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Inositol 1,4,5-trisphosphate receptors (IP3R) and their relatives, ryanodine receptors, are the
channels that most often mediate Ca2þ release from intracellular stores. Their regulation by
Ca2þ allows them also to propagate cytosolic Ca2þ signals regeneratively. This brief review
addresses the structural basis of IP3R activation by IP3 and Ca2þ. IP3 initiates IP3R activation
by promoting Ca2þ binding to a stimulatory Ca2þ-binding site, the identity of which is unre-
solved. We suggest that interactions of critical phosphate groups in IP3 with opposite sides of
the clam-like IP3-binding core cause it to close and propagate a conformational change
toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled
from the last pair of transmembrane domains and the intervening pore loop from each of
the four IP3R subunits, forms a structure in which a luminal selectivity filter and a gate at
the cytosolic end of the pore control cation fluxes through the IP3R.

A BRIEF HISTORY OF IP3 RECEPTORS

Sidney Ringer, in his famous correction to an
earlier paper, showed that Ca2þ entry can

evoke a physiological response by demonstrat-
ing that beating of the frog heart requires extra-
cellular Ca2þ (Ringer 1883). Almost a century
passed before it became clear that this Ca2þ

entry, via voltage-gated Ca2þ channels, was not
directly responsible for contraction, but instead
provided the trigger for a much larger release of
Ca2þ from stores within the sarcoplasmic retic-
ulum (SR). The latter is mediated by type-2 rya-
nodine receptors (RyR) (Fabiato 1983; Cheng
et al. 1993), which like many Ca2þ channels, are
ablebothtotransportCa2þthroughanopenpore
and respond to it. These observations highlight

two general points. First, cells call upon two
sources of Ca2þ to evoke increases in cytosolic
Ca2þ concentration; second, interactions be-
tween these Ca2þ fluxes across the plasma mem-
brane and the membranes of intracellular stores
are important determinants of the physiological
response. The same points apply to the Ca2þ

signals evoked by receptors that stimulate phos-
pholipase C (PLC) and, thereby, formation of
inositol 1,4,5-trisphosphate (IP3).

The biochemical sequence linking these
receptors to formation of IP3 emerged in the
1980s (Michell et al. 1989; Berridge 2005), but
work in the decade before had established that
many receptors regulate many different re-
sponses by increasing the cytosolic Ca2þconcen-
tration (Rasmussen 1970; Berridge 1975). In his
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influential review, Bob Michell (Michell 1975),
building on work showing that many of these
receptors also stimulate phospholipid turnover
(Hokin and Hokin 1953), had suggested a
causal link between phosphoinositide hydroly-
sis and Ca2þ signals. Here, as in many studies,
the emphasis was on Ca2þ entry, with a consen-
sus only slowly emerging that Ca2þ fluxes across
both the plasma membrane and the membranes
of intracellular stores contribute to cytosolic
Ca2þ signals (Rasmussen 1970; Berridge 1975;
Williams 1980; Putney et al. 1981). In the years
following Michell’s review, decisive evidence,
much of it coming from Mike Berridge’s elegant
studies of blowfly salivary gland, established
that phosphoinositide hydrolysis is, as pre-
dicted by Michell, required for PLC-linked
receptors to evoke Ca2þ signals (Berridge and
Fain 1979). The same preparation was used to
show that IP3 is the first water-soluble product
of the signaling pathway (Berridge 1983). IP3,
thus, emerged as a prime candidate for the cyto-
solic messenger linking events at the plasma
membrane to release of Ca2þ from intracellular
stores. Paradoxically, it was to be many years
before the links between receptors that stimulate
PLC and Ca2þ entry were resolved. These came
with elaboration of the pathways linking empty
Ca2þ stores to Ca2þ entry, the so-called store-
operated Ca2þ entry pathway (Putney 1997;
Park et al. 2009), and recognition that many
trp channels are regulated by products of PLC
activity (Nilius et al. 2007). IP3 receptors
(IP3R) also contribute more directly to Ca2þ

entry across the plasma membrane either be-
cause, at least in some cells, IP3R are functionally
expressed in the plasma membrane (Dellis et al.
2006; Dellis et al. 2008), or perhaps through
their direct interactions with other plasma mem-
brane Ca2þ channels (Kiselyov et al. 1999). Here,
we focus solely on Ca2þ release from the endo-
plasmic reticulum (ER) by IP3R. Some of the
key steps in the evolution of our current under-
standing of IP3R are listed in Table 1.

The role of the SR as the intracellular source
of Ca2þ signals in striated muscle was long-
established (Endo et al. 1970), but there was
no such agreement on the identity of the organ-
elle from which Ca2þwas released in other cells.

Competing claims suggested roles for mito-
chondria or the ER. Evidence that in resting
hepatocytes only the ER contains appreciable
amounts of Ca2þ (Burgess et al. 1983) was
quickly followed by the demonstration that
IP3 evoked Ca2þ release from a non-mitochon-
drial Ca2þ store in permeabilized pancreatic
acinar cells (Streb et al. 1983). Countless groups
quickly replicated these findings in many cells,
and within months it was universally accepted
that the ER is the major Ca2þ store from which
IP3 stimulates Ca2þ release in most animal cells
(Berridge and Irvine 1984; Berridge and Irvine
1989). Subsequent work has suggested that IP3

may also stimulate Ca2þ release from the Golgi
apparatus (Pinton et al. 1998), from within the
nucleus (Gerasimenko et al. 1995; Echevarria
et al. 2003; Marchenko et al. 2005), and perhaps
also from secretory vesicles (Gerasimenko et al.
1996), but ER remains the major IP3-sensitive
Ca2þ store. Evidence that IP3 stimulates Ca2þ

efflux from the ER (rather than inhibiting
Ca2þ uptake) and the first single channel re-
cordings (Ehrlich and Watras 1988) established
that the IP3R is an IP3-gated, Ca2þ-permeable
channel. The first studies of 32P-IP3 binding
(Spät et al. 1986) were followed by purification
of IP3R from cerebellum (Maeda et al. 1988;
Supattapone et al. 1988) and then cloning of
the first IP3R subtype (IP3R1) (Furuichi et al.
1989; Mignery et al. 1989). Subsequent studies
identified two additional genes encoding verte-
brate IP3R (IP3R2 and IP3R3) and a single gene
in invertebrates (Taylor et al. 1999). It remains
far from clear whether plants express related
IP3R (Krinke et al. 2007). These studies estab-
lished that IP3R are unusually large proteins,
comprising tetramers of closely-related subu-
nits, each with about 2700 amino acid residues.
RyR are even larger: they, too, are tetramers, but
the subunits are almost twice the size of IP3R
(�5000 residues). This progress with identify-
ing IP3R together with single channel record-
ings of IP3R, initially in artificial lipid bilayers
and later in native membranes (Foskett et al.
2007; Rahman et al. 2009), provided the foun-
dations from which to explore the structural
determinants of IP3R behavior. The advances to-
ward understanding the molecular mechanisms
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Table 1. Landmarks en route to a structural analysis of IP3 receptor behavior.

RyR IP3R

1883 Ca2þ entry required for heart contraction.1

1953 Acetylcholine stimulates turnover of phospholipids.2

1975 Phosphoinositide hydrolysis proposed to cause Ca2þ

signals.3

1977 Ca2þ waves occur at fertilization.4

1977 Ca2þ-induced Ca2þ release in SR.5

1979 Phosphoinositide hydrolysis required for
receptor-stimulated Ca2þ signals.6

1980 Introduction of Quin 27 and facile loading
methods.8

1983 IP3 is first water-soluble product of PLC.9

1983 IP3 stimulates Ca2þ release from a non-mitochondrial
store.10

1985 Ryanodine, selective RyR ligand.11

1985 Single channel records of RyR.12

1986 Frequency-coded Ca2þ spikes.13

1987 Ca2þ regulates IP3R.14,15

1987 RyR1 purified.16 IP3R1 purified.17

1988 Single channel records of IP3R.18

1989 Cloning of RyR1.19 Cloning of IP3R1.20,21

1990 Elementary Ca2þ-release events.22

1993 Elementary Ca2þ-release events.23

2002 Atomic structure of IBC.24

2005 Atomic structure of SD.25

2009 Atomic structure of N-terminal of RyR.26,27

1Ringer (1883).
2Hokin & Hokin (1953).
3Michell (1975).
4Ridgeway et al. (1977).
5Endo (1977).
6Berridge & Fain (1979).
7Tsien (1980).
8Tsien (1981).
9Berridge (1983).
10Streb et al. (1983).
11Sutko et al. (1985).
12Smith et al. (1985).
13Woods et al. (1986).
14Iino (1987).
15Iino (1990).
16Imagawa et al. (1987).
17Supattapone et al. (1988).
18Ehrlich & Watras (1988).
19Takeshima et al. (1989).
20Mignery et al. (1989).
21Furuichi et al. (1989).
22Parker & Ivorra (1990).
23Cheng et al. (1993).
24Bosanac et al. (2002).
25Bosanac et al. (2005).
26Amador et al. (2009).
27Lobo & Van Petegem (2009).
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of IP3R behavior were accompanied by similar
progress with RyR (Table 1). Recurrent themes,
to which we return, are the similarities between
RyR and IP3R, and the many instances where
observations of one channel family have inform-
ed further analysis of the other. Very recently, a
third family of intracellular Ca2þ channels, un-
related to RyR and IP3R, has been implicated in
Ca2þ signaling. These are the two-pore channels
(TPC) that are activated by NAADP and release
Ca2þ from acidic Ca2þ stores, including lyso-
somes and endosomes (Patel et al. 2010; Zhu
et al. 2010). Several trp (transient receptor pro-
tein) channels, in addition to their roles in the
plasma membrane, may also mediate release
of Ca2þ from intracellular stores (Gees et al.
2010).

Parallel to work addressing the workings of
IP3R, there was growing interest in the spatio-
temporal complexity of cytosolic Ca2þ signals.
Ca2þ waves were first observed during fertiliza-
tion. These waves were proposed to result from
Ca2þ-induced Ca2þ release (CICR) and were
followed by smaller repetitive Ca2þ transients
(Ridgway et al. 1977; Gilkey 1983). It was, how-
ever, the work of Peter Cobbold that focused
most attention on the complexity of intracellu-
lar Ca2þ signals (Woods et al. 1986). Just as the
activity of a nerve is conveyed by the frequency
of its action potentials, Cobbold demonstrated
that in hepatocytes the concentration of the
extracellular stimulus determined the frequency
of the cytosolic Ca2þ transients. As these ideas
gathered momentum (Berridge 1995), evidence
accumulated in support of cells using the infor-
mation provided by frequency-encoded Ca2þ

spikes as an efficient means of regulating cellu-
lar activity (Dolmetsch et al. 1997; Li et al. 1998;
Berridge et al. 2000; Dupont et al. 2003). The
single greatest contributor to progress in under-
standing the genesis of these intracellular Ca2þ

signals was the introduction, by Roger Tsien in
1980, of simple, minimally disruptive methods
for measuring the free cytosolic Ca2þ concen-
tration in intact cells (Tsien 1980; Tsien 1981).
These methods, in combination with improved
optical microscopy, allowed Ian Parker to begin
to resolve the subcellular organization of IP3-
evoked Ca2þ signals (Parker and Ivorra 1990;

Parker et al. 1996). He showed that as the IP3

concentration increases, it triggers a hierarchy
of elementary Ca2þ release events, beginning
with the openings of single IP3R (Ca2þ blips),
progressing to the coordinated openings of a
cluster of several IP3R (Ca2þ puffs) and finally,
with sufficient IP3, culminating in a regenerative
Ca2þ wave invading the entire cell (Bootman
et al. 1997; Demuro and Parker 2007). The dem-
onstration, in 1987 by Masamitsu Iino, that
IP3R are stimulated by cytosolic Ca2þ (Iino
1987), and the later widespread recognition
that all IP3R are biphasically regulated by cyto-
solic Ca2þ (Iino 1990; Taylor and Laude 2002),
provided what has become the most widely
accepted explanation for the recruitment of
elementary Ca2þ-release events. Namely, that
CICR, already an established feature of RyR
(Endo et al. 1970), allows an active IP3R to prop-
agate its activity to neighboring IP3R.

These observations and accumulating evi-
dence that local Ca2þ signals can selectively reg-
ulate local events (Rizzuto et al. 1993; Berridge
et al. 2000; Dyer et al. 2005; Willoughby and
Cooper 2007) prompted a re-assessment of the
ways in which Ca2þ signals convey information.
It became untenable to think of responses to
graded changes in the intensity of the extracellu-
lar stimulus as being simply encoded in graded
changes in global cytosolic Ca2þ concentration.
Ca2þ entering the cytosol via one channel can
regulate different proteins to Ca2þ entering via
another (Berridge et al. 2000; Dyer et al. 2005;
Willoughby and Cooper 2007). Hence, the spa-
tial organization of the changes in cytosolic
Ca2þ concentration profoundly affects the phys-
iological response, and that presents many
opportunities for delivering different Ca2þ sig-
nals in response to different stimuli or different
stimulus intensities. The duration of each Ca2þ

increase, whether local or global, is also impor-
tant in determining not only the amplitude of
the response, but also its nature, because Ca2þ-
binding proteins differ in their responses to
transient and sustained signals. Finally, the fre-
quency withwhich Ca2þ signals are delivered can
determine both the nature and amplitude of
the cellular response. The key point is that the
versatility of Ca2þ as an intracellular messenger
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capable of regulating diverse cellular events
depends largely on the spatiotemporal com-
plexity of cytosolic Ca2þ signals (Berridge et al.
2000). If we are to understand how Ca2þ func-
tions as a ubiquitous intracellular messenger,
we must explain how IP3-evoked Ca2þ signals
grow from the opening of a single IP3R to
much larger events. That explanation depends,
ultimately, on putting IP3R into appropriate
places within the cell, and on the interactions
between IP3 and Ca2þ in regulating the opening
of IP3R. In recent reviews (Taylor et al. 2009a;
Taylor et al. 2009b) and original reports, we
have described how IP3R are co-translationally
targeted to the ER and then retained there by
sequences within their transmembrane domains
(TMD) (Parker et al. 2004; Pantazaka and
Taylor 2010). We have also suggested that within
the ER, IP3 causes IP3R to assemble into small
clusters within which their regulation by both
IP3 and Ca2þ is retuned to facilitate the Ca2þ-
mediated recruitment of IP3R activity by an
active neighbor (Rahman and Taylor 2009;
Rahman et al. 2009). Here, we focus entirely
on the interactions between Ca2þ and IP3 in reg-
ulating IP3R activity, and the extent to which
we can explain those interactions at the struc-
tural level.

REGULATION OF IP3 RECEPTORS
BY Ca2þ AND IP3

Activation of IP3R requires both IP3 and its per-
meating ion, Ca2þ (Finch et al. 1991; Marchant
and Taylor 1997; Adkins and Taylor 1999; Taylor
and Laude 2002; Foskett et al. 2007). There are
reports of IP3-independent activation of IP3R
by CaBP1 (Yang et al. 2002), a member of the
neuronal Ca2þ-sensor family, and by Gbg sub-
units (Zeng et al. 2003), but the physiological
relevance is unclear (Haynes et al. 2004; Nadif
Kasri et al. 2004). The current consensus is
that binding of IP3 to the IP3R is essential for
its activation, but whether all four IP3-binding
sites of the tetrameric IP3R must be occupied is
unresolved. Positively cooperative responses to
IP3 in some (Dufour et al. 1997; Marchant and
Taylor 1997; Tu et al. 2005a), though not all,
studies (Finch et al. 1991; Watras et al. 1991;

Laude et al. 2005), and delays before the first
response to IP3 that decrease with increasing
IP3 concentration (Marchant and Taylor 1997),
indicate that channel opening requires occu-
pancy of more than one IP3-binding site. How-
ever, gating by IP3 of heteromeric IP3R in which
at least one subunit is mutated to prevent IP3

binding suggests that occupancy of fewer than
four IP3-binding sites may be sufficient to cause
some channel opening (Boehning and Joseph
2000a). IP3R subtypes differ in their affinities
for IP3, with the general consensus being that
IP3R2 is more sensitive than IP3R1, and both
are considerably more sensitive than IP3R3
(Tu et al. 2005b; Iwai et al. 2007). In the cellular
context, however, differences in expression level
(Dellis et al. 2006; Tovey et al. 2010), subcellular
distribution (Petersen et al. 1999), post-tran-
scriptional and post-translational modifica-
tions, and association of IP3R with accessory
proteins (Patterson et al. 2004) may be more
important determinants of sensitivity.

Soon after the first report of IP3-evoked
Ca2þ release, cytosolic Ca2þ was shown also to
regulate IP3R (Suematsu et al. 1984; Jean and
Klee 1986); thereafter, it emerged that the effects
of Ca2þ were biphasic, with modest increases
in cytosolic Ca2þ concentration enhancing re-
sponses to IP3, while higher concentrations were
inhibitory (Iino 1987; Iino 1990; Finch et al.
1991; Parys et al. 1992; Marshall and Taylor
1993). This provided yet another parallel with
RyR, which are also biphasically regulated by
Ca2þ (Hamilton 2005). The coregulation of
IP3R by IP3 and Ca2þ in permeabilized cells
was confirmed by single-channel recordings of
IP3R1 reconstituted into lipid bilayers (Bezproz-
vanny et al. 1991; Striggow and Ehrlich 1996;
Kaftan et al. 1997; Ramos-Franco et al. 1998a;
Ramos-Franco et al. 1998b; Tu et al. 2002; Tu
et al. 2005b) and in native nuclear membranes
(Stehno-Bittel et al. 1995; Mak et al. 1998;
Boehning et al. 2001a; Marchenko et al. 2005).
In each case, the single-channel open proba-
bility (Po) of IP3-activated channels displayed
a bell-shaped dependence on cytosolic Ca2þ

concentration. Evidence that purified IP3R1
could be stimulated, but not inhibited, by cyto-
solic Ca2þ (Thrower et al. 1998; Michikawa et al.
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1999) raised the possibility that Ca2þ inhibition
might be mediated by an accessory protein,
although it has yet to be identified. The same
explanation perhaps accounts for some reports,
often derived from bilayer recordings, in which
Ca2þ was suggested not to inhibit IP3R2 or
IP3R3 (Horne and Meyer 1995; Hagar et al.
1998; Miyakawa et al. 1999; Ramos-Franco
et al. 2000). The balance of opinion, supported
by numerous studies of all three IP3R subtypes
and using both single-channel and Ca2þ-efflux
studies, is that all three IP3R subtypes are bi-
phasically regulated by cytosolic Ca2þ (Marshall
and Taylor 1993; Oancea and Meyer 1996;
Dufour et al. 1997; Missiaen et al. 1998; Miya-
kawa et al. 1999; Swatton et al. 1999; Boehning
and Joseph 2000b; Mak et al. 2000; Mak et al.
2001; Tu et al. 2005a). Two independent Ca2þ-
binding sites, which differ in their interactions
with different bivalent cations and in their af-
finities for Ca2þ, mediate the stimulatory and
inhibitory effects of cytosolic Ca2þ (Marshall
and Taylor 1994; Striggow and Ehrlich 1996;
Hajnóczky and Thomas 1997). Both sites are
essential elements of many models proposed
to explain regenerative Ca2þ signals (Lechleiter
et al. 1991; Berridge 1997). This core biphasic
pattern of regulation by cytosolic Ca2þ may be
modulated by other intracellular signals (and
these, too, may have contributed to some of
the disparate findings) and by processing of
IP3R. Ca2þ-dependent inhibition of IP3R3, for
example, is very sensitive to cytoplasmic ATP
(Tu et al. 2005b), and the neuronal S2þ splice
variant of IP3R1 has a broader Ca2þ-depend-
ence than the peripheral S22 form (Tu et al.
2002). However, IP3 is the major influence on
what Ca2þ does to IP3R: The two ligands are
essential co-agonists of IP3R (Finch et al. 1991).
Activation of IP3R1 by Ca2þ is positively coop-
erative, enabling Po to reach its maximum value
overa narrow range of Ca2þ concentrations, sug-
gesting that IP3R1 may be well suited to me-
diating CICR and regenerative Ca2þ signals.
Activation of IP3R3 is less cooperative, occurs
over a broader range of Ca2þ concentrations,
and requires lesser activation, making it well
suited as a trigger for Ca2þ release as the level of
IP3 increases (Maketal.2001;Foskettetal.2007).

Foskett and colleagues have argued, from
their analyses of patch-clamp recordings of
nuclear IP3R, that IP3 decreases the sensitivity
of the IP3R to inhibition by cytosolic Ca2þ,
and that this alone is the means whereby IP3

stimulates channel opening (Mak et al. 1998;
Mak et al. 2001; Ionescu et al. 2006). This simple
explanation, where IP3 serves only to relieve
tonic inhibition by resting Ca2þ concentrations,
is impossible to reconcile with their observation
that pretreatment of cells with Ca2þ-free media
abolishes Ca2þ inhibition without preventing
IP3 from activating IP3R (Mak et al. 2003).
This simple model was later elaborated to in-
clude at least three different Ca2þ sensors (Mak
et al. 2003), but at the core of this revised scheme
is a single Ca2þ-binding site that switches from
being inhibitory in the absence of IP3 to stim-
ulatory in its presence (Mak et al. 2003). The
essential feature of this scheme is consistent with
our initial model, derived from rapid super-
fusion analysis, which suggests that IP3 both
relieves Ca2þ inhibition and promotes binding
of Ca2þ to a stimulatory site (Marchant and
Taylor 1997; Adkins and Taylor 1999). The latter
is essential for the channel to open. We, however,
argue that the stimulatory and inhibitory Ca2þ-
binding sites are distinct (Marshall and Taylor
1994). We suggest, therefore, that the essential
role of IP3 is to promote Ca2þ binding to a stim-
ulatory Ca2þ-binding site. IP3, by priming this
site, allows Ca2þ to provide instantaneous con-
trol over whether the channel opens (Fig. 1A).

The structural basis for Ca2þ-regulation of
IP3R is unresolved: it may be either direct, via
Ca2þ binding to a site intrinsic to the IP3R or
via an accessory Ca2þ-binding protein (Taylor
et al. 2004). Stimulation of IP3R by cytosolic
Ca2þ is universally observed even with purified
IP3R reconstituted into lipid bilayers (Ferris
et al. 1989; Hirota et al. 1995; Michikawa et al.
1999), suggesting that this essential Ca2þ-bind-
ing site probably resides within the primary
sequence of the IP3R. At least seven cytosolic
Ca2þ-binding sites have been identified within
IP3R1 (Sienaert et al. 1996; Sienaert et al.
1997), but the physiological relevance of these
sites is unresolved. Two of the sites (residues
304-381 and 378-450) are within the IP3-binding
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core, for which there is a high-resolution struc-
ture (Bosanac et al. 2002). This structure shows
two surface-exposed clusters of acidic residues
that overlap with residues in the second N-ter-
minalCa2þ-bindingregion.However,pointmu-
tations of several of these acidic residues had no
effect on Ca2þ-regulation of IP3R (Joseph et al.
2005). The remaining Ca2þ-binding sites fall
within the central region of the IP3R (Sienaert
et al. 1996; Sienaert et al. 1997). The site between

residues 1347–1426 is interesting because its
proximity to a calmodulin (CaM)-binding
region is reminiscent of RyR, which have two
CaM-binding regions within �200 residues of
high-affinity Ca2þ-binding sites, and a third
flanked by two high-affinity Ca2þ-binding sites
(Chen and MacLennan 1994). Interactions be-
tween these sites have been proposed to con-
tribute to regulation of RyR by Ca2þ and CaM
(Chen and MacLennan 1994). None of the
Ca2þ-binding sites within IP3R contain EF-
hands or any other known Ca2þ-binding mo-
tif, and none have obvious sequence similarity
with similar regions in RyR. However, each site
has clusters of negatively charged residues that
may coordinate Ca2þ (Sienaert et al. 1997).
There is presently no evidence to link any of
these sites directly to Ca2þ regulation of
IP3R. The only tangible link between specific
residues and Ca2þ regulation comes from mu-
tagenesis of a glutamate residue that is conserved
in all IP3R and RyR. Mutation of this residue in
RyR massively reduced the Ca2þ sensitivity of
the channel (Chen et al. 1998; Li and Chen
2001). Mutation of the same residue (Glu-
2100) to another acidic residue (Asp) caused a
�5- to 10-fold decrease in the Ca2þ-sensitivity
of the IP3R to both stimulation and inhibi-
tion, abolished oscillatory Ca2þ transients in re-
sponse to agonist stimulation, and reduced the
Ca2þ-binding affinity of a large fragment that
includes the residue (Miyakawa et al. 2001; Tu
et al. 2003). A rather puzzling aspect of these
results is the observation that mutation of a
single residue similarly attenuates both stimula-
tion and inhibition by Ca2þ, when other evi-
dence suggests that the two effects are mediated
by distinct sites. This, together with the lack of
direct evidence that Ca2þ is coordinated by the
conserved glutamate, leaves open the possibil-
ity that rather than itself contributing to an
essential Ca2þ-binding site, this residue may be
allosterically coupled to the site.

Ca2þ-mediated inhibition of IP3R is widely
assumed to contribute to termination of local
cytosolic Ca2þ signals, but it remains far from
clear whether such inhibition is mediated by
Ca2þ binding directly to IP3R or to an associated
protein (Taylor and Laude 2002). The effects of

Open

Ca2+

IP3
A

B

Inhibited

i

iii ii

Figure 1. Regulation of IP3R by cytosolic and luminal
Ca2þ. (A) Binding of IP3 (black circle) to the IP3R
determines whether a stimulatory (green) or inhibi-
tory (red) Ca2þ-binding site is available (Adkins
and Taylor 1999). IP3 binding causes the stimulatory
site to become accessible and the inhibitory site to be
concealed; binding of Ca2þ (blue circle) to the former
then triggers opening of the channel. (B) Luminal
Ca2þ is proposed to tune the sensitivity of the IP3R
to cytosolic IP3 and Ca2þ such that full stores (i)
are most sensitive to IP3. As the IP3R opens (ii) and
the stores lose Ca2þ, they are proposed to lose sensi-
tivity to IP3 until eventually the IP3R closes, despite
the continued presence of the cytosolic stimuli, trap-
ping Ca2þ within the ER (iii). Conversely, stores
regain their sensitivity to IP3 as the stores refill, per-
haps thereby determining the interval between
Ca2þ spikes in stimulated cells (Berridge 2007).
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Ca2þ on IP3 binding differ between subtypes: It
inhibits binding to IP3R1 (Worley et al. 1987;
Supattapone et al. 1988; Joseph et al. 1989;
Varney et al. 1990; Richardson and Taylor
1993; Benevolensky et al. 1994; Cardy et al.
1997; Yoneshima et al. 1997), but the effects of
Ca2þ on IP3 binding to IP3R from cells express-
ing predominantly IP3R2 or IP3R3 are confused
(Pietri et al. 1990; Mohr et al. 1993; Marshall
and Taylor 1994; Cardy et al. 1997; Yoneshima
et al. 1997; Lin et al. 2000; Swatton and Taylor
2002). These conflicting results, and evidence
that purified IP3R1 is not inhibited by Ca2þ

(Danoff et al. 1988; Richardson and Taylor
1993; Benevolensky et al. 1994; Lin et al. 2000),
lend some support to the idea that Ca2þ inhi-
bition may be mediated by an accessory pro-
tein. It is, however, noteworthy that deletion
of the suppressor domain (SD, residues 1-223)
of IP3R1, which appears not to include a Ca2þ-
binding site, abolishes inhibition of IP3 binding
by Ca2þ (Sienaert et al. 2002). This suggests that
effective regulation by an accessory protein
might require the SD.

Calmodulin (CaM) is one candidate for the
accessory protein through which Ca2þ inhibi-
tion is exercised (Nadif Kasri et al. 2002; Taylor
and Laude 2002). CaM is a ubiquitously
expressed, EF-hand containing, Ca2þ-binding
protein that serves as the Ca2þ-sensor for many
cellular events (Gnegy 1993). All IP3R subtypes
are inhibited by Ca2þ-CaM (Hirota et al. 1999;
Michikawa et al. 1999; Missiaen et al. 1999;
Adkins et al. 2000; Missiaen et al. 2000), and
CaM has been shown to restore Ca2þ inhibition
to purified IP3R (Hirota et al. 1999; Michikawa
et al. 1999; Nosyreva et al. 2002). Yet, it has pro-
ven difficult to relate these functional effects of
CaM to either its effects on IP3 binding or to
identified CaM-binding sites within IP3R. CaM
inhibits IP3 binding to IP3R1 in a Ca2þ-
independent manner (Patel et al. 1997; Cardy
and Taylor 1998), through a site that probably
lies within the SD (Adkins et al. 2000; Sienaert
et al. 2002). Its properties are clearly inconsis-
tent with the ability of CaM to inhibit IP3R
function only in the presence of Ca2þ. There is
a high-affinity Ca2þ-CaM-binding site within
the central region of IP3R1 and IP3R2, but not

IP3R3 (Yamada et al. 1995; Lin et al. 2000).
However, mutations that prevented Ca2þ-CaM
binding to this site had no affect on Ca2þ-
dependent inhibition of IP3R (Zhang and
Joseph 2001; Nosyreva et al. 2002). This evi-
dence and the absence of the site from IP3R3
suggest that the central Ca2þ-CaM-binding
site cannot be responsible for Ca2þ inhibition
of IP3R. An additional high-affinity Ca2þ-CaM-
binding site is created in IP3R1 after removal of
the S2 splice region: While this may increase the
Ca2þ-CaM sensitivity of peripheral S22 IP3R1,
it is not a universal candidate for mediating
Ca2þ inhibition of IP3R (Islam et al. 1996; Lin
et al. 2000). Recently, it was suggested that bound
CaM is essential for IP3R function because a
peptide antagonist of CaM inhibited IP3-evoked
Ca2þ release (Nadif Kasri et al. 2006). It is now
clear that this peptide acts directly on IP3R,
with no requirement for CaM (Sun and Taylor
2008). While this eliminates an essential role
for tethered CaM, it raises the intriguing possi-
bility that an endogenous CaM-like structure
might be essential for IP3R activation (Sun and
Taylor 2008). In summary, all IP3R subtypes are
inhibited by Ca2þ-CaM, but the molecular basis
of this inhibition has not been established. It
seems, on balance, that CaM is unlikely to be
the accessory protein through which Ca2þ uni-
versally inhibits IP3R. That need not preclude
a role for CaM in modulating IP3R function
(Taylor and Laude 2002), just as it does for
RyR (Chen et al. 1997; Fruen et al. 2000; Rodney
et al. 2001), but we must look elsewhere for the
site through which Ca2þ inhibits IP3R.

We turn now to the luminal surface of the
IP3R, where, and again drawing parallels with
RyR, we consider regulation by luminal Ca2þ.
Persuasive evidence suggests that Ca2þ release
by RyR may be terminated before Ca2þ stores
are entirely depleted because luminal Ca2þ is re-
quired to maintain RyR activity (Györke and
Györke 1998; Launikonis et al. 2006; Jiang et al.
2008), possibly via its interaction with calse-
questrin, a luminal high-capacity Ca2þ-binding
protein (Launikonis et al. 2006; Terentyev et al.
2006). A similar scheme has been proposed to
account for two features of IP3-evoked Ca2þ

release: the initiation of Ca2þ release after the
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quiescent interspike interval during repetitive
Ca2þ spikes (Berridge 2007) and quantal Ca2þ

release via IP3R. The latter describes the situa-
tion wherein unidirectional Ca2þ efflux from
intracellular stores terminates before the stores
have fully emptied after stimulation with sub-
maximally effective concentrations of IP3 with-
out loss of their ability to respond to a further
increase in IP3 concentration (Muallem et al.
1989; Meyer and Stryer 1990; Taylor and Potter
1990; Oldershaw et al. 1991; Bootman et al.
1992; Brown et al. 1992; Combettes et al. 1992;
Ferris et al. 1992; Hirota et al. 1995). The pro-
posal is that luminal Ca2þ sets the gain on the
regulation by cytosolic IP3 and Ca2þ, so that
as the luminal free Ca2þ concentration falls, it
causes the sensitivity of the IP3R to IP3 to fall
until, as Ca2þ leaks from the ER, the IP3R closes
despite the continued presence of cytosolic IP3

and residual Ca2þ within the ER (Irvine 1990).
Conversely, as stores refill between Ca2þ spikes
in an intact cell, the model predicts that the
sensitivity of the IP3R increases until it exceeds
the threshold at which prevailing cytosolic IP3

and Ca2þ concentrations become sufficient to
trigger opening (Fig. 1B). Despite the enduring
appeal of the model, evidence that luminal
Ca2þ directly regulates IP3R is not yet entirely
convincing.

Stores loaded with Ca2þ have been shown to
become more sensitive to IP3 in some studies
(Missiaen et al. 1992; Nunn and Taylor 1992;
Oldershaw and Taylor 1993; Parys et al. 1993;
Missiaen et al. 1994; Horne and Meyer 1995;
Combettes et al. 1996; Tanimura and Turner
1996), but not in others (Combettes et al. 1992;
Shuttleworth 1992; Combettes et al. 1993; van
de Put et al. 1994). However, even the supportive
results do not eliminate the possibility that the
increased sensitivity to IP3 arises from having
Ca2þ pass through active IP3R and increase their
sensitivity from the cytosolic surface. Similar
difficulties have plagued analyses of the effects
of luminal Ca2þ on RyR (Tripathy and Meissner
1996; Laver 2007; Laver 2009). In bilayer record-
ings of IP3R1, where essential accessory proteins
may be lost, luminal Ca2þ failed to potentiate the
Ca2þ release evoked by IP3 (Bezprozvanny and
Ehrlich 1994). Despite the caveats, regulation of

IP3R by luminal Ca2þdeserves serious consider-
ation. A high-affinity Ca2þ-binding site within
the luminal loop linking TMD 5 and 6 (Sienaert
et al. 1996) contains conserved acidic residues
that could mediate luminal Ca2þ regulation,
although the sub-mM affinity of this site for
Ca2þ would be ill-suited to detecting likely
changes in luminal Ca2þ concentration. Lumi-
nal accessory proteins, akin to those that regulate
RyR, are another possibility, with ERp44 being
one candidate. ERp44 belongsto the thioredoxin
protein family and regulates IP3R in a pH- and
luminal Ca2þ-dependent manner (Higo et al.
2005). Binding of ERp44 to the TMD5-6 loop
of IP3R inhibits channel activity, and the interac-
tion is disrupted by high concentrations of Ca2þ

consistent with the suggestion that luminal Ca2þ

might enhance IP3R activity.
To summarize, IP3 works by tuning the Ca2þ

sensitivity of the IP3R: It stimulates Ca2þ bind-
ing to a stimulatory site and inhibits Ca2þ bind-
ing to an inhibitory site (Fig. 1A). Binding to the
stimulatory site is the trigger for opening of the
pore. The identity of neither Ca2þ-binding site
is known: The stimulatory site probably resides
within the IP3R itself, but the inhibitory site may
require an accessory protein, though this is
unlikely to be CaM. Luminal Ca2þmay further
tune the sensitivity of the IP3R to regulation by
its cytosolic ligands, but this remains unproven.

STRUCTURAL DETERMINANTS OF
IP3R ACTIVATION

Judged by their primary amino acid sequences,
all known IP3R subunits are assumed to have a
similar architecture. Each subunit, of about
2700 residues, comprises three major regions:
the N-terminal to which IP3 binds, the C-termi-
nal region with its six transmembrane regions
(TMD) (Galvan et al. 1999), and a large inter-
vening sequence (Fig. 2A). Functional IP3Rs
are tetrameric, assembled either from identical
subunits or from mixtures of the three subtypes
and their many splice variants (Taylor et al.
1999; Foskett et al. 2007). Several structures of
the entire IP3R1 have been published, each de-
rived from single particle analysis of images from
electron microscopy (Hamada and Mikoshiba
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2002; Jiang et al. 2002a; da Fonseca et al. 2003;
Hamada et al. 2003; Serysheva et al. 2003; Sato
et al. 2004). These studies confirm the tetra-
meric state of IP3R, but variability between the
structures and their relatively low resolution
(�30 Å) have, so far, limited any realistic inter-
pretation of the structural basis of IP3R activa-
tion (Taylor et al. 2004) (Fig. 2B). Whether
structures of recombinant IP3R will contribute
to resolving this impasse remains to be seen
(Wolfram et al. 2010).

There has been more progress with RyR,
although only recently has the resolution of
these structures (�30 Å) improved on that ob-
tained for IP3R. These structures of native RyR,
and all three subtypes of recombinant RyR
reveal a shape like a square mushroom with a
very large, open cytoplasmic structure tethered

to a much smaller TMD region (the stalk). At
�30 Å resolution, the structures of the three
RyR subtypes are almost indistinguishable, and
because they, like the three subtypes of IP3R,
share about 65% sequence identity, it seems rea-
sonable to suppose that the 3D structures of all
IP3R are also likely to be similar to each other.
These studies of RyR have identified positions
of critical residues within the 3D structure, the
sites to which accessory proteins bind, and con-
formational changes associated with opening
of the pore (Orlova et al. 1996; Serysheva et al.
2005; Wang et al. 2007; Jones et al. 2008).
Activation of RyR is associated with consider-
able changes in both the pore and cytoplasmic
regions: The four corners of the latter dip down
toward the SR, while the central region lifts away
from it (Samso et al. 2009). It is noteworthy, in
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IBC 
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Cytosol 

SD 

5

6

Figure 2. Major structural domains of IP3R. (A) The three key regions defined by the primary sequence of a single
IP3R subunit are highlighted: the N-terminal with its SD and IBC, the C-terminal region with its six TMD and
pore, and the large central region. Atomic structures of the SD (Bosanac et al. 2005) and IBC with IP3 bound
(Bosanac et al. 2002) are also shown. (B) Two views of the IP3R derived from single particle analysis (da Fonseca
et al. 2003) (top, from the cytosol; bottom, across the ER membrane with the ER lumen at the top). (C) A possible
structure of the IP3R pore, with a luminal selectivity filter and a constriction formed by the tepee-like structure of
TMD6. Only two of the four IP3R subunits are shown.
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the context of schemes for activation of IP3R
(see below), that large movements of some cy-
toplasmic domains of RyR1 appear to occur
around hinges that link them to relatively im-
mobile domains.

The highest resolution maps (�10Å), al-
though still insufficient to map 3D structure
to primary sequence, have come close to defin-
ing the likely secondary structure of the pore of
RyR1 (Ludtke et al. 2005; Samso et al. 2005;
Samso et al. 2009). This region appears to have
sixa-helices (Samso et al. 2009), consistent with
models of RyR that suggest six TMD (Meur
et al. 2007). Along the central axis, it has a lumi-
nal constriction (probably the selectivity filter,
see below) and a tepee-like assembly of four
inner helices (likely to be TMD6), with the
apex pointing into the cytoplasmic structure.
By analogy with MthK channels, this constric-
tion may form the gate of the RyR. Kinking of
the inner helix around a central Gly residue
causes splitting of the tepee and thereby opening
of the channel for MthK (Jiang et al. 2002b). One
structure (Samso et al. 2009) is consistent with
a similar mechanism operating for RyR1, but
another structure (Ludtke et al. 2005) and mu-
tagenesis of the critical Gly (G4863 in RyR1)
(Wang et al. 2003) contradict it. These insights
into the possible workings of the RyR pore are
significant for IP3R, because it is within the
pore region (TMD5-6) that RyR and IP3R share
the greatest sequence similarity. We turn, there-
fore, to the pore of the IP3R to explore its prop-
erties and structure.

All IP3R (like all RyR) are cation channels
withextremelylargeconductance,butonlymod-
est selectivity for Ca2þ over monovalent cations
(permeability ratio, PCa/PK� 6) (Williams et al.
2001; Foskett et al. 2007). The voltage-gated and
store-operated Ca2þ channels that mediate Ca2þ

entry across the plasma membrane are vastly
more selective (PCa/PK . 1000). In the ER,
where most IP3Rs are located, this lack of selec-
tivity is unlikely to be a problem because Ca2þ

is probably the only cation with an appreciable
electrochemical gradient across the ER mem-
brane. In effect, the ER Ca2þ pump (SERCA),
by creating a steep Ca2þ concentration gradient
across the ER membrane, assumes responsibility

for determining which cations flow through
an open IP3R. Indeed, the Kþ permeability of
IP3R and RyR may facilitate rapid Ca2þ release
byallowing Kþ to move into the ER to electrically
compensate the efflux of Ca2þ (Gillespie and Fill
2008). The pore of the IP3R, like that of RyR, is
formed by the final pair of TMD (TMD5-6)
and the luminal loop that links them from each
of the four subunits (Ramos-Franco et al. 1999;
Williams et al. 2001) (Fig. 2C). The loop includes
a sequence (GGVGD in IP3R) similar to that of
the selectivity filter of Kþ channels (Balshaw
et al. 1999), consistentwiththe ideathat theover-
all architecture of the pore region may be broadly
similar to that of Kþ channels (MacKinnon
2004). For both IP3R and RyR, however, the pore
must be larger and less-selective than for Kþ

channels, and probably able to accommodate
only one cation at a time (Williams et al. 2001).
This model for the IP3R pore, where TMD5
(the outer helix) and TMD6 (inner helix) cradle
a short pore helix and selectivity filter (Fig. 2C),
is consistent with mutagenesis of residues within
this region affecting ion permeation (Boehning
et al. 2001b; Dellis et al. 2006; Dellis et al. 2008;
Schug et al. 2008), with biophysical evidence
that the narrowest region of the pore lies close
to the luminal entrance of the RyR (Williams
et al. 2001) and with the intermediate resolution
structures of the pore region of RyR1 (Samso
et al. 2009). A conserved acidic residue (D2550
in IP3R1) at the luminal end of the selectivity fil-
ter (Fig. 2C) contributes to the modest Ca2þ

selectivity of IP3R (Boehning et al. 2001b; Dellis
et al. 2008) and RyR (Gao et al. 2000; Wang et al.
2005; Gillespie 2008), but the structural deter-
minants of ion selectivity and permeation by
IP3R are otherwise poorly understood. The
changes in pore structure that allow it to open
are also minimally understood. Indeed, muta-
tion of the conserved Gly within TMD6 of
IP3R (G2586 in IP3R1), which might have been
thought to provide the gating hinge (Samso
et al. 2009), appears not to prevent IP3 from
opening IP3R (Schug et al. 2008). In short, aside
from knowing the regions of primary sequence
that form the IP3R pore (TMD5-6) and a rather
vague notion that its structure perhaps resem-
bles that of Kþ channels, we have only the most
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rudimentary knowledge of the structural deter-
minants of how the IP3R pore opens and selects
between ions.

The conformational changes in the IP3R
that lead to opening of its pore are initiated by
IP3 binding to the IP3-binding core (IBC, resi-
dues 224–604 in IP3R1) (Fig. 3A). Although
IP3 is the only endogenous ligand of the IBC,
there are many synthetic agonists, all of which
have structures equivalent to the equatorial 6-
hydroxyl and the 4- and 5-phosphate groups
of IP3 (Fig. 3A) (Rossi et al. 2010). It is notewor-
thy that neither of the immediate products of
IP3 metabolism, IP2 and IP4, binds to the IBC;
both metabolic pathways are therefore effective
means of terminating activation of IP3R by
IP3. An atomic structure of the IBC with IP3

bound (Bosanac et al. 2002) shows IP3 held
within a clam-like structure in which the phos-
phate groups of IP3 are coordinated by basic
residues (Fig. 3A). The two sides of the clam,

the a- and b-domains, form a network of in-
teractions with the essential groups of IP3. The
4-phosphate is hydrogen-bonded with residues
in theb-domain, the 5-phosphate forms hydro-
gen bonds with residues predominantly in the
a-domain, and the 6-hydroxyl interacts with
the backbone of a residue within the a-domain.
It is easy to imagine how these interactions with
IP3 might pull the a- and b-domains together,
causing the clam to close in a manner similar
to glutamate binding to ionotropic glutamate
receptors (Mayer 2006). Structures of the IBC
without IP3 bound are urgently needed to assess
this proposal, but two lines of evidence lend cir-
cumstantial support. First, the IBC adopts a
more constrained structure when it binds IP3

(Chan et al. 2007). Second, adenophostins,
which are high-affinity agonists of IP3R (Rossi
et al. 2010), retain some activity after loss of the
3-phosphate (analogous to the 5-phosphate of
IP3), probably because their adenine moiety
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2–O3PO 
2–O3PO 

3 2 
1 

6 5 

4 

OH 

OPO3
2–

IBC Pore

Figure 3. Initiation of IP3R activation by IP3. (A) The structure of IP3, with its critical vicinal 4,5-bisphosphate
and 6-hydroxyl groups, is shown alongside the structure of the IBC with IP3 bound. The latter shows the 4- and
5-phosphates contacting the b- and a-domains, respectively (Bosanac et al. 2002), and thereby pulling the clam
into a more closed state. (B) Structure of the SD (Bosanac et al. 2005) showing possible sites of interaction with
the IBC and downstream domains through which it signals to the pore. See text for further details.
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interacts strongly with a residue in thea-domain
and thereby partially mimics the clam-closure
that would otherwise require the 5-phosphate
to bind to the a-domain (Sureshan et al.
2009). We envisage, therefore, that when IP3

binds to the IBC, the essential vicinal phosphate
groups through their contacts with the a- and
b-domains effectively cross-bridge the two sides
of the clam-like structure, causing it to close,
and thereby initiate the processes that will cul-
minate in opening of the pore.

It is worth commenting briefly on available
antagonists of IP3R because of their obvious
value as experimental tools. There are no spe-
cific antagonists of IP3R, although with ap-
propriate caution some antagonists can yield
useful insight (Michelangeli et al. 1995). Hepa-
rin is a competitive antagonist of IP3 (Worley
et al. 1987), although it is not membrane-
permeant and, among many additional effects,
it uncouples G-protein-coupled receptors from
their G proteins (Dasso and Taylor 1991) and
activates RyR (Ehrlich et al. 1994). 2-amino-
ethyl diphenylboronate (2-APB) is membrane-
permeant and inhibits IP3-evoked Ca2þ release
without affecting IP3 binding (Maruyama
et al. 1997); its mechanism of action is unre-
solved. However, 2-APB also inhibits Ca2þ

uptake and many other Ca2þ channels. It has re-
cently aroused interest as a modulator of STIM
and, therefore, store-operated Ca2þ entry (Goto
et al. 2010). A screen of 2-APB analogues
with selectivity for store-operated Ca2þ entry
may yet also provide IP3R-selective antagonists
(Goto et al. 2010). Xestospongins, isolated
from an Australian sponge, are high-affinity
membrane-permeant inhibitors of IP3-evoked
Ca2þ release that do not affect IP3 binding
(Gafni et al. 1997), but they, too, have side
effects (Solovyova et al. 2002). High concentra-
tions of caffeine inhibit IP3-evoked Ca2þ release
(Parker and Ivorra 1991) without affecting IP3

binding (Worley et al. 1987), but caffeine
also stimulates RyR, inhibits cyclic nucleotide
phosphodiesterases, and interferes with many
Ca2þ indicators. Membrane-permeant peptide
antagonists of IP3R may provide another po-
tential source of selective antagonists (Sun and
Taylor 2008).

How IP3 binding to the IBC leads to binding
of Ca2þ to the IP3R, and thereby opening of the
pore, remains largely unknown, but it is clear
that the suppressor domain (SD, residues 1-223
of IP3R1), which is connected to the IBC by a
flexible linkage (Chan et al. 2007), plays an es-
sential role. The clearest evidence is that IP3

binds to IP3R without an SD, but it fails to
open the pore (Uchida et al. 2003; Szlufcik
et al. 2006). The name of this region derives
from the observation that, although the SD itself
is unlikely to make any direct contacts with IP3,
its presence decreases the affinity of IP3R for IP3

(Uchida et al. 2003). We have interpreted this
effect to reflect the use of binding energy from
the binding of IP3 to the IBC to cause a confor-
mational change within the SD. This interpre-
tation gains considerable support from our
analysis of partial agonists of the IP3R (Rossi
et al. 2009). The crux of our argument is that
the energy provided by agonist binding drives
both the conformational changes that lead to
receptor activation and tighter binding of the
ligand to its receptor. There is, therefore, a play-
off between these two claims on the binding
energy. Partial agonists, because they less effec-
tively activate the receptor, divert more binding
energy into stabilizing the binding, while full
agonists evoke more substantial conformational
changes; therefore, less binding energy remains
to stabilize binding. Our results show that al-
though full and partial agonists bind with sim-
ilar affinities to the IBC, the SD causes the
affinity of full agonists to decrease more than
for partial agonists (Rossi et al. 2009). Quan-
titative analyses of these results lead to the
conclusion that the most energetically costly
conformational change in the IP3R evoked by
IP3 occurs within its N-terminal (residues 1-
604), and that these conformational changes
pass entirely via the SD to the pore region (Rossi
et al. 2009). We suggest, therefore, that the SD is
the essential link between IP3 binding to the IBC
and the subsequent conformational changes
that lead to opening of the pore. Without a
structure of the entire N-terminal of the IP3R,
we can only speculate on the physical rela-
tionship between the IBC and SD, but our re-
sults with partial agonists and mutagenesis are
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consistent with three exposed loops of the SD
(b2–b3, b5–b6, and b7–b8, blue in Fig. 3B)
being the most likely sites of interaction with
the IBC (Rossi et al. 2009).

Remarkably, and despite their rather low
sequence identities (�30%), the crystal struc-
tures of the SD from IP3R1 (Bosanac et al.
2005) and of the analogous N-terminal regions
from RyR1 and RyR2 (Amador et al. 2009; Lobo
and Van Petegem 2009) are extremely similar.
Several mutations associated with malignant
hyperthermia and central core disease (RyR1)
or catecholaminergic polymorphic ventricular
tachycardia (RyR2), all of which impair the nor-
mal regulation of gating, are clustered in an
exposed loop (b8–b9) of the N-terminal of
RyR (Amador et al. 2009). Furthermore, and
consistent with the N-terminal of the RyR me-
diating essential interdomain interactions, a
peptide derived from this region causes RyR2
to open spontaneously, apparently by uncou-
pling an interaction between the endogenous
loop and a central region of the RyR that in-
cludes residues 2460–2495 (Oda et al. 2005;
Tateishi et al. 2009). In light of the conservation
of structure between IP3R and RyR, it is tem-
pting to speculate that the same loop in the
SD of the IP3R (b8–b9, red in Fig. 3B) may med-
iate transfer of conformational changes onward
toward the pore. Co-immunoprecipitation stud-
ies have suggested an interaction between the
N-terminal of IP3R1 (most likely the SD) and
the pore region of an adjacent subunit (Boehn-
ing and Joseph 2000a), perhaps mediated by
the cytosolic loop linking TMD4 to TMD5 (Sc-
hug and Joseph 2006). An attractive possibility,
therefore, is that the SD (perhaps its b8-b9
loop) interacts directly with the short cytosolic
helix linking TMD4 and TMD5, and thereby
gates the pore (Schug and Joseph 2006; Rossi
et al. 2009). Such an interaction would require
that the SD comes very close to the pore, but
the exact location of the SD within the 3D struc-
ture of either the IP3R or RyR is unknown. The
N-terminal of the RyR probably lies within the
clamp region at the periphery of the large square
cytoplasmic structure (Wang et al. 2007), and it
does change shape during RyR activation (Samso
et al. 2009). Yet, in this location the N-terminal is

too far from the pore to interact directly with the
TMD4-5 loop, consistent perhaps with evidence
that in RyR the N-terminal may interact directly
with a neighboring domain that includes residues
from the central part of the primary sequence
(Wang et al. 2007). These observations and the
evidence that the uncoupling peptide derived
from the N-terminal of RyR2 appears to interact
with residues remote from the pore (Oda et al.
2005; Tateishi et al. 2009), suggest that the links
between the SD and pore may, at least for RyR,
be indirect.

In summary, we suggest that IP3R activation
is initiated when IP3 binds to the IBC, and per-
haps thereby causes closure of its clam-like
structure. That conformational change, which
must also initiate the events that allow Ca2þ to
bind to a stimulatory site, is passed to the rest
of the IP3R entirely via the SD. The location of
that Ca2þ-binding site and, therefore, the struc-
tural links between it and the SD, are unre-
solved. We speculate that one face of the SD
interacts directly with the IBC, and the opposite
face interacts with the structure through which
conformational changes pass to the pore. The
pore is a relatively nonselective, large-conduc-
tance cation channel formed by the tetrameric
assembly of the TMD5-6 regions of each subu-
nit. Its structure is unresolved but likely to be
broadly similar to Kþ channels with a selectivity
filter and gate at opposite ends of its membrane-
spanning structure.
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