway, the temporal responses to repressing this TF may be closer
to the transcriptional responses to adding a growth factor that induces
this signaling pathway as compared with the temporal responses to
repressing another TF. With these hypotheses in mind, we applied the
new method called NACEP to compare spontaneous differentiation
against eight types of induced differentiation, including one
external stimulation (RA induced) and seven internal perturbations
(repressing ES cell regulators). The goals of these comparisons are
as follows. First, we wish to gain mechanistic insights into how
RA treatment leads to differentiation toward the neural lineage.
Second, we wish to test whether any of these induced differentiation
processes resemble one another, and thus to infer the relative
proximities of these regulators in an ES cell regulatory network.
These questions inspired us to revisit analytical methods for
comparing time-course gene expression data.

To date, there are very few methods for comparing time-
course gene expression data. One method suppresses the temporal
information and compares the ‘neighborhood’ genes between two
conditions (Cheng et al., 2006). Other methods explicitly model the
temporal information, but treat every gene independently (Storey
et al., 2005; Telesca et al., 2009). For example, one of these methods
fits a spline to the time-course data of a gene in each of two
experimental conditions, and then it compares the fitted splines.
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This statistical approach enjoys at least two clear advantages, in
that it takes full advantage of the time-course data structure, and
it implements human intuition in comparing temporal patterns.
The limitation is that every gene is modeled independently, and
information such as co-expression is ignored. Since the two splines
of a gene have to be fitted with typically a dozen data points or even
fewer, the fitted splines are sensitive to biological and technical
fluctuations. Compared with traditional two-sample comparison
procedures that ignore the time information, the spline method can
be even more prone to false positives because a random fluctuation
on a data point can have a larger chance of inducing a detectable
difference to the splines.

Intuitively, utilizing co-expression information, for example, by
using co-clustered genes to stabilize the spline fit of a gene,
might largely enhance the fit and thus enable much more accurate
identification of temporal differences. We wish to formalize this
intuition as a co-expression network based comparison of temporal
expression patterns (NACEP).

However, clustering time-course gene expression data by itself
is a challenging problem. One group used predetermined gene
expression patterns as cluster centers to cluster genes (Schulz et al.,
2009). Other teams approached this problem by using a finite
mixture model for the clusters and then implementing a spline fit
within each cluster (Luan and Li, 2003; Ma et al., 2006). These
methods are prominent advances in co-expression analysis of time-
course data, but they appear to be far from what is necessary for
a co-expression network-based comparison of temporal expression
patterns. The outstanding challenges include but are not limited to
the following. First, the cluster number has to be preset for these
clustering algorithms. Although model-selection criteria such as
akaike information criterion (AIC) or Bayesian information criterion
(BIC) can in theory be used to judge cluster numbers, in practice the
AIC or BIC curves usually do not show clear peaks or charges that
are needed to make a decision (Qin, 2006). Second, clustering results
are often unstable, in the sense that slight changes to the clustering
algorithm or the dataset may generate vastly different clustering
results. It is difficult to trust or interpret results that are sensitive to
the analytical methods or noise in the data (Quackenbush, 2003).
Third, a gene may not have only one function or it may not only
participate in one module in the gene regulatory networks (GRNs).
Forcing a gene into one cluster makes a strong assumption about the
underlying GRNs, and making inferences using such an assumption
may defeat the purpose of using network information to improve
temporal comparisons. In our opinion, these outstanding difficulties
prohibited the invention of a statistical method that explicitly utilizes
network information in the identification of genes with different
temporal expression patterns. The NACEP model in this article
attempts to address these challenges.

2 METHODS

2.1 The NACEP model
NACEP explicitly uses co-expression network information to compare
temporal gene expression data. To overcome the difficulties discussed above,
NACEP first implements an infinite-mixture model for clustering time-course
data. The number of clusters is automatically decided by the data and a
Dirichlet process (Antoniak, 1974; MacEachern and Müller, 1998; Neal,
2000; Qin, 2006). Instead of forcing every gene into a cluster, NACEP
passes the probabilities of every gene belonging to every cluster into the

Fig. 1. NACEP method. NACEP starts with a Dirichlet process-driven
clustering of time-course data. Instead of assigning each gene into a particular
cluster, NACEP retains the probabilities of this gene to belong to every
cluster. These probabilities and the mean expression patterns of every cluster
are used in the next step of comparing the temporal expression patterns of a
gene.

next step of analysis. In the second step, NACEP infers the temporal pattern
of a gene as a weighted average of the temporal patterns of all the clusters,
using the probability of assigning this gene to each cluster as the weight
of that cluster. Finally, NACEP compares the temporal patterns of a gene
between two experimental conditions with a non-parametric test, correcting
for multiple hypothesis testing (Fig. 1).

2.2 An infinite-mixture model for clustering
time-course data

NACEP implements an infinite-mixture model for clustering time-course
data. The cluster memberships are treated as missing data and are assumed
to be generated from a Chinese Restaurant Process (CRP; Qin, 2006). Let
C = (C(1),...,C(N)) be the cluster indicator variable, where C(i)=c, 1 ≤
c ≤ C denotes that the i-th gene is assigned to the c-th cluster, 1 ≤ i ≤ N . We
use |C| to denote the number of clusters present. |C| is unknown. C is treated
as missing data in the model.

Given the missing data, the expression levels of a gene are modeled with
a mixed-effects model (Luan and Li, 2003). In this mixed-effects model, the
cluster mean is modeled as a B-spline. The measured expression level of
a gene in this cluster at a time point is modeled as the sum of the cluster
mean, a random gene effect and a noise term representing the overall effect
of the biological and the technical fluctuations. Let Yijkl be the measured
expression level for gene i, under experimental condition j, at time-point
tk , from biological or technical replicate l, where i=1,...,N ; j=1,...,J;
k =1,...,K ; l=1,...,Lk . Following Luan and Li (2003), the expression levels
of the c-th cluster are modeled as:

Yijkl = fcj(tk)+bi +εijkl (1)

where fcj (tk) is the mean profile of the c-th cluster in the j-th experimental
condition and bi ∼N(0,φ2) is the gene effect, which is independent from the
measurement error εijkl ∼N(0,σ2). The smooth function fcj(tk) is modeled
as a B-spline, with its basis denoted as X , and

fcj(tk)=Xβcj (2)

where βcj is the parameter set of the B-spline.
Thus, a generative probabilistic model for all the time-course gene

expression data has been completely specified, with a CRP for generating
the cluster indicators and a mixed-effects model for generating expression
levels under given cluster indicators.

2.3 The Bayesian formulation and a Gibbs sampling
algorithm for model inference

To fit the model parameters from data, we rewrote the NACEP model into a
Bayesian form and then developed a Gibbs sampling algorithm to estimate
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the model parameters. To put NACEP into a Bayesian form, we used the
theoretical developments of Dirichlet processes (Ferguson, 1973). Generally,
if (�, B) is a measurable space, on which G0 is a probability measure and α is
a positive real number, a stochastic process G is a Dirichlet process with base
distribution G0 and concentration parameter α if and only if for any finite
partitions (A1, A2,...,Ar ) on �, (G(A1), G(A2),...,G(Ar )) ∼ DP(αG0(A1),
αG0(A2),...,αG0(Ar )). CRP is a special form of Dirichlet process, and a CRP
is often used as prior distribution for a Dirichlet process. Neal formulated a
model for generating data from a Dirichlet process (Neal, 2000). In Neal’s
formulation, the data distribution is a mixture of distributions of form F(θ),
with the mixing distribution over θ being G. Thus,

yi|θi ∼F(θi)

θi|G∼G

G∼DP(G0,α)

(3)

where yi, i=1,...,N are the data points and G is a Dirichlet process prior,
with concentration parameter α and base distribution G0.

Inspired by Neal’s formulation, we rewrite the NACEP model as:

Yi|βi,ϕ
2
i ,bi,σ

2 ∼N(Xβi +biL,σ2I)

bi|ϕ2
i ∼N(0,ϕ2

i )

θi(= (βT
i ,ϕ2

i ))∼G

G∼DP(G0(β,ϕ2),α)

(4)

where L is a column vector of 1s: (1,...,1)T . We use conjugate priors for α,
β and ϕ

β∼N(β0,(X
T X)−1)

ϕ2 ∼ InvGamma(e,f )

σ2 ∼ InvGamma(g,h)

(5)

where e, f , g and h are hyperparameters. Thus, we provided a Bayesian
formulation for the NACEP model. Based on this formulation, we developed
a Gibbs sampling algorithm to make our model inference (Bush and
MacEachern, 1996) (Fig. 2; Supplementary Material).

2.4 Comparison between experimental conditions
How different are the temporal patterns of a gene in two conditions? NACEP
quantifies this difference as a weighted average of the differences between
the temporal patterns of every cluster, with the posterior probabilities of the
gene belonging to every cluster as the weights. Let di be the difference of
gene i between two conditions, then

di =
|C|
	

c=1
Pr(C(i)=c)

√
(Xβc,j=1 −Xβc,j=2)T (Xβc,j=1 −Xβc,j=2). (6)

This difference can be efficiently estimated by the Gibbs sampler algorithm
using the following procedure. Let s be the index of sampling iterations after
burn-in, and s=1,...,S. di can be estimated by

d̂i =
S
	

s=1

√
(Xβ̂c(i),j=1,s −Xβ̂c(i),j=2,s)T (Xβ̂c(i),j=1,s −Xβ̂c(i),j=2,s)

S
. (7)

This estimation procedure saves the step of computing the posterior
probabilities of each gene belonging to every cluster.

2.5 Assessing statistical significance
To assess the statistical significance of the difference of temporal patterns
of a gene, NACEP obtains the distribution of d̂i under the null hypothesis
by permuting the expression data of matched time points under the two
conditions. Following Storey et al. (2005), NACEP uses the permutation to
compute the false discovery rate (FDR) for every gene that takes multiple
hypothesis testing into consideration. NACEP ranks the genes with their
FDR.

Fig. 2. The Gibbs sampler algorithm. The details of the updating strategies
and the forms of conditional probabilities are provided in the Supplementary
Material.

2.6 Clustering time-course gene expression data
Although NACEP was designed for utilizing co-expression information to
enhance the comparison of temporal gene expression patterns, as a byproduct,
NACEP provides a handy and potentially powerful tool for clustering time-
course gene expression data. The major improvements of NACEP from
other time-course data clustering approaches (Luan and Li, 2003; Ma et al.,
2006) are 2-fold. First, NACEP employs an infinite-mixture model and
thus the cluster number is judged automatically by the Gibbs sampler
algorithm. Second, NACEP enables clustering data from more than one
experimental condition, by simultaneously fitting temporal profiles within
every experimental condition.

To use NACEP as a clustering algorithm, after running the Gibbs sampler,
the clustering inference can be made by:

Ĉ =argmin
C∈F

n
	

i=1

n
	

i′=1
(δi,i′ (C)− p̂i,i′ )

2 (8)

where C is a configuration of gene clustering and F is the set of all such
configurations; p̂i,i′ is the estimated probability for genes i and i′ being in the
same cluster, which can be obtained by counting the fraction of times c(i)=
c(i′) in the iterations; in any given clustering configuration C0, δ

′
i,i(C0)=1,

if genes i and i
′

are in the same cluster, otherwise δ
′
i,i(C0)=0.

It should be noted that in the comparison of temporal patterns, NACEP
does not force a gene to belong to one cluster; instead all the posterior
probabilities of a gene belonging to all clusters are used. Thus, the temporal
comparison results are not sensitive to the clustering performance.

2.7 Correlation between TFs
The time-course data of each RNAi experiment was compared with that of
the control experiment by NACEP. The NACEP distance of every gene was
computed according to Equation (6). Thus, each RNAi experiment produces
a NACEP distance vector {d1,...,dN }, where N is the number of genes.
The correlation between two TFs is the Pearson correlation between the two
NACEP distance vectors of the two RNAi experiments.
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3 RESULTS

3.1 Analysis of synthetic data
NACEP was evaluated on synthetic datasets for clustering
performance and for comparison of temporal patterns. Although
the results of the two tests are presented sequentially below, it is
worth noting that NACEP’s temporal comparison does not rely on
a pre-fixed clustering result (see Discussion).

3.2 Clustering
We compared NACEP with three other clustering methods:
K-means, MClust (Fraley and Raftery, 2006) and smoothing spline
clustering (SSC) (Ma et al., 2006). Both MClust and SSC use a
finite-mixture model for clustering. While MClust assumes that the
samples are independent, SSC uses splines to model the time-course
data structure. As a clustering method, NACEP can be regarded as
an extension of SSC to an infinite-mixture model.

We simulated 100 datasets. Each simulation was composed of four
clusters, containing 30, 40, 50 and 30 genes in each cluster. Every
gene was measured at 10 time points. Following Ma et al. (2006),
the mean expression patterns were simulated with the following
functions:

Y1i1k =−exp(tk)/1000+bi1
+ε1i1k; i1 = 1, 2, ..., 30;

Y2i2k = tan(tk/6.6)+bi2
+ε2i2k; i2 = 1, 2, ..., 40;

Y3i3k =5(tk −4)2/36+bi3
+ε3i3k; i3 = 1, 2, ..., 50;

Y4i4k =cos(tk)+bi4
+ε4i4k; i4 = 1, 2, ..., 30;

where k is the index of time points; i is the index of genes; bi is the
random gene effect; εijk is the random measurement error.

Two comparisons were made. First, we compared how often a
method incorrectly identifies the cluster number by ‘cluster number
prediction error’ (CNPE; Fig. 3B). The BIC was used for MClust
and SSC to choose the cluster number. Since K-means cannot
automatically determine the cluster number (unless assuming some
parametric form of data distribution), we assigned the correct cluster
number to K-means and exempted it from the first comparison.
Using BIC with SSC (18% CNPE) improved the chances of correctly
identifying cluster numbers compared with using BIC with MClust
(43% CNPE).

Moreover, the results of NACEP (0% CNPE) were further
improved from the results of using BIC with SSC (18% CNPE).

Second, when the cluster number was correct, we compared how
often a gene is incorrectly clustered [average misclassification rate
(AMR), Fig. 3B]. In this comparison, we assigned the correct cluster
number to K-means, Mclust and SCC. By doing so, we gave the
other algorithms an advantage over NACEP. In this comparison,
SSC and NACEP largely outperformed K-means and MClust,
consistent with the expectation that explicitly modeling the time-
course data structure might boost clustering performance. NACEP
further exhibited a 22-fold (1.54/0.0733) improvement of clustering
accuracy compared with SSC.

3.3 Comparison of temporal patterns
We compared NACEP with a single-gene-based time-course
comparison method called EDGE (Storey et al., 2005).

We did four simulations. In each simulation, time-course gene
expression data from two experimental conditions were generated,

A B

Fig. 3. Clustering performance. (A) One hundred datasets were simulated.
Each dataset contained four clusters. Representative expression values of
three genes for each cluster are shown, in plus, open circle and open
triangle. (B) Clustering performance was evaluted. CNPE, the proportion
of predictions with incorrect cluster numbers, among all simulated datasets.
A higher CNPE correlates with worse performance. AMR, the average
proportion of genes being misclassified. A higher AMR correlates with worse
performance.

with 10 time points in each condition. In the first simulation,
a total of 1000 genes were simulated. Among these genes, 600
genes were simulated to have the same temporal pattern in the two
conditions (Group f, Fig. 4A). The remaining 400 genes had different
expression patterns. They were separated into four groups (Groups
a–d, Fig. 4A). Their expression patterns differ between the two
conditions as follows. Groups a and b had different trends. Group
c was generated from gamma functions with different parameters.
Group d was generated from sine functions with different phases.
The gene groups were assumed to have different variances on their
gene effects (bi) and the same variance on the measurement errors
(Var(εijk) = 1). We made Var(bi) increase from Group a to Group
d, as reflected by the increasing confidence intervals of the mean
trajectories in Figure 4A.

To simulate more realistic data, in the second simulation, we
increased the variances of the gene effect and the measurement
error. To simulate the situations in which some genes cannot be
easily clustered (scatter genes), we added a new gene group to
the third simulation. This new group (Group g, Fig. 4A) contained
100 genes, each independently generated to have its own temporal
pattern, which is the same in the two conditions. Group g genes
differ in the two conditions by the average expression level (gene
effect bi) and measurement variation (εijk). In order to challenge
NACEP even further, in the fourth simulation, we added yet another
group of scatter genes (Group e) with different temporal patterns in
the two conditions.

Each simulation was independently repeated 50 times. Both
NACEP and EDGE were applied to these datasets to detect
genes with different trajectories. True and false positives of these
predictions are summarized as receiver operating characteristic
(ROC) curves in Figure 4B. NACEP out-performed EDGE in all
four simulations. Notably, when the false positive rates are small
(using high thresholds), EDGE performed not much better than a
random decision, by producing a small number of true positives
(Fig. 4B). NACEP largely increased the sensitivities under the same
specificities of EDGE, causing the ROC curves to shoot up almost
vertically to 20% at a 0% false positive rate in all simulations.
This indicates a particularly useful feature of NACEP, in that its
top predictions are likely to be reliable.
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A

B

Fig. 4. Cross-condition comparison. (A) Four synthetic datasets. Five to
seven groups of genes were simulated in each synthetic dataset, with each
group exhibiting either a different pattern (Groups a–e), or a similar pattern
(Groups f and g) between the two experimental conditions. Genes in Groups
e and g do not form any clusters. Each gene was generated from its own
temporal pattern. Group d differs in the two conditions by a phase shift. The
cluster averages and their confidence intervals are shown in solid curves
and shaded regions, respectively. Expression values of 10 representative
genes are shown for each gene group in dots. The standard deviation of
the expression values of all genes in a group is shown as a green band. (B)
ROC curves. Panels 1–4 correspond to synthetic datasets 1–4. The ROC
curves of the best, median and worst performance on 50 simulations are
plotted in solid (NACEP) and dashed (EDGE) lines.

3.4 Analysis of ES cell differentiation
3.4.1 Differential temporal responses between spontaneous and
RA-induced differentiation of ES cells We applied NACEP
to identify the genes and pathways that mediate RA-induced
differentiation of ES cells. RA is known to facilitate ES cell
differentiation and to enrich neurogenic precursor cells among the
differentiated cells, although the molecular mechanisms of such an
effect remain elusive (Glaser and Brüstle, 2005). We hypothesized
that the neurogenic effect of RA is mediated by a set of neurogenic
regulatory genes, whose expression patterns are different between
RA-induced and spontaneous differentiation. To test this hypothesis,
we reanalyzed the data by Ivanova et al. (2006), who subjected

A B

Fig. 5. Comparison of RA-induced and spontaneous differentiation of
ES cells. (A) Mean expression patterns of 37 clusters in Days 0–7 of
two differentiation conditions. (B) A hypothetical regulatory pathway that
responds to RA and induces neural differentiation of ES cells.

mouse ES cells to spontaneous and RA-induced differentiation
processes (Ivanova et al., 2006). Gene expression was measured
in each differentiation condition every day over a 7-day period.

To preprocess the data, we used Gene Ontology (GO) annotations
to obtain the genes involved in transcriptional regulation or signal
transduction and filtered out the other genes. We also filtered out
the genes with small changes of expression levels in both of the
two time series and subjected the remaining 783 genes to NACEP
analysis. NACEP’s Gibbs sampling computation stabilized after
10 000 iterations and generated 37 clusters (Fig. 5A). Canonical
ES cell regulators including Nanog, Oct4, Klf2, Esrrb and Utf1
all showed up in one cluster, lending credibility to the clustering
result. Two Ets domain TFs, Etv4 and Etv5, were clustered together
with the canonical ES cell regulators, suggesting that these TFs
involved in organ morphogenesis might have a neglected role in
ES cell regulation. Interestingly, Etv5’s DNA binding motif was
reported to be enriched in Nanog bound regions (Zhou et al., 2007).
Another cluster contained Shh and Gli1, the key ligand and TF of the
shh signaling pathway, suggesting the shh pathway might be tightly
regulated in both spontaneous and RA-induced differentiation of
mouse ES cells.

Comparing the two differentiation processes, NACEP reported
156 genes with different temporal patterns (FDR < 10−5). We
then separated these 156 genes into two groups, i.e. the induced
(134) and the repressed (22) genes, by RA as compared with
spontaneous differentiation. The 22 genes repressed by RA included
pluripotency and self-renewal regulators Esrrb, Utf1, Nanog, Klf2
and Oct4. These data are consistent with the notion that RAfacilitates
differentiation.

The top-ranked RA-induced genes included Gli3, Zic3 and others.
GLI3 is one of the three Gli family proteins in mice, which serve
as key TFs of the shh pathway. Consistent with this result, Zic3
is a known downstream transcriptional target of Gli family TFs
(Mizugishi et al., 2001). These data, together with the result that
Shh and Gli were clustered together (Fig. 5A), suggest that the
shh pathway genes might be activated by RA and mediate the
differentiation of ES cells into neural precursors. Consistent with
this hypothesis, the induction of the shh pathway promotes neuronal
differentiation from embryoid bodies that are differentiated from ES
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cells (Vokes et al., 2007). Moreover, in mouse brains, shh activation
has been associated with neoplastic growth and development of
brain tumors (Flora et al., 2009). Finally, Etv4, which inhibits Shh
during limb bud development (Zhang et al., 2009), was identified
by NACEP as one of the top-repressed genes by RA. These data
are in-line with the hypothesis that the shh pathway is positively
regulated during RA-induced differentiation.

The top RA-induced genes also included Nr2f2 and Igf1. Igf1
can serve as a ligand to the insulin receptor (INSR) pathway.
Nr2f2 was shown to be recruited to the Igf1 promoter region,
modulating its expression (Kim et al., 2009). These data tempted
us to hypothesize that RA-induced neuronal differentiation is at
least partially mediated by the INSR pathway. Coincidentally, INSR
induces neuronal differentiation of neuroendocrine tumors (Dikic
et al., 1994), and it is vital for keeping neural stem cells alive
(Siegrist et al., 2010). Taken together, these analyses suggest that
RA may induce neuronal differentiation through activating shh and
INSR pathways (Fig. 5B).

3.4.2 Comparison of temporal expression responses to RNAi
reveals placement of TFs in a GRN A number of ES cell TFs
that sustain self-renewal and inhibit differentiation have been
identified. Less clear are the interaction relationships of these
ES cell TFs, or the full picture of the ES cell GRN. In order
to elucidate the GRN of ES cells, biochemical assays including
sequential chromatin immunoprecipitation (ChIP) were used to
directly assess the interaction of two TFs (Geisberg and Struhl,
2004); co-localization of binding regions (from ChIP-seq or ChIP-
chip data) was used to infer TF interactions (Chen et al., 2008), and
co-expression information together with protein–protein interaction
data were used to infer GRNs (Müller et al., 2008).

We hypothesized that the transcriptomic responses to knockdown
of TFs should also contain useful information on the relative
placement of these TFs in a GRN. To test this hypothesis, we started
by considering a hypothetical situation, wherein there are three TFs
(A, B and C), with A and B ‘closer’ in the GRN as compared with
C (Fig. 6A). The relative proximity of A and B can be substantiated
in the following examples: A and B often interact with each other,
forming a dimer to co-bind and co-regulate target genes; C can only
interact with A or B through the assistance of other proteins; C is an
upstream regulator of A and B; or C independently regulates a set
of its own downstream genes. In these hypothetical examples, the
genome-wide temporal transcriptional responses to the knockdown
of A and B should be similar, as opposed to the temporal responses
to C knockdown.

Using this idea, we applied NACEP to a set of time-course gene
expression data generated by seven RNAi experiments (Ivanova
et al., 2006), namely the gene expression data of Days 0–7 after the
knockdown of Nanog, Oct4, Sox2, Esrrb, Tbx3, Tcl1 and Ccnb1ip1.
We compared the temporal responses with each RNAi experiment to
the control data, i.e. the gene expression data of wild-type ES cells
on matched time (Days 0–7). In every comparison (by NACEP),
the genes with a different expression pattern between the RNAi
and the control conditions were identified (Fig. 6B). To quantify
the similarity of the genes affected by two RNAi experiments,
we used the Pearson correlation of the NACEP distances of the
two RNAi experiments (see Methods). The Pearson correlation
was regarded as a similarity/proximity metric between the two
TFs on which the RNAi were performed (Fig. 6C). To obtain a

A C D

B

Fig. 6. Comparison of time-course data of knockdown of seven TFs. (A)
A hypothetical gene regulatory pathway. (B) The top 30 NACEP predicted
genes with differential temporal patterns between an RNAi condition and
the control. (C) Pearson correlation between TF knockdowns. The Pearson
correlation was derived from the NACEP distances (di) of all genes between
two TF knockdowns. (D) Predicated relative TF placement in a GRN,
drawn with Cytoscape (Shannon et al., 2003). The pairwise TF correlations
are visualized as the thickness of the edges. Dashed edges represent
experimentally verified regulatory interactions.

global view of the proximity of all TFs in the GRN, we clustered
the TFs by the Pearson’s correlations. For visualization purposes,
an edge was drawn between two TFs if their correlation was
beyond an ad hoc threshold of 0.54 and if the width of the edge
was proportional to the correlation between the two connecting
TFs (Fig. 6D). This result indicates that Nanog, Oct4, Sox2 and
Esrrb may form a heavily connected regulatory module, and Tbx3,
Tcf1 and Ccnb1ip1 are attached to the Nanog-containing module
through a few specific links. To check whether the predicted GRN
structure was sensitive to the choice of Pearson’s correlation as the
similarity/proximity metric or sensitive to the use of all genes, we
applied another similarity metric (Supplementary Fig. S1A) and
restricted the calculation to the top 5% of genes most strongly
affected by all RNAi experiments (Supplementary Fig. S1B), and we
found that the predicted TN structure was robust. This analysis based
solely on RNAi transcriptomes identified the interactions among
Nanog, Oct4, Sox2, Esrrb and Tbx3 consistent with evidence drawn
from protein–protein interaction, protein–DNA binding data, and
mutation analysis of TF binding sites (dashed edges, Fig. 6D) (Boyer
et al., 2005; Chen et al., 2008; Han et al., 2010; Niwa et al., 2009;
Pirity and Dinnyes, 2010; van den Berg et al., 2008; Zhang et al.,
2008). This analysis failed to predict the transcriptional regulatory
relationship between Oct4 and Tcl1 (Matoba et al., 2006), which
might be explained by the hypothesis that Tcl1 only specifically
regulates a much smaller subset of genes than Oct4, and thus
Tcl1 RNAi only reflects a small subset of transcriptomic changes
downstream to Oct4 RNAi. The strong correlation of the temporal
responses to knockdowns of Esrrb and Tbx3 (Fig. 6D) predicts
the proximity of these two TFs in the GRN. Further experiments
are needed to test whether these TFs could directly interact with
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each other or if one is under the transcriptional control of the
other. Interestingly, ChIP-seq data showed that there were two Esrrb
binding sites near the Tbx3 gene, at 1k bp upstream and 100 bp
downstream to the transcription start site of Tbx3 (Supplementary
Fig. S2).

4 DISCUSSION
Comparative biology plays a central role in biological discovery.
Most, if not all, principles in biology are proved with comparative
experiments or in contrasts of observations. As the capacities of
making genome-wide measurements increase, it becomes a typical
exercise to monitor a biological process by taking genome-wide
measurements at multiple time points during this process. Time-
course gene expression data have become a common data type. As of
April 12, 2010, Gene Expression Omnibus (GEO) has documented
1796 time-course data series on 118 measurement platforms in over
50 species. These data treasures await adequate analysis tools.

4.1 Clustering time-course data
The purpose of clustering analysis is usually to discover co-
expression patterns that can be translated to biological knowledge
or new hypotheses (Thalamuthu et al., 2006). However, clustering
remains a difficult problem, as exemplified by ad hoc criteria
for choosing optimal clusters and results being sensitive to the
initial conditions. As a result, the applications of clustering
analyses of expression data are limited by strong noise in the
results. Some genes known to be involved in a particular pathway
are invariably missed, whereas other apparently unrelated genes
exhibit expression profiles that are strikingly similar to bona fide
pathway components (Quackenbush, 2003). To address these issues,
new methods are needed to simultaneously tackle at least two
methodological challenges. First, the cluster number has to be
intelligently determined. Second, the time-course nature of the data
has to be explicitly utilized. The NACEP method represents an
attempt toward these goals. The heart of this method is a generative
probabilistic model with a Dirichlet process (Neal, 2000) generating
the clusters and a mixed-effects model (Wang, 1998) with a B-spline
(Luan and Li, 2003) mean generating the gene expression patterns.
NACEP can potentially be generalized to handle non-time-course
data by not requiring fcj(tk) in Equation (1) to be a time-dependent
function.

4.2 Comparison of temporal patterns
The main function of NACEP is to compare time-course data
between two experimental conditions. At least two questions have to
be addressed to make an effective comparison. First, how should the
time-course data structure be utilized so as to increase the sensitivity
and robustness of the comparison? Second, how can we minimize
detection errors introduced by noise in the measurements? The first
challenge was elegantly addressed by a method called EDGE (Storey
et al., 2005). EDGE models the time-course data with splines and
compares the splines between two conditions one gene at a time.
Since the data points for a single gene are often limited, noise in the
data can strongly influence the comparison result. This imposes a
pressing need to address the second question. It appears to be difficult
to extend EDGE to incorporate prior information of pathways and
networks to improve the comparison. A major difficulty is that the

accurate and complete pathway information is typically unavailable.
The NACEP method utilizes the clustering information to assist the
detection of different time-course expression patterns in a soft way.
The premise of this method is that the gene clusters are correlated
with regulatory pathways, but that any clustering result cannot
be fully trusted. To detect the differential expression of a gene,
NACEP borrows information from every other gene. The amount
of information borrowed is proportional to the probability that the
other gene will co-cluster with the gene under comparison. Thus,
the detection of differential expression does not reply on a prefixed
clustering result.

4.3 GRN structure and TF knockdown
Although gene expression responses to knockdown of TFs are often
measured, such data were often used to identify the transcriptional
targets of the inhibited TFs. To our knowledge, there is as yet no
principled approach to infer the interaction relationships among
the inhibited TFs, except in some special cases in which one TF
is the transcriptional target of another. As a proof of principle,
this work demonstrated that the temporal transcriptional responses
to the knockdown of a set of TFs could be used to identify the
interaction relationships of these TFs, as well as their relative
proximity in the GRN. Our data suggest that Esrrb may contribute to
maintaining pluripotency through transcriptionally regulating Tbx3,
a T-box transcriptional repressor. We were also interested in testing
whether any of the TFs maintain pluripotency through, at least
partially, inhibiting the RA pathway and its downstream genes. The
differences between RA treatment and any TF knockdown are larger
than the differences between any two TF knockdowns (Fig. 6C;
Supplementary Fig. S1), suggesting that the seven TFs included in
our analyses are likely involved in pathways independent to the RA
pathway.
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