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ABSTRACT

Motivation: G → A hypermutation is an innate antiviral defense
mechanism, mediated by host enzymes, which leads to the
mutational impairment of viruses. Sensitive and specific identification
of host-mediated G → A hypermutation is a novel sequence analysis
challenge, particularly for viral deep sequencing studies. For
example, two of the most common hepatitis B virus (HBV) reverse
transcriptase (RT) drug-resistance mutations, A181T and M204I,
arise from G → A changes and are routinely detected as low-
abundance variants in nearly all HBV deep sequencing samples.
Results: We developed a classification model using measures
of G → A excess and predicted indicators of lethal mutation and
applied this model to 325 920 unique deep sequencing reads from
plasma virus samples from 45 drug treatment-naïve HBV-infected
individuals. The 2.9% of sequence reads that were classified as
hypermutated by our model included most of the reads with
A181T and/or M204I, indicating the usefulness of this model
for distinguishing viral adaptive changes from host-mediated viral
editing.
Availability: Source code and sequence data are available at
http://hivdb.stanford.edu/pages/resources.html.
Contact: ereuman@stanfordalumni.org
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on August 3, 2010; revised on September 15, 2010;
accepted on October 5, 2010

1 INTRODUCTION
Hepatitis B virus (HBV) is a double-stranded DNA virus that infects
more than 500 million people worldwide and is a leading cause of
mortality as a result of cirrhosis and hepatocellular carcinoma. In
the past 12 years, five nucleoside analogs have been licensed for
HBV treatment. These drugs are capable of fully suppressing HBV
replication but rarely eradicate infection because HBV is converted
intra-cellularly into a stable covalently closed circular DNA form.

HBV replicates via an RNA intermediate, and its polymerase
enzyme has a high mutation rate similar to other enzymes with
reverse transcriptase activity. It thus generates a quasispecies of
innumerable related virus variants from which drug resistant viruses
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can arise (Preikschat et al., 1999). Because HBV drug resistance
is one of the obstacles to successful anti-HBV therapy, current
treatment guidelines recommend HBV genotypic resistance testing
for patients who experience primary or secondary virological failure
while receiving nucleoside therapy (Lok et al., 2007).

Deep sequencing is increasingly performed on plasma samples
from clinical trials to determine the clinical significance of low-
abundance human immunodeficiency virus (HIV) and hepatitis C
virus drug-resistance mutations prior to starting antiviral treatment
(Vrancken et al., 2010). We and others have recently described
the use of ultra-deep pyrosequencing (UDPS) with the 454 Life
Sciences/Roche Genome Sequencer FLX platform (Margeridon-
Thermet et al., 2009; Solmone et al., 2009) to detect low-abundance
HBV variants. We previously showed that nucleoside analog drug-
resistance mutations not detected by direct PCR sequencing could
be detected by UDPS in as few as 1.0% of sequence reads. We
also observed that many samples contained sequence reads with
unusually high numbers of guanine (G) to adenine (A) changes
relative to the direct PCR sequence, consistent with the recently
described phenomenon of G →A hypermutation.

G →A hypermutation results from an innate antiviral defense
mechanism mediated by the activity of host enzymes belonging
to the apolipoprotein B RNA-editing catalytic polypeptide-like 3
(APOBEC3) family of cytidine deaminases (Cullen, 2006). These
enzymes are capable of causing extensive deamination of cytidine
bases to uridine in negative-stranded DNA, resulting in G →A
hypermutation in positive-stranded DNA. Although APOBEC-
mediated G →A hypermutation was first reported to act upon HIV
(Sheehy et al., 2002), it has also been reported to act upon HBV
(Noguchi et al., 2005; Suspène et al., 2005), other retroviruses, and
retrotransposons (Cullen, 2006).

Because extensive G →A editing leads to mutational impairment
of viruses, distinguishing hypermutated sequence reads from non-
hypermutated reads is necessary for accurate analysis of viral
quasispecies. This is particularly important in deep sequencing
studies designed to detect low levels of nucleoside analog drug-
resistant viruses because two of these, A181T and M204I, primarily
result from G →A substitutions. Indeed, the creation of sensitive
and specific methods for identifying APOBEC-mediated G →A
hypermutation is a novel sequence analysis challenge.

We previously described an ad hoc method for identifying G →A
hypermutation in HBV sequences (Margeridon-Thermet et al.,
2009). Now, we develop a data-derived method using a probabilistic
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model based on the expectation–maximization (EM) algorithm,
using a large number of sequences from untreated individuals.

2 METHODS

2.1 Patients and sequences
Baseline plasma samples were obtained from 45 HBV-infected nucleoside
analog-naïve individuals with informed consent. Viral DNA was extracted
from the plasma and sequenced both by direct PCR (Sanger) sequencing and
by UDPS using the 454 Roche Genome Sequencer FLX platform. Raw UDPS
reads were processed for quality prior to analysis. Direct PCR sequences were
submitted to GenBank. The GenBank Accession IDs, HBV genotypes and
further details of the sequencing and quality analysis protocols are given in
Supplementary Data I and II.

UDPS reads with identical nucleic acid sequences were grouped into a
single unique read. Each unique read was aligned to a reference HBV RT
sequence corresponding to the HBV genotype of the sample as determined
by the direct PCR sequence (Rozanov et al., 2004). Sequence alignment
was performed using Pyromap, a Smith–Waterman-based local alignment
program that uses the pyrosequencing quality scores for optimal placement
of nucleotide insertions and deletions (Wang et al., 2007). The technical
mismatch error rate was estimated at 0.1% per base by sequencing multiple
plasmid HBV RT DNA clones. In previous studies, we have shown that
this technical error rate is a combination of PCR and pyrosequencing error
(Varghese et al., 2010).

2.2 Sequence analysis
Aligned UDPS sequence reads were examined for potential indications of
G →A hypermutation: (i) an apparent excess of A’s in positions at which
the direct PCR sequence contained a G; and (ii) stop codons and atypical
amino acid mutations. The first category included the number of G →A
substitutions divided by the number of G nucleotides in the direct PCR
sequence (‘G →A burden’) and the number of G →A substitutions divided
by the number of all substitutions (‘G →A preference’) (Rose and Korber,
2000).

The second category included stop codons in the RT gene, both those
occurring within the reading frame encoding the RT enzyme and those in
the overlapping 1+ reading frame encoding the HBV surface S protein. The
second category also included the number of atypical amino acid mutations
resulting from G →A substitutions; our criteria for atypical mutations are
described in Supplementary Data III. A stop codon within an open reading
frame mutationally inactivates a protein, and therefore may be more likely
to result from a host defense mechanism such as APOBEC-mediated G →A
hypermutation than a viral escape mutation. Likewise, a mutation that has not
previously been reported in a direct PCR sequence indicates that the mutation
may reduce viral fitness and be more likely to represent a host-mediated
change.

Two additional variables, the total number of G →A substitutions and
the difference between the number of G →A substitutions and the number
of A→ G substitutions, were also considered, but an analysis of variance
indicated a high (>0.85) correlation between these variables and at least one
other listed above, making them redundant as classifiers in the following
statistical analysis.

2.3 Statistical analysis
Five variables described above—G →A burden, G →A preference, RT
stop codons, S stop codons, and atypical G →A mutations—were used to
define naïve Bayes classifiers in a classification model based on the EM
algorithm (Dempster et al., 1977). The model used Bayes’Theorem to assign
probabilities of hypermutation to each UDPS sequence read.

We defined a training set by assigning all UDPS sequences an initial
classification using an ad hoc filter of strong indicators of G →A

hypermutation. Sequences that contained at least two G →A substitutions
were preliminarily classified as hypermutants if they contained at least one
stop codon in the RT or S genes, or if they had a G →A burden of at least
10% combined with a G →A preference of at least 75%. The training set
hypermutants therefore consisted of the sequences most likely to represent
viruses with G →A substitution rates much higher than expected, compared
with a published HBV nucleotide substitution model (Fares and Holmes,
2002), and the sequences most likely to reflect mutationally inactivated
viruses.

The number of hypermutants divided by the total number of sequences
in the training set was used to define P(H), the probability that a sequence
chosen at random is hypermutated. Based on the conditional probability
distributions of the five classifiers, we iteratively calculated a revised
probability of hypermutation for each UDPS sequence read, P(H)Read.
At each iteration, sequences were classified as hypermutated if P(H)Read

was ≥0.9. The overall probability of hypermutation and the conditional
probability distribution of each classifier were then updated to reflect the
new sequence classifications. Classification was revised in this manner
until the model converged. The final P(H)Read ≥0.9 was used as a filter
to distinguish hypermutated from non-hypermutated sequences. Probability
density comparisons were graphed using the R library sm and the function
sm.density.compare.

3 RESULTS
UDPS yielded 325 920 unique sequence reads from 45 nucleoside
analog-naïve HBV-infected individuals. The mean read length
was 194 nucleotides (range: 100–290); all reads shorter than 200
nucleotides resulted from excluding nucleotides 5′ to the start or 3′
to the end of HBV RT. The mean sequence coverage per nucleotide
was 3094 (range: 1982–5206). Reads had a mean 1.11 nucleotide
differences from the corresponding direct PCR sequences (range:
0–35), including a mean 0.22 G →A substitutions.

The EM-derived hypermutation filter classified 2.9% of unique
UDPS sequence reads (9359) as hypermutated based on a final
P(H)Read ≥0.9. An additional 2.9% of sequences (9434) had
a P(H)Read between 0.1 and 0.9. The remaining 94.2% of
sequences (307 127) had a P(H)Read ≤0.1. Figure 1A shows the final
distribution of hypermutation probabilities, and Figures 1B–F show
the final distributions of the five classifiers among the two classes
of sequences, as well as their mean values.

Hypermutated sequences were characterized by G →A burdens
≥5%, G →A preferences ≥75% and two or more indications of
potential lethal editing, including stop codons and atypical G →A
mutations. Non-hypermutated sequences with P(H)Read ≤0.1 were
characterized by low G →A burdens, low G →A preferences and
no stop codons or atypical G →A mutations. Sequences with
intermediate probabilities were characterized by few G →Achanges
and one indication of potential lethal editing.

Samples from all 45 individuals contained one or more
hypermutated reads, constituting 0.2–9.3% of unique UDPS reads.
The Friedman rank sum test (Rice, 2007) showed that the sample
of origin (d.f. = 44) had a more significant contribution to the
level of hypermutation in a read than the primer pair used for
PCR amplification (d.f. = 3), suggesting that hypermutation was
a characteristic of individual plasma samples rather than a PCR
artifact.

Following classification, we examined the upstream and
downstream dinucleotide context of G →Asubstitutions within each
class to assess whether hypermutation resulted from the preferential
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Fig. 1. Final distributions after application of our EM-based model. (A) The
distribution of hypermutation probabilities P(H)Read among the full set of
sequence reads. In all, 94% of sequences had hypermutation probabilities of
≤10% and 2.9% of sequences had probabilities ≥90%. (B–F) Probability
densities of each of the five classifiers, for sequences classified as non-
hypermutated (dashed lines) or hypermutated (solid lines).

action of one enzyme in the APOBEC3 (A3A-H) family. The results
of this analysis are described in Supplementary Data IV.

No direct PCR sequence contained an RT drug-resistance
mutation. Among hypermutated UDPS sequence reads, the G →A
mutations M204I (7.6%) and A181T (2.9%) were the most common
drug-resistance mutations, followed by M204V (0.03%), S202G
(0.03%), M250V (0.02%), V173L (0.01%) and T184I (0.01%),
which are not caused by G →A substitutions. No other drug-
resistance mutations occurred in hypermutated sequences. M204I
and A181T occurred in 0.09 and 0.04% of non-hypermutated
sequences, respectively. The full list of drug-resistance mutations
and atypical mutations found in each class of sequences is given in
Supplementary Data III.

Figure 2 compares the hypermutation probability density of
sequences containing A181T and/or M204I to that of sequences
containing neither mutation. For the purposes of this analysis, we

Fig. 2. Probabilities of hypermutation (P(H)Read) of sequence reads
containing A181T and/or M204I (solid line) versus sequences containing
neither mutation (dashed line). Most UDPS reads containing A181T and/or
M204I had high hypermutation probabilities, while the reverse was true of
reads containing neither mutation.

examined all A181T mutations (GCN → ACN) and the subset of
M204I mutations caused by G →A substitutions (ATG →ATA).

Although these mutations were not hypermutation classifiers,
sequences with one or both mutations were significantly more likely
to be classified as hypermutated, and had significantly higher values
of each classifier, than sequences with neither mutation (P<1E-5;
Student’s t-test). Prior to filtering out hypermutants, one or both of
these mutations were present in ≥1% of all UDPS reads from nine
individuals. After application of the filter, neither mutation occurred
at a frequency of >0.5% in any individual.

4 DISCUSSION
UDPS provides insight into the evolutionary dynamics of the
emergence of viral drug resistance and may eventually prove
useful in clinical diagnostic testing. However, the biological and
clinical significance of HBV UDPS results cannot be optimally
interpreted without being able to distinguish hypermutated from
non-hypermutated sequence reads. APOBEC-mediated G →A
hypermutation results from a host defense mechanism against viral
genomes and retroelements, and therefore mutations caused by this
mechanism have different biological and clinical significance from
mutations resulting from viral adaptation.

Three groups have developed methods for identifying
hypermutated HIV-1 sequences (Rose and Korber, 2000; Kijak et al.,
2007; Gifford et al., 2008). To our knowledge, no such method has
been developed for HBV or for deep sequencing reads. Identifying
G →A hypermutation in HBV UDPS reads is particularly
challenging because such reads are shorter and therefore contain
fewer informative sites than direct PCR sequences. Moreover, in
contrast to HIV, HBV hypermutation could potentially be mediated
by six of the seven enzymes in the APOBEC3 family (A3A-C and
F-H) and does not occur in a consistent dinucleotide context (Köck
and Blum, 2008; Henry et al., 2009).

In this study, we have demonstrated the use of a novel EM-based
model in assigning probabilistic labels to UDPS reads in order to
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classify them as hypermutated or non-hypermutated, revealing a
striking distinction between the characteristics of the two classes.

The discriminatory ability of our model benefited from the
overlapping reading frames of HBV, with RT stop codons resulting
in non-functional viruses and S stop codons resulting in viruses
incapable of cell-to-cell spread (Locarnini and Warner, 2007). Our
model also benefited from the use of an HBV variant database we
recently constructed to identify previously unreported RT mutations
resulting from G →A mutations, which may also be indicators of
host-mediated viral editing.

The high concordance among the G →A excess classifiers and
the numbers of stop codons and atypical RT mutations support the
hypothesis that both categories of classifiers reflect a host defense
mechanism rather than a mechanism of viral adaptation. Indeed,
our results underestimate the deleterious effect of hypermutation
because each sequence read of 200 nucleotides represents just 6%
of the 3100 nucleotide HBV genome; extension of our analysis to
the entire HBV genome could reveal additional mutations that, in
combination, would indicate inviable viruses. Our filter is likely
to have even greater discriminatory power on data from UDPS
platforms with longer reads, including the Titanium series of
reagents for 454 UDPS (Roche Applied Sciences).

The G →A hypermutation filter enabled us to address one of the
motivating factors of this study: determining which UDPS reads
containing the drug-resistance mutations A181T and/or M204I were
likely to be hypermutated and presumably from non-functional
viruses. Because the 45 samples we analyzed were from NRTI-naïve
individuals, we were not surprised that the majority of unique UDPS
reads with these mutations were hypermutated. Indeed, following
application of our filter, the proportions of reads with A181T and/or
M204I dropped to <0.1%, approaching the proportions of reads with
other common drug-resistance mutations.

It should be noted, however, that G →A hypermutation rarely
occurs at high enough levels to be detected by direct PCR
sequencing. The presence of A181T and M204I in such sequences
nearly always indicates clinically significant drug resistance.
However, in deep sequencing reads from nucleoside-treated
individuals or individuals with unknown treatment histories, our
filter will be essential for accurately distinguishing between
drug-resistant and inviable viruses. Although multiply infected
hepatocytes can theoretically yield mosaic viruses in which only
parts of the HBV genome is hypermutated or in which hypermutated
RT genes are packaged by non-hypermutated envelope proteins
(Suspène et al., 2005), the likelihood that either type of recombinant
virus would successfully infect new hepatocytes is low.

The G →A hypermutation filter described here will provide
researchers with a vital tool for distinguishing hypermutated from
non-hypermutated HBV deep sequencing reads. The flexibility of
the algorithm used in our model allows users to alter several
parameters (such as the initial ad hoc classification system and
the hypermutation probability cut-offs). Although we have focused
on the utility of this filter for identifying nucleoside analog drug-
resistance mutations (particularlyA181T and M204I) in viruses from
nucleoside-naive individuals, the filter will also provide a means

of identifying biologically and clinically relevant drug-resistance
mutations in nucleoside-treated individuals, as well as filtering out
inviable viruses in studies unrelated to drug resistance.
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